Western Specialty:
Common Poorwill

Photo by © Scott Logan of Sherman Oaks, California:
Common Poorwill (*Phalaenoptilus nuttallii*)
Topanga State Park, Los Angeles County, California, 23 June 2013
Note that the incoming juvenile plumage of the young is considerably more rufous than the plumage of the adult.

The Importance of Agriculture to Long-billed Curlews in California’s Central Valley in fall W. David Shuford, Gary W. Page, Gary M. Langham, and Catherine M. Hickey... 196

NOTES Rare and Unusual Birds Observed on Tern Island, French Frigate Shoals, Northwestern Hawaiian Islands Phillip J. Howard, Sarah C. Harvey, and Steven M. Ritt... 237

A Winter Record of a Little Bunting from Interior Oregon Alan Contreras and Craig Tumer ... 243

Book Reviews Héctor Gómez de Silva and Dave Krueper................. 246

Featured Photo: Dark-faced Common Murres off Central California in Fall and Winter Peter Pyle ... 250

Front cover photo by © Steven C. Heinl of Ketchikan, Alaska: Ash-throated Flycatcher (Myiarchus cinerascens), Ketchikan, Alaska, 7 November 2012, representing the first record for Alaska.

Back cover: “Featured Photos” by © Alan Wight of Petaluma, California: Common Murres (Uria aalge) over Cordell Bank off Bodega Bay, California, 7 October 2012, showing variation in the pattern of the head in basic plumage. Note also the white trailing edge to the secondaries on the whiter-headed bird, lacking on the darker-headed bird.

Western Birds solicits papers that are both useful to and understandable by amateur field ornithologists and also contribute significantly to scientific literature. The journal welcomes contributions from both professionals and amateurs. Appropriate topics include distribution, migration, status, identification, geographic variation, conservation, behavior, ecology, population dynamics, habitat requirements, the effects of pollution, and techniques for censusing, sound recording, and photographing birds in the field. Papers of general interest will be considered regardless of their geographic origin, but particularly desired are reports of studies done in or bearing on North America west of the 100th meridian, including Alaska and Hawaii, northwestern Mexico, and the northeastern Pacific Ocean.

Send manuscripts to Daniel D. Gibson, P. O. Box 155, Ester, AK 99725; avesalaska@gmail.com. For matters of style consult the Suggestions to Contributors to Western Birds (at www.westernfieldornithologists.org/docs/journal_guidelines.doc).
SEABIRDS NEW TO THE EASTERN CHUKCHI AND BEAUFORT SEAS, ALASKA: RESPONSE TO A CHANGING CLIMATE?

ROBERT H. DAY, ADRIAN E. GALL, TAWNA C. MORGAN, JOHN R. ROSE, ABR, Inc.—Environmental Research & Services, P. O. Box 80410, Fairbanks, Alaska 99708–0410; bday@abrinc.com

JONATHAN H. PLISSNER, PETER M. SANZENBACHER, ABR, Inc.—Environmental Research & Services, P. O. Box 249, Forest Grove, Oregon 97116–0249

JAMIE D. FENNEMAN, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada V6T 1Z4

KATHERINE J. KULETZ, U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska 99503–6199

BRIDGET H. WATTS, Fairweather Science, 9525 King Street, Anchorage, Alaska 99515 (current address: 247 NW 19th St., Newport, Oregon 97365)

ABSTRACT: Seabirds at high latitudes may respond to climate change in a variety of ways, including range contractions or expansions and/or seasonal or annual shifts in distribution. Since 2006, three species of seabirds have been reported in the eastern Chukchi Sea for the first time: the Short-tailed Albatross (Phoebastria albatrus), Northern Gannet (Morus bassanus), and Rhinoceros Auklet (Cerorhinca monocerata). Sometime prior to 2006, the Ancient Murrelet (Synthliboramphus antiquus) expanded its usual maritime range north into the eastern Chukchi and now has reached the Beaufort Sea. The gannet appears to have entered the Pacific via the Northwest Passage, whereas the other three species have moved north from the Pacific. Whales, other seabirds, and diatoms have been recorded moving between the Atlantic and Pacific via the Northwest Passage in the past 15 years as sea ice has retreated and the passage has opened. Because of broad-scale changes to the Chukchi ecosystem and because of increased sampling of the region, we anticipate that additional seabirds will be recorded in the Chukchi and Beaufort seas from the North Pacific and possibly the North Atlantic.

The Pacific arctic marine region is undergoing rapid physical and biological change as a result of climate change (Grebmeier et al. 2006a, b, Overland...
Climate-change models suggest that the increases in air and water temperatures are greatest at high latitudes (IPCC 2007), influencing biological change at multiple trophic levels. For example, the part of the northern Bering Sea south of St. Lawrence Island has changed from an arctic to a subarctic environment in recent years: the cover of sea ice has decreased, blooms of phytoplankton within the ice are diminished, and the abundance and biomass of communities of benthic organisms have been reduced, leading to reduced use by benthic-feeding marine mammals and an increase in populations of pelagic fishes in that region (Grebmeier et al. 2006b). Because of warming and the northward advection of water from the Bering Sea, boreal and subarctic benthic invertebrates also have expanded their distributions northward into the Chukchi Sea, as have the gray whales (*Eschrichtius robustus*) that feed on them (Grebmeier 2012). Climate change also is expected to alter distributions of species such as ice-pupping seals and marine fishes in the Pacific Arctic (Sigler et al. 2011), and there is evidence that, in the Okhotsk Sea (eastern Russia), the productivity of both planktivorous and piscivorous seabirds is changing with climate-associated changes in the marine ecosystem (Kitaysky and Golubova 2000).

Seabirds, which are highly mobile, may be expected to be prominent bellwethers of change in arctic marine ecosystems. One facet of changes in these ecosystems is range contractions or expansions and/or seasonal or annual shifts in seabirds’ distributions. In this paper, we detail recent records of species new to the marine avifauna of the Chukchi and Beaufort seas, species that may be responding to climate change. Here, we report and interpret these observations with respect to changing environmental conditions in arctic Alaska.

RECORDS

Short-tailed Albatross

A Short-tailed Albatross was observed by Watts and photographed by S. Nelson (Denver, CO) in the northeastern Chukchi Sea at 71.3°N, 163.22°W on 6 August 2012. What presumably was the same bird was seen and photographed by C. Pham (U.S. Fish and Wildlife Service [USFWS]) nearly 200 km to the southwest at 70.03° N, 166.99° W on 17 August 2012. It was identifiable as a juvenile by its plumage that was evenly dark gray over the entire body and wings; the large bubblegum-pink beak also is clearly visible in the photographs. This is the first record of this species in the eastern, and probably the entire, Chukchi Sea. Photos documenting both sightings have been deposited with the Alaska Checklist Committee at the University of Alaska Museum.

The Short-tailed Albatross is a subarctic–boreal Pacific species known to occur in the Bering Sea since the 19th century. For example, Nelson (1887) “found them common about Bering Straits in summer,” seeing “a number” near Big and Little Diomede islands in 1881. However, he did not see any albatrosses during his subsequent cruise through nearly the entire Chukchi Sea, including visits to Kotzebue Sound and Barrow in Alaska, North Cape
(now Cape Schmidt) in Siberia, and Wrangel Island from July to September 1881. Although this species was still abundant at that time, it was not seen north of Bering Strait, suggesting that it somehow was limited in its northward distribution in those days. During an extensive cruise throughout the Chukchi Sea in the late 1920s, Jacques (1930) did not record the Short-tailed Albatross; although its numbers were declining at that time, they still were in the thousands (Hasegawa and DeGange 1982). Likewise, surveys in the eastern Chukchi Sea in the 1960s (Swartz 1967) and extensive surveys there in the 1970s and 1980s (Watson and Divoky 1972, Divoky 1987) found none. Finally, in a compilation of 2463 incidental sightings of the Short-tailed Albatross from 1988 to 2004, Piatt et al. (2006) recorded only two even as far north as the Chirikov Basin (between St. Lawrence Island and Bering Strait) but suggested that the Anadyr Current, flowing north, could attract shelf-edge specialists such as this albatross to the region. On the other hand, Portenko (1972) assumed that eight albatrosses observed by M. M. Sleptsov off Cape Serdtse-Kamen (northern Chukchi Peninsula) on 4 September 1939 were Short-tailed, although the species by then was on the verge of extinction (Murie 1959, Hasegawa and DeGange 1982). Therefore, we believe it more probable that these birds instead were Laysan Albatrosses (*P. immutabilis*), a species that Murie (1959) realized in the 1930s he was mistaking for the Short-tailed in the Aleutian Islands.

Northern Gannet

Rose and M. Akpik (Wainwright, AK) identified a Northern Gannet at 71.85° N, 161.80° W, 190 km west-northwest of Barrow, on 16 August 2010, but the observation was brief and no photos were taken. The mostly white plumage with a golden wash on the head and black distal parts of the wings indicated that the bird was an adult. This is the first report of this species in the Pacific sector of the Arctic Ocean. On the basis of this observation and one of presumably the same bird the next day off Barrow (*North American Birds* 65:143), the Alaska Checklist Committee added the species to the Alaska unsubstantiated list in 2010 (Gibson et al. 2013). Because the Northwest Passage was not open in the intervening period (see below), we assume that an adult Northern Gannet found 21 months later at Southeast Farallon Island on 25 April 2012 (*North American Birds* 66:551, *Western Birds* 44[1]: cover) was either the same bird or another that had arrived the same season and subsequently reached California waters via Bering Strait, Bering Sea, and the eastern North Pacific.

Ancient Murrelet

The Ancient Murrelet first was recorded in the Chukchi Sea on 14 September 1976, with one bird seen just north of Bering Strait (North Pacific Pelagic Seabird Database, U.S. Geological Survey, Anchorage, AK; see Kessel 1989). Kessel (1989) also mentioned Day’s numerous records in and near Bering Strait in late September 1985 and reported two birds near Cape Lisburne on 26 August 1987. The first record of substantial numbers is by Fenneman, who saw a total of ~50–100 birds scattered in small groups of two to six throughout the eastern Chukchi Sea from the last week of
September to mid-October 2006. Subsequently, in 4 of the last 6 years, ornithologists with ABR, Inc., and the USFWS recorded hundreds of Ancient Murrelets in the Chukchi (Figure 1, Table 1). Photos documenting one of the sightings have been deposited at the University of Alaska Museum with the Alaska Checklist Committee.

In addition to these records from the Chukchi Sea, Plissner and Sanzenbacher saw two at 71.15° N, 152.59° W, and a group of three at 71.12° N, 152.28° W, ~80 km northwest of Cape Halkett, in the western Beaufort Sea, on 21 September 2010. Also in the Beaufort, A. Bankert (USFWS) recorded a group of four at 71.71° N, 154.66° W, ~80 km northeast of Bar-

Table 1 Summary of Records of the Ancient Murrelet in the Chukchi Sea, 2006–2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Total number of birds</th>
<th>Range of dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>~50–100</td>
<td>late September to mid-October</td>
</tr>
<tr>
<td>2007</td>
<td>68</td>
<td>5 September–6 October</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>289</td>
<td>31 August–8 October</td>
</tr>
<tr>
<td>2011</td>
<td>110</td>
<td>25 August–24 October</td>
</tr>
<tr>
<td>2012</td>
<td>198</td>
<td>10 August–22 October</td>
</tr>
</tbody>
</table>
row, on 28 August 2012. In addition, J. C. George (Department of Wildlife Management, North Slope Borough, Barrow, AK, in litt.) saw “a few pairs” of Ancient Murrelets ~25 km north of Cooper Island at 71.42° N, 155.60° W on 10 September 2012; neither he nor the Inupiat whalers he was with had ever seen them before. Photos documenting one of the Beaufort sightings have also been deposited at the University of Alaska Museum. These observations represent the first records of this species for the Beaufort Sea.

The Ancient Murrelet is a boreal Pacific species that has been known from the northern Bering Sea only since 1976; earlier workers in the region did not record it, in spite of many extensive surveys (Nelson 1887, Jacques 1930, Swartz 1967, Portenko 1973, Watson and Divoky 1972, Divoky 1987). Its nearest breeding colonies are located in the Aleutian Islands, ~1300 km south of Bering Strait (Gibson and Byrd 2007), except for one record of probable breeding on the Pribilofs (Lehman 2005). In September 1985, substantial numbers occurred near St. Lawrence Island and as far north as Bering Strait, where birds were seen flying north into the southern Chukchi (Kessel 1989, Day 1992). The species was not recorded in the Chukchi Sea again until 2006, however, suggesting that whatever environmental conditions may have been limiting its northward distribution in the intervening period had disappeared or been ameliorated. The Chukchi Sea was surveyed little during the intervening period, but seabird biologists working in the northern Bering during this period did not record the Ancient Murrelet either. However, land-based observers in the northern Bering Sea, at Gambell, St. Lawrence Island, recorded small numbers each fall from 2001 to 2007, then a substantial increase to over 100 annually from 2008 through 2012 (Lehman 2005, P. E. Lehman in litt.). The Ancient Murrelet has been noted in the Chukchi in 5 of the 7 years from 2006 to 2012, and sometimes in substantial numbers, suggesting the exploitation of new postbreeding habitat and/or a true range expansion. In addition, the recent records from the Beaufort Sea imply a further northward/eastward expansion of the range. Currently, the Ancient Murrelet is rare to uncommon in the eastern Chukchi Sea between early August and late October and casual to very rare in the Beaufort Sea from late August to late September.

Rhinoceros Auklet

Fenneman identified a single Rhinoceros Auklet ~30 km west-northwest of Kotzebue in Kotzebue Sound, southeastern Chukchi Sea, in August 2006 (exact date unavailable). He saw the bird at close range for several minutes but was unable to photograph it. On the basis of the dull plumage and the dull bill with no horn evident, it was either a fresh juvenile or a non- or post-breeder. It differed from a Tufted Puffin in that it had a long, sloping forehead and lacked any sign of the puffin’s facial pattern, which would have been evident in a bird at least 1 year old at this time. This is the first report of this species in the Chukchi Sea.

The Rhinoceros Auklet is an amphipacific species, breeding on both the eastern and western coasts of the North Pacific Ocean with only a few small colonies along the intervening north coast (AOU 1998, Gibson and Byrd 2007). The records nearest Kotzebue Sound are of one bird recorded at Cape
RESPONSE TO A CHANGING ENVIRONMENT

The Northern Gannet presumably was able to move west into the Chukchi Sea as climate change opened the Northwest Passage, greatly reducing the extent of summer sea ice in the Arctic Ocean in recent years. The passage was open enough for unaided travel by ships in 1998, 2007, 2010, and 2012 (Corbyn 2007; http://en.wikipedia.org/wiki/Northwest_Passage, accessed 17 April 2013; http://earthobservatory.nasa.gov/IOTD/view.php?id=78797, accessed 17 April 2013), suggesting that the gannet may be the vanguard of new species arriving from the Atlantic. During the past 15 years, movements presumed to be through the Northwest Passage also have been recorded for Bowhead Whales (*Balaena mysticetus*) from Alaska and Greenland traveling both directions in 2010 (Heide-Jørgensen et al. 2012); Gray Whales seen in the Mediterranean Sea in 2011 (http://en.wikipedia.org/wiki/Northwest_Passage; accessed 15 March 2013) and in Namibia in 2013 (www.guardian.co.uk/environment/blog/2013/may/14/grey-whale-walvis-bay-namibia#; accessed 10 June 2013); and a North Pacific diatom (*Neodenticula seminae*) recorded in the northwestern North Atlantic in 1998—the first record in the North Atlantic in 800,000 years (Corbyn 2007, Reid et al. 2007). In addition, a juvenile Great Black-backed Gull (*Larus marinus*) photographed at Barrow 8–10 October 2010 presumably came through the Northwest Passage (North American Birds 65:143), and the proportionately large bill of an adult Atlantic Puffin (*Fratercula arctica*) on 20 June 2008 in the Okhotsk Sea, eastern Russia, pointed to subspecies *F. a. naumanni*, which occurs from Greenland to Svalbard, so Kharitonov (2009) inferred the bird to have arrived in the Russian Far East via the Northwest Passage. Hence the gannet we report might not have been the first seabird to transit the Northwest Passage in recent years. Kharitonov (2009) cited records of other Atlantic alcids in the Russian Far East but suggested that they instead reached the Pacific via the Northeast Passage (i.e., across the ocean north of Asia), which also has been open recently.

There are several reasons why we believe that these birds arrived via the Northwest Passage rather than the Northeast Passage (also called the Northeast Sea Route) across northern Russia. First, the straight-line distance along 73° N from central Davis Strait (between Canada and Greenland) to the central Chukchi Sea is only ~3800 km, whereas the distance along 73° N from the northern tip of Norway to the central Chukchi Sea is ~5900 km—over 50% longer. Second, in Europe, wandering Northern Gannets wander west, not east, from western Russia (Cramp and Simmons 1980); likewise, those in eastern North America wander west and have been recorded across the continent to central Canada and even Victoria Island (AOU 1998), which is not far from the Canadian sector of the Beaufort Sea and abuts the Northwest Passage. Third, if correct, the identification of the Atlantic Puffin to the subspecies from the northernmost Atlantic implies that it would have a much shorter journey to the Chukchi Sea and North Pacific via the Northwest Passage than it would via the
Northeast Passage. Finally, in Europe, Great Black-backed Gulls also wander west and south from western Russia (Cramp and Simmons 1983), whereas in eastern North America, nonbreeding Great Black-backed Gulls occasionally summer as far north and west as Baffin Bay, Hudson Bay, and the Canadian Prairie provinces (AOU 1998), all of which are much closer to the Chukchi Sea than is their nearest breeding site in the northwestern corner of Russia.

The expansion of the Ancient Murrelet’s range into the Chukchi Sea, and even the Beaufort Sea, appears to represent post-breeding dispersal. In the Aleutian Islands, which are the species’ nearest breeding grounds, the peak of fledging of chicks is the second week of July, with all fledging completed by the end of July (Byrd and Day 1986). The range of records from 10 August to 24 October, most of which are from late August to mid-October, is ~1–3 months after chicks have fledged. Hence it is not yet clear whether these records are of nonbreeding adults, postbreeding adults, and/or juveniles; many of the sightings at Gambell in late August and early September, at least, have been of adults in alternate plumage (P. E. Lehman in litt.).

The Short-tailed Albatross, Ancient Murrelet, and Rhinoceros Auklet all are North Pacific species that reached the Chukchi Sea presumably in response to lessened ice and warmer temperatures. The composition of the seabirds of the Chukchi Sea has changed dramatically in the past 37 years, reflecting the effects of climate change on the community as a whole: formerly composed primarily of piscivorous seabirds and benthic-feeding seaducks, the community has changed to one composed primarily of planktivorous seabirds (Gall et al., unpubl. data). (Surprisingly in the face of this ecological change, of these three new species from farther south, only the Ancient Murrelet is a planktivore.) These changes to the structure of the seabird community have been accompanied by dramatic changes in the timing of sea ice and the reduction of its extent, and the abundance and/or biomass of zooplankton have increased because of the warmer temperatures (Lane et al. 2008, Matsuno et al. 2011). Because of this broad-scale change to the Chukchi ecosystem and because of increased study at sea, we may expect that additional species of seabirds will be recorded in the Chukchi and Beaufort seas from the North Pacific and possibly the North Atlantic.

ACKNOWLEDGMENTS

The research by ABR, Inc., was funded by ConocoPhillips Company, Shell Exploration and Production Company, and Statoil USA E&P, Inc., as part of the Chukchi Sea Environmental Studies Program (CSESP). Research by the USFWS was funded in part by the North Pacific Research Board (projects 637 and B64) and the Bureau of Ocean Energy Management (Interagency Agreement M10PG00050). The conclusions do not necessarily represent the views of the funding companies or agencies. We particularly thank scientists Caryn Rea (ConocoPhillips), Michael Macrander (Shell), Steinar Eldøy (Statoil), and Sheyna Wisdom (Fairweather Science) for support and feedback during all phases of the CSESP. We also thank personnel of ABR, Inc., for collecting data from 2008 to 2012, Elizabeth Labunski (USFWS) for collecting and processing data, and the many contributors to the North Pacific Pelagic Seabird Database over the past four decades. We also thank J. Craighead George of the North Slope Borough for providing the unpublished photos of Ancient Murrelets off of Barrow. The manuscript was improved greatly by the reviews of D. D. Gibson, S. C. Heinl, and M. L. Kissling.

Accepted 18 June 2013
ABSTRACT: The third report of the Alaska Checklist Committee outlines 15 species and three subspecies added to, and one species and one subspecies deleted from, the Checklist of Alaska Birds, resulting in a net total of 499 species and 117 additional subspecies currently recognized as occurring or having occurred naturally in Alaska.

The Checklist of Alaska Birds is founded on the "Inventory of the species and subspecies of Alaska birds" (Gibson and Kessel 1997), plus additions, deletions, status changes, etc., reflected in the previous Alaska Checklist Committee (AKCLC) reports (Gibson et al. 2003, 2008) and on the information included in this third committee report. During the period 2008–2012, 14 species and three subspecies were added to the Checklist of Alaska Birds, and one species and one subspecies were deleted. First- and second-round votes on a 15th species (Common Chiffchaff, Phylloscopus collybita), under way at the close of 2012, were completed in March 2013, resulting in a net total of 499 species and 117 additional subspecies currently recognized by the AKCLC as occurring or having occurred naturally in Alaska.

Organized in 2000 by founding members Gibson, Heinl, and Tobish, the AKCLC grew during the years 2008–2012: Lang joined in 2009, Withrow in 2010, Gill in 2011, and DeCicco in 2012. As presently constituted, the committee comprises six voting members and a nonvoting secretary. We post a new edition of the Checklist of Alaska Birds early in each new year at the University of Alaska Museum website, where the 19th edition (January 2013) can be found at www.universityofalaskamuseumbirds.org.

Because preserved examples of avian species and subspecies (archived voucher specimens) make available manifold data about birds that can only be conjectured from representations (photos, videos, etc.), we include here details of first Alaska specimens of birds already on the Alaska list—specimens brought to our attention, re-evaluated, or obtained during this period of coverage. Subspecies listed in parentheses are inferred from photos on the basis of characteristics of plumage, phenology, and/or geographic range.

Author, year of publication and type locality are not included for taxa (species or subspecies) discussed in a previous AKCLC report. Authorities for outlines of nesting range include Vaurie (1959, 1965), American Ornithologists’ Union [AOU] (1998), Dickinson (2003), and Dickinson and Remsen (2013). Maintained separately, the Alaska “unsubstantiated” list comprises
species (currently 24) for which we have on file compelling sight reports but no Alaska specimen or readily identifiable photo.

ADDITIONS TO THE ALASKA LIST AND FIRST ALASKA SPECIMEN RECORDS

Anser albifrons. Greater White-fronted Goose. ADDITIONAL SUBSPECIES: Anser albifrons sponsa Banks, 2011 [Hooper Bay, Alaska]. Breeds in western and southwestern Alaska. Holotype is U.S. National Museum of Natural History (USNM) 380325, ad. ♂, 11 May 1942, Hooper Bay, Alaska, C. E. Gillham. Banks (2011) described this Greater White-fronted Goose as similar to A. a. gambelli of interior and northern Alaska but averaging smaller, and similar to A. a. elgasi of the Cook Inlet area but smaller in all dimensions; subspecies sponsa nests in western Alaska, in the Yukon–Kuskokwim delta area and in the Bristol Bay lowlands; it winters in California and western Mexico.

Pterodroma solandri Gould, 1844 [Bass Strait]. Providence Petrel. Breeds on islands in Tasman Sea. Monotypic. FIRST ALASKA RECORD (photos): Ten+ birds, 15 September 2011, vicinity of 53° 16′ N, 171° 05′ E, off Attu Island, Aleutian Islands, B. E. Cooper and G. B. Mackiernan (Cooper and Mackiernan 2012, including photos). NOTES: In its nonbreeding season the Providence Petrel occurs widely in the central Pacific Ocean (Onley and Scofield 2007), north at least as far as main islands of Japan (Ornithological Society of Japan [OSJ] 2012), and it has been reported recently, but not confirmed, off California, Oregon, and Washington (see Cooper and Mackiernan 2012) and off British Columbia (Dunn et al. 2012).

Egretta tricolor (Statius Müller, 1776) [Cayenne]. Tricolored Heron. Breeds from southern U.S. to northern South America. Egretta tricolor (ruficollis) Gosse, 1847 [Jamaica], including occidentalis Huey, 1927 [Scammon Lagoon [= Laguna Ojo de Liebre], Baja California Sur] (see Hellmayr and Conover 1948, Erickson and Howell 2001, Unitt 2004). Range of the species except South America. FIRST ALASKA RECORD (photo): One adult, 22–24 May 1985, Chickamin River, mainland southeast Alaska, P. Bethel (in litt., 2008; photo AKCLC). NOTES: Nearest nesting Tricolored Herons are in Baja California (see Erickson and Howell 2001). The species was formerly (until about 2000) a regular winter visitor along the coast of southern California, but there are only four records for northern California (P. Unitt, in litt., 2013). There have been several Oregon records, one in spring (Marshall et al. 2006).

Nycticorax nycticorax. Black-crowned Night-Heron. Nycticorax nycticorax nycticorax. Breeds in the Old World (Eurasia from Europe to China, Japan, Taiwan, the Sundas, and Philippines; north Africa). FIRST ALASKA SPECIMEN: UAM 15000, ad. ♂, 11 May 2002, Attu Island, Aleutians, K. Winker and D. W. Sonneborn (Gibson and Byrd 2007). HISTORY IN ALASKA: Prior Alaska records, all since the 1970s, were outlined by Gibson and Kessel (1992, 1997), who inferred occurrences of nominate nycticorax and of subspecies hoactli (Gmelin, 1789) [Valley of Mexico] (Breeds in the New World). Four additional Aleutian specimens of nominate nycticorax were
collected in 2006 (Gibson and Byrd 2007). There is no Alaska specimen of hoactli. Finally, one Black-crowned Night-Heron was reported 11–29 July 2011 at St. George Island, Pribilofs (see NAB 64:673).

Circus cyaneus. Northern Harrier. *Circus cyaneus cyaneus*. Breeds in Europe, central and northern Asia. ADDITIONAL SUBSPECIES (specimen): UAM 9062, juv. ♂, remains salvaged in June 1999, Attu Island, Aleutians, D. W. Sonneborn. Identified as this species by C. J. Dove, at USNM, the specimen comprises a distal right wing; its length (chord 318 mm) points to this subspecies (Gibson and Byrd 2007) rather than to the North American *C. c. hudsonius*.

Gallinula chloropus (Linnaeus, 1758) {England}. Common Moorhen. Breeds from Europe to Japan, in sub-Saharan Africa, in Madagascar, and on many isolated oceanic islands and archipelagos, from, e.g., Mauritius and the Seychelles to the Philippines, Palau, and northern Marianas. *Gallinula chloropus chloropus*, including *indica* Blyth, 1842 {Calcutta} (see Vaurie 1965). Europe to Japan. FIRST ALASKA RECORD (specimen): UAM 27369, juv. ♂, 12–14 October 2010, Shemya Island, Aleutians, M. T. Schwitters (Withrow and Schwitters 2012, including photos). NOTES: In the wake of the AOU’s decision (Chesser et al. 2011) to split the New World Common Gallinule (*Gallinula galeata*) from the Old World Common Moorhen (*G. chloropus*), the Shemya specimen provides the first record of the latter species within the political limits of North America. The Common Moorhen has been recorded twice as far east as Kamchatka (October 1974 and October 1981, Artyukhin et al. 2000) and once in the Commander Islands (April 1956, Marakov 1962), which lie 320 km northwest of Shemya.

Himantopus himantopus. Black-winged Stilt. *Himantopus himantopus himantopus*. Breeds in central and southern Eurasia (east to Honshu); also Africa and Madagascar. **FIRST ALASKA SPECIMEN**: UAM 18462, ad. ♂, 16 May 2003, St. George Island, Pribilofs, K. Sundseth and J. J. Weicker (see NAB 57:389–390, photo p. 431). **HISTORY IN ALASKA**: There have been two other Alaska records—of one photographed during the period 24 May–3 June 1983 at Nizki Island, Aleutians, C. F. Zeillemaker and others (Zeillemaker et al. 1985), and inferred to be this subspecies (Gibson and Kessel 1997); and two birds together 1 June 2003, one still present on 9 June 2003, at Shemya Island, Aleutians, G. V. Byrd (Gibson and Byrd 2007).

Tringa semipalmata (Gmelin, 1789) {New York}. Willet. Breeds in south-central Canada and north-central U.S. and along Atlantic coast of southeastern Canada and U.S. **Tringa semipalmata (inornata)** (Brewster, 1887) {Larimer Co., Colorado}. South-central Canada and north-central U.S. **FIRST ALASKA RECORD** (photos; Figure 2): One bird, 22–30 June 2012, mouth of Kenai River, Kenai Peninsula, T. A. and L. K. Burke and others (photos AKCLC). The bird’s long and rather slender dark bill are consistent with subspecies *inornata* (J. L. Dunn, in litt., 2012) **HISTORY IN ALASKA**: Transfer from the unsubstantiated list. Hartlaub (1883) inferred from a description of its feet that a “Totanus” reported to have been taken at Portage Bay [= Portage Cove, Haines] in 1882 was this species, but he never saw the specimen; Gabrielson and Lincoln (1959:828) included reference to Hartlaub’s report in their hypothetical list. There were two 20th-century reports: up to two birds 8–9 August 1961 at Minto Lakes, west of Fairbanks, by W. T. Van Velzen (1963); and one with Greater Yellowlegs (*T. melanoleuca*), Dunlins (*Calidris alpina*), golden-plovers (*Pluvialis*), and Black Turnstones (*Arenaria melanocephala*) on 29 April 1998 at Seward, by W. C. Shuster (in litt., 1998). **NOTES**: In the Pacific Northwest the Willet is generally rare or uncommon in coastal estuaries in Washington (Wahl et al. 2005) and very rare in spring, summer, and fall on the southern coast of British Columbia (Campbell et al. 1990).

Gallinago solitaria Hodgson, 1831 {Nepal}. Solitary Snipe. Breeds in southern Siberia and from northeastern Mongolia to northeastern China and Kamchatka. **Gallinago solitaria japonica** Bonaparte, 1856 {Japan}. Northeastern Mongolia to northeastern China and Kamchatka. **FIRST ALASKA RECORD** (specimen): UAM 27000, ad. ♂, 24 May 2010, Attu Island, Aleutians, J. J. Withrow and D. W. Sonneborn (Withrow and Sonneborn 2011). **HISTORY IN ALASKA**: Transfer from the unsubstantiated list. A sighting on 10 September 2008 at St. Paul Island, Pribilofs, provided the only previous Alaska report (Bieber and Schuette 2009, including photos of marginal quality). **NOTES**: East of Kamchatka the Solitary Snipe is a rare strayler in the Commander Islands (Johansen 1961), and it has been recorded at Karaginsky Island (Artyukhin et al. 2000), off the northeast coast of Kamchatka.

Leucophaeus atricilla (Linnaeus, 1758) {Bahama Islands}. Laughing Gull. Breeds on Atlantic coast from southeastern Canada to Venezuela, also at Salton Sea and on Pacific coast of Mexico. Monotypic. **FIRST ALASKA RECORD** (photos): One bird (first cycle), 5–7 January 2010, city of Kodiak, Kodiak Island, R. A. MacIntosh and others (photos NAB 64:309). **HISTORY IN ALASKA**: Transfer from the unsubstantiated list. Early in the 20th century, Reichenow (1909) reported one collected 6 October 1906 on the Kenai River—a specimen that “reached the museum [Berlin] in such bad condition that it was thrown away” (A. Reichenow, in litt., 1915, fide Gabrielson and Lincoln 1959:829). Recent reports included one bird, probably in its second summer, 29 June 2002, Yakutat, P. M. Suchanek and others; one adult in summer plumage,
31 August 2004, Icy Strait, S. T. Zimmerman and others; and one adult in summer plumage, 30 May 2009, Auke Bay, G. B. van Vliet. Heinl and Piston (2009) judged the details of a 1976 report from Ketchikan (on file AKCLC; report noted by AOU 1998) insufficient to eliminate Franklin’s Gull (*L. pipixcan*). NOTES: In the Pacific Northwest the Laughing Gull has been recorded three times, spring to fall, in coastal Washington (Wahl et al. 2005), and there have been three summer reports from the southern coast of British Columbia (see Field Notes 52:493, 1998; J. D. Fenneman, in litt., 2013).

Streptopelia decaocto (Frivaldszky, 1838) [Turkey]. Eurasian Collared-Dove. Breeds from Europe to western China; Burma to eastern China. *Streptopelia decaocto decaocto*. Europe to western China. **First Alaska records** (specimens; photos AKCLC): Added to the Alaska checklist in 2010 following first Alaska reports in 2006, 2007, and 2008 (Gibson et al. 2008, Heinl and Piston 2009) and invasion in 2009 (NAB 63:641; see also photos at NAB 63:555). Currently a rare or uncommon resident in virtually every town from Metlakatla and Ketchikan north and west to Yakutat and Cordova. Specimens: UAM 27777,♂, 25 September 2010, Ketchikan, J. and J. Raymond; and UAM 30669,♀, 5 November 2012, Ketchikan, L. H. DeCicco and S. C. Heinl. **Notes:** Following release in the Bahamas in the 1970s, this species spread quickly to Florida (Smith 1987, Romagosa 2012) and beyond (Cecile 2004, Cole and McCaskie 2004, Leukering and Gibbons 2005, Mlodinow et al. 2006, Hamilton et al. 2007). As noted by Romagosa and McEneaney (1999), collared-doves are kept in captivity and individual doves found in the wild might be the result of local release (see also Glover et al. 2001, Cole and McCaskie 2004). In at least one case in Alaska (three at Petersburg 20 July 2006), the birds were thought to have been local escapes (Gibson et al. 2008). The incursion in 2009, however, clearly represented another step in the continued spread of this species across North America.

Myiarchus cinerascens (Lawrence, 1851) [Western Texas]. Ash-throated Flycatcher. Breeds in western U.S., Baja California, and western Mexico. Monotypic (see Patten et al. 2003). **First Alaska record** (photos; this issue’s cover): One bird, 7–17 November 2012, Ketchikan, S. C. Heinl (photos AKCLC), A. W. Piston, W. Young. **History in Alaska:** Transfer from the unsubstantiated list. One prior Alaska report, of one bird (photos, of marginal quality, AKCLC), 20 July 1999, Auke Bay, G. B. van Vliet and others (see Gibson et al. 2003). **Notes:** The Ash-throated Flycatcher nests as far north as south-central Washington but is only a casual visitant in coastal Washington, mid-May to late November (Wahl et al. 2005). It is as well a very rare visitant in coastal southern British Columbia, early summer to late autumn, where there had been 36 records by the late 1990s (Campbell et al. 1997).

Vireo solitarius (Wilson, 1810) [Bartram’s Woods, Philadelphia, Pennsylvania]. Blue-headed Vireo. Breeds from northernmost to eastern Canada and in north-central and northeastern U.S., south to Georgia. *Vireo solitarius* (*solitarius*). Northwestern to eastern Canada and north-central and northeastern U.S. **First Alaska record** (six photos; the best of which is reproduced in Figure 3): One bird, 30 September and 2 October 2012, Middleton Island, Gulf of Alaska, S. C. Heinl, L. H. DeCicco (photos AKCLC), G. H. Rosenberg (photos AKCLC), and T. G. Tobish Jr. Peter Pyle wrote (in litt., 2012), “I have no problem endorsing it as an *Hy* [hatch-year] male Blue-headed Vireo. I’m very confident of *Hy* by primary coverts, and even if it was an *AHy* [after hatch year] I think it is too bright for *AHy* male Cassin’s [Vireo *V. cassini*]. For an *Hy* it is confirmed as Blue-headed.” **History in Alaska:** One prior Alaska report, a bird identified by song but not seen, 17 June 1999, Yukon River floodplain near Weshrinarin Creek, T. Rinaldi (Handel et al. 2009:546 and C. M. Handel, in litt., 2011). **Notes:** The Blue-headed Vireo nests as close to Alaska as extreme southeastern Yukon Territory (Alexander et al. 2003) and northeastern British Columbia (Campbell et al. 1997).
Cistothorus palustris (Wilson, 1810) {Philadelphia, Pennsylvania}. Marsh Wren. Breeds from northeastern, central, and southwestern British Columbia and western Washington to central Canada and from north-central to southeastern U.S. Subspecies in Alaska not known (see NOTES). FIRST ALASKA RECORD (photos; Figure 4): One bird, 25 October and 28 October 2009, in extensive 1.5-m reeds on Palmer Hay Flats State Game Refuge, at 61° 30’ N, 149° 20’ W, D. L. Crowson (photos AKCLC and NAB 64:134), R. A. Winckler, and B. L. Friest. NOTES: Subspecies C. p. plesius Oberholser, 1897 {Fort Wingate, New Mexico} nests as far north as the southern interior of British Columbia (Campbell et al. 1997); C. p. iliacus (Ridgway, 1903) {Wheatland, Knox Co., Indiana} nests as far northwest as Alberta (AOU 1957) and is likely the form now found nesting in northeastern British Columbia (Campbell et al. 1997) and found recently, and possibly nesting, in southeastern Yukon Territory (Alexander et al. 2003). Subspecies browningi Rea, 1986 {Pitt Meadows, British Columbia}, which nests in southwestern British Columbia and west-central Washington (Rea in Phillips 1986), is probably sedentary (P. Unitt, in litt., 2013).

Phylloscopus collybita (Vieillot, 1817) {France}. Common Chiffchaff. Breeds mainly in western and central Eurasia. Phylloscopus collybita (tristis) Blyth, 1843 {Calcutta}. Siberia from the Yenisei to Lake Baikal, and east in the Russian Far East as far as the Kolyma River. FIRST ALASKA RECORD (photos): One bird, 6–7 June 2012, Gambell, St. Lawrence Island, P. E. Lehman, K. J. Zimmer, and others (Lehman and Zimmer 2013; K. J. Zimmer, C. Irrigoo, and P. Schoenberger photos AKCLC). The AKCLC split its first vote on this identification, with two members voting to add and the other four voting to relegate the species to the unsubstantiated list (28 January 2013). After receiving an array of influential comments, from L. Svensson, P. Alström, P. Kennerley, P. Pyle, and others, we voted unanimously in a second round to add this species to the main list (6 March 2013). We did not accept the identification of an autumn bird reported as possibly this species (Lehman and Zimmer 2013:435) at St. Lawrence Island on 30 September 2011. NOTES: Subspecies P. c. tristis winters
chiefly from the Middle East to India (Cramp and Brooks 1992). In the Russian Far East it is reported to occur as far east as western Chukotka (Brazil 2009). It is a casual migrant in Japan (since 1996—OSJ 2012).

Aleutians, D. W. Sonneborn; and one bird (photos), 8 June 2008, St. Paul Island, Pribilofs, L. H. DeCicco and others (all DeCicco et al. 2009, including photos of second bird). HISTORY IN ALASKA: Transfer from the unsubstantiated list. A sighting on 4 June 2000 at Attu Island provided the first Alaska report of this species (NAB 54:317, including photos of marginal quality; see Gibson et al. 2003, DeCicco et al. 2009), and a sighting of one on 6 and 7 September 2012 at St. Paul Island, Pribilofs, D. Gochfeld, S. Schuette, and others, provided the first fall report (NAB 67[1]:in press; photos AKCLC). NOTES: The Rufous-tailed Robin nests widely in Kamchatka as far north as the Palana and Karaga rivers, near the isthmus (Artyukhin et al. 2000), and occurs as a migrant throughout Japan (OSJ 2012).

Turdus iliacus Linnaeus, 1766 [Sweden]. Redwing. Breeds in Iceland, the Faeroe Islands, northern and eastern Europe, and in northern Russia as far east as Lake Baikal, the Lena River, and the lower Kolyma River. *Turdus iliacus* (*iliacus*). Range of the species except Iceland and the Faeroes. FIRST ALASKA RECORD (photos; Figure 5): One bird, 15–27 November 2011, Seward, Kenai Peninsula, J. Herbert, C. A. Griswold, and others (Griswold 2012; photos NAB 66:194). NOTES: The Redwing is unknown in the Russian Far East beyond the Kolyma (see Portenko 1973, Kistchinski 1980, Artyukhin et al. 2000) but is a straggler in Japan, where there have been more than 12 records (OSJ 2012). A Redwing in Washington (December 2004–February 2005, NAB 59:316 and 370; Wahl et al. 2005) provides the only prior record in western North America.

ADDITIONS TO THE LIST OF SPECIES UNSUBSTANTIATED IN ALASKA

Oceanodroma monorhis (Swinhoe, 1867) [near Amoy, China]. Swinhoe’s Storm-Petrel. One bird was identified among 250+ Fork-tailed Storm-Petrels (*O. furcata*), 15 Leach’s Storm-Petrels (*O. leucorhoa*), and ~10 Northern Fulmars (*Fulmarus glacialis*); 5 August 2003; Gulf of Alaska south of Kodiak Island, at 56° 03’N, 153° 42’W; S. Terrill, L. Terrill, R. Terrill, R. D. Spight, and S. T. Zimmerman. We judged brief video (on file AKCLC) insufficient to substantiate this identification (see Chesser et al. 2010).

Morus bassanus (Linnaeus, 1758) (Scotland). Northern Gannet. An adult was identified off Point Barrow—on two successive days by observers unknown to each other and on separate ships—on 16 August 2010 at 71° 50’N, 161° 48’W by J. R. Rose (see Day et al. 2013) and on 17 August 2010 at 71° 18’N, 156° 47’W by C. Leedy. No photos. NOTES: North of its breeding range this species has occurred regularly in western Greenland (Boertmann 1994) and widely elsewhere in the North Atlantic (Mowbray 2002), but we found no prior report of occurrence in the Pacific sector of the Arctic Ocean.

Botaurus stellaris (Linnaeus, 1758) (Sweden). Eurasian Bittern. One bird was observed briefly in flight on 13 June and 25 June 2012 at Buldir Island, Aleutians, by R. A. Dugan, but the only photos (on file AKCLC), which point to this species, are distant flight shots in fog.

Acrocephalus dumetorum Blyth, 1849 (India). Blyth’s Reed Warbler. One bird was identified on 9 September 2010 at Gambell, St. Lawrence Island, by R. L. Ake, P. E. Lehman, A. J. Lang, and others (Lehman and Ake 2011, including photos). Of the many photos taken, most are of poor quality or flight shots (on file AKCLC). None show clearly the wing formula, and similar species in this difficult genus, such as the Large-billed Reed Warbler (*A. orinus*) and Eurasian Reed Warbler (*A. scirpaceus*), cannot be entirely eliminated. Peter Kennerley (in litt., 2011; see Kennerley and Pearson 2010) wrote, “To achieve acceptance, in my opinion, you would need crisp, sharp photographs and ideally the bird would need to be trapped, measurements taken, and feathers or blood sampled for comparative DNA evidence. As discussed above, and again in my opinion, I would not accept the record for a first for the USA and North America. It would need to be iron-clad in measurements and DNA, and this would require trapping and examination in the hand.”

DELETIONS FROM THE CHECKLIST OF ALASKA BIRDS

Bucephala clangula. Common Goldeneye. DELETE ADDITIONAL SUBSPECIES *B. c. clangula*. A specimen (USNM 237500) collected 27 November 1914 at St. Paul Island, Pribilofs (Hanna 1916), and long accepted as the only Alaska record of this Old World subspecies (see AOU 1957), has been reidentified as an example of New World *B. c. americana* (R. C. Banks, USNM, on specimen label).

Charadrius alexandrinus. Snowy Plover. DELETE SPECIES. In view of the AOU’s decision (Chesser et al. 2011) to split into two species the Old World Kentish Plover (*C. alexandrinus*) and New World Snowy Plover (*C. nivosus*), we re-examined the supporting evidence (photos of one bird, 23–24 May 1991, Nome River mouth, Seward Peninsula; on file AKCLC) for the sole Alaska report (Gibson and Kessel 1992) and unanimously agreed that, although of a “Snowy Plover” sensu lato, the photos do not point conclusively to either species.
ACKNOWLEDGMENTS

We thank Jon L. Dunn, Peter Kennerley, Peter Pyle, and Pavel S. Tomkovich for valuable contributions to our assessments of various records and reports included herein, and we are pleased to acknowledge the review comments of Paul E. Lehman, Jon L. Dunn, and editor Philip Unitt.

LITERATURE CITED

Kistchinski, A. A. 1980. [Birds of the Koryak Highlands]. Izdatel’stvo Nauka, Moscow. [In Russian]
Marakov, S. V. 1962. [Rare and new birds in the Commander Islands]. Ornitoligoiya 5:166–167. [In Russian]

Accepted 7 July 2013
THE IMPORTANCE OF AGRICULTURE TO LONG-BILLED CURLEWS IN CALIFORNIA’S CENTRAL VALLEY IN FALL

W. DAVID SHUFORD, GARY W. PAGE, Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, California 94954; dshuford@pointblue.org
GARY M. LANGHAM, National Audubon Society, 1200 18th Street, Suite 500, Washington, DC 20036
CATHERINE M. HICKEY, Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, California 94954

ABSTRACT: The Long-billed Curlew (Numenius americanus)—a large shorebird of continental conservation concern— is a migrant and winter resident in California’s Central Valley. The size of the curlew’s North American breeding population has been estimated recently, but little is known about its abundance and habitat needs at migratory stopovers and wintering areas. Following two broad-scale surveys of the curlew in the central and southern portions of the Central Valley in fall in 2007 and 2008, we coordinated a survey of it throughout the valley in August 2009, recording 20,469 curlews in 195 flocks. On all three surveys, during this otherwise arid season, curlews were found primarily in irrigated alfalfa and irrigated pasture. There was a strong, positive relationship between curlew abundance by subregion of the Central Valley and the subregion’s proportion of the entire valley’s acreage of both alfalfa and irrigated pasture. Identifying the habitat features important to curlews at both fine and landscape scales, documenting the birds’ movements (within and between seasons) in the Central Valley, and monitoring their populations is needed to aid in the conservation of this shorebird at risk.

The Long-billed Curlew (Numenius americanus) is a migrant and winter resident in California’s Central Valley, where it concentrates primarily in agricultural lands. The U.S. Shorebird Conservation Plan categorized the Long-billed Curlew as “highly imperiled” because of population declines, low population size, and threats on the nonbreeding and breeding grounds (Brown et al. 2001). Initial rough estimates of the curlew’s rangewide population size of 20,000 to 55,000 individuals, based on expert opinion (Morrison et al. 2001, Fellows and Jones 2009), have been superseded by newer estimates of about 110,000 to 165,000 individuals breeding in the United States (Stanley and Skagen 2007) and 139,000 to 183,000 in North America as a whole (Jones et al. 2008), extrapolated from a sampling of the population on the breeding grounds. Yet there is a paucity of information on the species’ abundance, concentration sites, and habitat use at migratory stopovers and in its winter range, where it spends about nine months of the year.

Anecdotal evidence suggests that the vast expanses of pastures, alfalfa fields, and fields of harvested rice of the interior valleys of California are important habitats for the Long-billed Curlew during migration or winter. The first coordinated attempt to quantify its abundance across key valleys in September 2007 estimated at least 30,000 individuals: 65% in the Central Valley, 35% in the Imperial Valley, and <1% each in the Antelope Valley, San Jacinto Valley, and Carrizo Plain (Page et al. 2007). The roughly 19,000 curlews tallied in the Central Valley on that survey and another in September...
2008 were mainly in its central and southern portions; in both cases, coverage was minimal in the extensive rice country of the Sacramento Valley to the north (Shuford et al. 2009).

To better document the status of the Long-billed Curlew in the Central Valley, we surveyed the entire valley on a broad scale in August 2009. Here we report on the species’ abundance, distribution, and habitat-use patterns in 2009 and compare them with the patterns found on less extensive fall surveys in 2007 and 2008. We also recommend future research to inform better management practices and conservation of the Long-billed Curlew in the Central Valley.

STUDY AREA AND METHODS

Our study area was California’s Central Valley (~640 km long by 64 km wide), dominated by agriculture. We divided this vast region into 121 agricultural survey areas of varying size across four subregions: the Sacramento Valley (27 areas), Delta (29), San Joaquin Basin (22), and Tulare Basin (43) (Figure 1). These subregions differ slightly from those used for previous surveys (Shuford et al. 2009; see below).

From 7 to 10 August 2009, over 100 volunteers and biologists searched 116 of the 121 areas for curlews. In addition, biologists with government agencies searched the following wetland complexes embedded within the agricultural areas: Sacramento National Wildlife Refuge (NWR), Delevan NWR, Sutter NWR, Colusa NWR, North Central Valley Wildlife Management Area (WMA; Llano Seco Unit), Upper Butte Basin Wildlife Area (WA; Howard Slough, Little Dry Creek, and Llano Seco units), Oroville WA, and Gray Lodge WA in the Sacramento Valley; Yolo Bypass WA in the Delta region; San Joaquin River NWR, San Luis NWR (Freitas, Kesterson, San Luis, East Bear Creek, and West Bear Creek units), Merced NWR (Merced, Arena Plains, and Snobird units), North Grasslands WA (China Island and Salt Slough units), Los Banos WA, Volta WA, and Grasslands WMA in the San Joaquin Basin; and Mendota WA, Kern NWR, and Pixley NWR in the Tulare Basin.

Observers recorded the size and location of each flock and classified the birds’ habitat by crop type or other habitat, average plant height (<10 cm, 10–20 cm, >20 cm), moisture (flood irrigated, damp, dry), and field condition (tilled, growing, dormant, fallow). They also recorded the behavior (feeding, roosting, flying) of all curlews seen. We used the same protocol and survey methods as in 2007 and 2008 (Shuford et al. 2009), enabling us to make comparisons of crop use by curlews among the three years.

To evaluate the influence of the availability of key crops on curlew abundance, we obtained county crop data from the National Agricultural Statistics Service (2010). We grouped data on crop acreage and curlew abundance by four subregions of the valley (and the counties they comprise): Sacramento Valley (Glenn, Butte, Colusa, Sutter, Yuba, Placer), Delta (Yolo, Sacramento, Solano, Alameda, Contra Costa, San Joaquin), San Joaquin Basin (Stanislaus, Merced, Madera), and Tulare Basin (Fresno, Kings, Tulare, Kern). For the three of these four subregions used in Shuford et al. (2009), we modified the subregional boundaries of previous survey areas slightly to more closely match county boundaries and crop data available by county. In
Figure 1. Patterns of abundance and distribution of the Long-billed Curlew over 121 survey areas in 4 subregions of the Central Valley in August 2009.
THE IMPORTANCE OF AGRICULTURE TO LONG-BILLED CURLEWS

a few instances where agricultural survey areas included substantial parts of two counties that were in different subregions, we apportioned the number of curlews in each county to the correct subregion.

To compare curlew abundance to the availability of key crop types, we calculated the proportion of total curlews recorded in each of the four subregions in August 2009 (see Figure 1) and the proportion of the valley’s acreage of both alfalfa and irrigated pasture in these subregions for the crop year of 2009. We then used Spearman rank correlations to assess the significance of these relationships at the subregion and county levels and to evaluate the effect of the size of survey areas and subregions on curlew abundance.

RESULTS

Abundance and Distribution

On the August 2009 survey, we recorded 20,469 curlews in 195 flocks in agricultural areas, and none in embedded wetland areas, of the Central Valley. Of the total, 7% were in the Sacramento Valley, 24% in the Delta, 17% in the San Joaquin Basin, and 53% in the Tulare Basin. We found curlews in 51 of 116 areas surveyed, but the birds concentrated in relatively few of these. The 23 areas that each held >250 birds and the 12 of these that held >500 birds collectively accounted for 88% and 68%, respectively, of all curlews recorded. Patterns of curlew concentration varied by subregion. With concentration gauged by the number of areas that held >250 curlews, 68% of the curlews in the Sacramento Valley were in 2 of 27 surveys areas, 94% in the Delta were in 6 of 29 areas, 86% in the San Joaquin Basin were in 3 of 22 areas, and 87% in the Tulare Basin were in 12 of 43 areas (see Figure 1). In addition, the curlews occurred mainly in the western and central portions of the Central Valley (Figure 1), extensively irrigated by flooding. There was no significant relationship between curlew abundance and the size of either individual survey areas (Spearman’s $\rho = 0.09, P = 0.32$) or the larger subregions (Spearman’s $\rho = 0.80, P = 0.20$).

Habitat Use

The 20,469 curlews recorded in August 2009 concentrated in just a few habitats: 91.4% were in various agricultural crops, 5.1% were roosting in wastewater, water storage, or agricultural evaporation ponds, and 3.5% were in flight. Of those in agricultural fields, 91.1% were in alfalfa, 4.7% in other hay crops, 3.4% in irrigated pasture, 0.6% in rice fields, and 0.2% in miscellaneous crops (Figure 2). The birds found roosting in various types of ponds likely had been foraging earlier in agricultural fields.

Curlews used alfalfa fields with a broad range of crop heights. Alfalfa fields with crop heights of <10 cm held 55% of all curlews, those of 10–20 cm held 38%, and those >20 cm held 7%. Use of the latter height class may have been underestimated, as curlews in tall alfalfa at times can be difficult to see.

Curlew abundance by subregion was strongly associated with the proportion of the entire valley’s coverage of both alfalfa (Spearman’s $\rho = 1.00, P < 0.001$) and irrigated pasture (Spearman’s $\rho = 1.00, P < 0.001$) in the subregion (Figure 3). At the county level, there was also a strong relationship
THE IMPORTANCE OF AGRICULTURE TO LONG-BILLED CURLEWS

Figure 3. Proportion of the total harvested acres of alfalfa and irrigated pasture in the Central Valley in the 2009 crop year within four subregions of the valley and the proportion of Long-billed Curlews counted in those subregions in August 2009 (see Methods). SV, Sacramento Valley; DE, Delta; SJB, San Joaquin Basin; TB, Tulare Basin. Crop data from NASS (2010).
between curlew abundance and the extent of alfalfa (Spearman’s \(\rho = 0.74, P < 0.001 \)) in the county; the county-level relationship was not significant for irrigated pasture (Spearman’s \(\rho = 0.28, P = 0.25 \)) but it was for the combined coverage of alfalfa and irrigated pasture (Spearman’s \(\rho = 0.62, P < 0.01 \)).

DISCUSSION

Survey Challenges

The curlew’s behavior and patterns of habitat use may affect the accuracy of counts. As some curlews equipped with radio transmitters move >30 km within the Central Valley every day (K. Sesser unpubl. data), there is a strong likelihood that we may have either under- or overcounted curlews in particular survey areas as birds moved within or among them. The issue of movement was exacerbated by the overall survey lasting several days. Also, our ability to locate birds in early fall may have been enhanced by the heavy reliance of foraging curlews on two crops—irrigated alfalfa and pastures—during this driest time of the year. Similarly, the tendency of these large birds to gather in big flocks, their conspicuousness in flight, and their loud flight calls all make them easy to detect. On balance, we judge that the count of about 20,500 curlews underestimated the number in the Central Valley in August 2009. Although we asked observers to drive all roads through potential curlew habitat in their survey areas, this was not always possible, and not all available habitat was visible from the roads that were driven.

Patterns of Abundance

Variation in patterns of curlew abundance at various geographic and time scales appears to reflect primarily the extent of suitable habitat and, in some cases, the extent of its coverage on surveys. The 20,469 curlews recorded in August 2009, when we surveyed 116 of 121 agricultural areas in the entire Central Valley, was only modestly higher than the 19,063 in September 2007 and 18,775 in September 2008, when we surveyed 55 and 41, respectively, of 88 agricultural areas in the central and southern Central Valley (Shuford et al. 2009). The small differences among surveys likely reflect the curlew’s limited use of the Sacramento Valley in August and September. Despite the vastly greater coverage of the Sacramento Valley in August 2009 than in the prior two Septembers, we found only 1398 individuals there in 2009, all in agricultural areas, versus 3204 and 1658, respectively, in 2007 and 2008, when all were in embedded wetlands. It also may be that we covered some of the best areas for curlews in the central and southern Central Valley in 2007 and 2008 such that increased coverage in those regions in 2009 did not change the totals substantially. Possibly, curlew numbers had not reached their seasonal peak in the valley by the time of our August survey, but multi-year coastal surveys show curlews begin returning to central California by late June and the numbers reaching their winter plateau by early August (Shuford et al. 1989). Other notable patterns of abundance are detailed below by subregion.

Sacramento Valley. The limited availability of habitats suitable for the curlew in the Sacramento Valley at the time of fall surveys likely explains much
of the patterns of abundance observed. The extent of alfalfa and irrigated pasture in the Sacramento Valley is much less than in other subregions of the Central Valley (Figure 3), and the roughly 200,000 ha of cultivated rice fields, a habitat curlews also use in the Sacramento Valley (Elphick and Oring 1998), are not very suitable for them in late summer and early fall. At this time, the rice plants are dense and tall, and fields are drained just prior to harvest, which typically occurs from late August to mid-October. The limited use of rice in early fall is illustrated by our August 2009 survey, when we covered much of the rice-growing region of the Sacramento Valley but found only 116 curlews in rice fields, all in one survey area.

Flooded wetlands in the Sacramento Valley also contribute to the extent of habitat for curlews, particularly for roosting. Our August 2009 survey, however, was at the seasonal nadir of available water on managed wetlands there, and we did not record any curlews on the many managed wetlands that were surveyed across this region. By contrast, many wetlands begin to be flooded in September for use by early migrating ducks. Greater availability of flooded wetlands may explain why we found use by roosting curlews in September 2007 and 2008 but not in August 2009.

Delta. Large numbers of curlews concentrated in the Delta in southern Yolo and northern Solano counties on all surveys, especially in September. On the basis of survey areas each with >250 curlews as a gauge of concentration, 8874 curlews were in 5 areas, 9080 were in 5 areas, and 4538 were in 6 areas in September 2007, September 2008, and August 2009, respectively. Four to five adjacent survey areas in Yolo and Solano counties held 86–100% of these curlews on the three surveys.

San Joaquin Basin. Moderate to large numbers of curlews were concentrated in this region on all surveys. On the basis of survey areas with >250 curlews, 5024 curlews were in 6 areas, 2111 were in 4 areas, and 2978 were in 3 areas in September 2007, September 2008, and August 2009, respectively. The specific areas that held large numbers of curlews were not as consistent from survey to survey as they were in the Delta (Shuford et al. 2009; Figure 1).

Tulare Basin. Because coverage of the three broad-scale surveys was inconsistent, it is difficult to evaluate the patterns of curlew concentration in this subregion. When coverage was nearly complete in August 2009, the 12 areas that each held >250 curlews, collectively accounting for 9385 individuals, were widely distributed across the basin. Over all surveys there was some indication of concentration in Kings and Tulare counties (Shuford et al. 2009; Figure 1), but more surveys with adequate coverage are needed to confirm this pattern.

Patterns of Habitat Use

The curlew’s strong affinity for foraging in irrigated alfalfa and pasture is demonstrated by the strong relationship between its abundance by subregion of the Central Valley and the proportion of the entire valley’s coverage of both alfalfa and irrigated pasture in each subregion (Figure 3). At a finer level, there was also a strong relationship between curlew abundance by county and the extent of alfalfa but not the extent of irrigated pasture. This
may be because over 90% of curlews in agricultural fields in August 2009 were in alfalfa.

The curlew’s relative use of crops likely varies from year to year. Alfalfa, for example, accounted for 91% of the curlews in agricultural fields in August 2009 versus 48% in September 2007 and 69% in September 2008 (Figure 2). Another crop important to curlews in fall was irrigated pasture, which accounted for 42% of curlews in September 2007 and 21% in September 2008. Similarly, K. Sesser (unpubl. data) found that 10 curlews tagged with radio transmitters made significant use of alfalfa and grasslands (irrigated and native pasture combined) in the Central Valley from June to October.

As they do patterns of abundance, seasonal changes in habitat suitability also may explain differences in the curlew’s habitat use across years and seasons. The greater use of alfalfa in August than in September (Figure 2) may reflect a decrease in irrigation of that crop toward the end of its growing season. In the San Joaquin Valley, irrigation of alfalfa decreases substantially by late September because of cessation or reduction of water deliveries to farmers, shifting of irrigation to higher-value crops when water is scarce, and a lessened need to irrigate alfalfa as cooler day and night temperatures reduce plant growth and evapotranspiration rates (H. Calvillo pers. comm.). In some cases farmers cease irrigating alfalfa fields to avoid crop losses. The risk of early rains in October spoiling the harvested alfalfa left in the field to cure before it is baled may not justify irrigating another crop in September (anonymous farmer pers. comm.). Use of irrigated pasture was greater in September than in August, but it is unclear if irrigation of pastures extends on average later in the season than for alfalfa.

Future Research

There is still much to be learned from additional broad-scale surveys of curlews. It would be valuable to survey the entire Central Valley in winter to see if substantial numbers of curlews winter in Sacramento Valley rice fields and in grasslands of the foothills or smaller interior valleys adjacent to the Central Valley. Such seasonal shifts are suggested by numbers much lower in winter than in fall in the Solano County portion of the Delta (Shuford et al. 2009), fall movements of some radio-tagged curlews from the Delta to other areas of the Central Valley (K. Sesser unpubl. data), the shifting of some curlews from various habitats on the valley floor in fall to native grasslands in foothills on either side of the Central Valley in winter (K. Sesser unpubl. data), and anecdotal evidence of curlew numbers increasing substantially from fall to winter in the Carrizo Plain (Shuford et al. 2009), a large valley in the dry inner Coast Ranges west of the southern San Joaquin Valley. Given the substantial annual variation in winter rainfall, standardized surveys at some sites from fall through winter in both wet and dry years should reveal seasonal changes in curlew use and whether patterns of use vary much with climatic conditions.

Because of the difficulty of surveying large regions comprehensively and repeatedly, ensuring the conservation of the Long-billed Curlew will require more focused population monitoring. It will likely need to rely on volunteer-based ground surveys to sample potential habitat, as aerial surveys are
unlikely to prove fruitful—curlews often fly well before the approach of a plane (D. Shuford and G. Page pers. obs.). Monitoring of curlews via counts at nighttime roosts, where they often congregate in large numbers (Shuford et al. 2009), may also be worth exploring.

Although curlews clearly use flood-irrigated alfalfa fields and pastures, native pastures after the onset of seasonal rains, and rice fields flooded in winter, it would be valuable to understand the finer features of these habitats that favor use by curlews and their preferred prey (e.g., optimal plant densities and heights, depth and period of flooding, soil moisture and penetrability). If conditions favorable for curlews are also ones that enhance crop yields, it might be possible to devise a program of economic incentives for farmers to maintain crops and management practices that benefit them and curlews. Further, it would be instructive to assess the landscape features that affect curlew abundance, such as whether within a circumscribed area the acreage of a favored crop must exceed a threshold before curlews occupy it, or if the proximity of crop types or wetlands enhances their value to curlews out of proportion to the combined acreages of these habitats.

ACKNOWLEDGMENTS

We greatly appreciate the help of the following people who surveyed curlews in the Central Valley, without which this work would not have been possible: Chad Aakre, JoEllen Arnold, Pat Bachetti, Bob Barnes, Eisso Mansvelt Beck, Melanie Bernal, Ken Biehle, Mel Bolinder, Robin Boyle, Laurie Brignolo, Kathy Brown, Nancy Bruce, Steve Brueggemann, Ed Burns, Eric Caine, Devin Calhoun, Mimi Calter, Walt Carnahan, Mike Carpenter, Giacomo Catalina, Rich Cimino, Bill Clark, Jan Clark, Karen Colbeili, Terry Colborn, Barbara Coley, Roger Coley, Chris Conard, Dan Cooper, Karen Corbelli, Steve Cordes, Mike Curry, Jeff Davis, Sharon DeCray, Al DeMartini, Joe Devine, Ryan DiGaudio, Rob Doster, Jim Dunn, Phil Eager, Madeline Elsea, Sid England, Binny Fischer, Chuck Fischer, Tim Fitzor, Joe Frank, Scott Frazer, David Froba, John Fulton, Dorothy Furseth, Nancy Gamble, David Garza, Frank Gibson, Dan Gillman, Steve Glover, Sarah Goin, Matt Gould, Jihadda Govan, Linda Greene, Rich Greene, Ken Griggs, Jessica Groves, Kevin Guse, Brian Hansen, Rob Hansen, Fred Hanson, John Harris, Carmen Hashagen, Ken Hashagen, Phil Henderson, Brandon Hill, Paul Hofmann, Rob Holbrook, Shannon Holbrook, Tom Horner, Steve Huckabone, Susan Hult, Jennifer Isola, Jaleh Janatpour, Andrea Jones, Joanne Katanic, Tim Keldsen, Amy Kelsey, Rodd Kelsey, Evan King, Rhiannon Klingonsmith, Dan Kopp, Karl Kraft, Tony Kurz, Dean Kwasney, Jeri Langham, Sami La Rocca, Jim Laughlin, Meg Laws, Steve Laymon, Roderick Lee, Kelly Lesher, Leonard Liu, Carol Lombardi, Steve Lombardi, Stephen Long, John Luther, Bill Lydecker, Jay McEntee, Walt McNiris, Len McKenzie, Todd McNicholas, Jane Manning, Chad Martin, Rick Melnicoe, Rick Meredith, Susanne Methvin, Joe Mikelmis, Shawn Milar, Jeff Miller, Bill Moffat, Tucker Moffat, Ted Murphy, Bob Nay, Melissa Odell, Joseph O’Neil, Elizabeth Palmer, Ed Pandolfino, Juan Parra, Chuck Peck, Ed Penny, Dave Quady, Kris Randal, Megan Renshaw, Harold Reeve, Sharon Reeve, Orien Richmond, Jeanne Ridgley, Terres Ronneberg, Jim Ross, Sean Rowe, Tim Ruckle, Vance Russell, Jennifer Rycenga, Nancy Sage, Sal Salerno, Mike Sanders, Rusty Sclaf, Matt Schaap, Mary Scheidt, John Schick, Jeff Seay, Deb See, Kristin Sesser, Alison Sheehey, Allison Shultz, Joe Silveira, Zachary Smith, Jim Snowden, Lara Sparks, Daniel Strait, Steven Summers, Simon Thornhill, John Thornhill, Andy Tomaselli, Don Turkal, Yvonne Turkal, Lisa Twiford, Laura Valo, Dave VanBaren, Karen Velas, Gail Wakelee, Heath Wakelee, Bobby Walsh, Nils Warnock, Bruce Webb, Jordan Wellwood, Liz West, Ed Whisler,
THE IMPORTANCE OF AGRICULTURE TO LONG-BILLED CURLEWS

Denise Wight, Kerry Wilcox, Pam Williams, John Wilson, Mike Wolder, Gary Woods, Dennis Woolington, David Yee, Alicia Young, and Lowell Young. We thank Karen Velas for help in coordinating volunteers. We are very grateful to Kristin Sesser for sharing data on patterns of distribution and habitat use of transmitter-tagged curlews in the Central Valley and to Hugo Calvillo, Michelle Gilbert, Elizabeth Palmer, and Dan Putnam for providing insight on factors influencing the timing of cessation of irrigation of alfalfa in the Central Valley in fall. Many thanks to Julie Howar for producing the map of curlew abundance and to Jennifer Roth for conducting the statistical tests. The manuscript was improved by thoughtful reviews by two anonymous reviewers and helpful comments and edits by Dan Reinking and Philip Unitt. Funding was provided by the S. D. Bechtel, Jr. Foundation and the David and Lucile Packard Foundation. This is contribution 1885 of Point Blue Conservation Science.

LITERATURE CITED

Accepted 23 April 2013
ABSTRACT: The California Bird Records Committee reached decisions on 254 records representing 309 individuals of 75 species and three species pairs documented since the 36th report (Johnson et al. 2012), endorsing 210 records of 264 individuals. The recent split of the Xantus’s Murrelet into the Scripps’s Murrelet (Synthliboramphus scrippsi) and Guadalupe Murrelet (S. hypoleucus), combined with first accepted state records of the Taiga/Tundra Bean-Goose (Anser fabalis/serrirostris), Common Crane (Grus grus), Common Ringed Plover (Charadrius hiaticula), and Common Snipe (Gallinago gallinago) outlined in this report, brings California’s total list of accepted species to 649 as of the end of 2011, 10 of which are established introductions. Other notable records detailed in this report include those of the western Atlantic subspecies of the Common Eider (Somateria mollissima dresseri), White-chinned Petrel (Procellaria aequinoctialis), and Red-flanked Bluetail (Tarsiger cyanurus).

This 37th report of the California Bird Records Committee (CBRC or the committee), a formal standing committee of Western Field Ornithologists, summarizes decisions on 254 records of 75 species and three species pairs involving 309 individuals. The committee accepted 210 of the 254 records, involving 264 individuals of 72 species and three species pairs, for an acceptance rate of 83%. We consider 20 records to represent returning or continuing birds that were accepted previously. Forty-two reports of 28 species were not accepted because the identification was not adequately documented, and two reports of two species were not accepted because natural occurrence was questionable. Reports of multiple individuals together are given the same record number for purposes of review; we report the total number of accepted individuals, which may be greater than the number of accepted records. Although the majority of the records we summarize pertain to birds documented in 2011, the period covered spans the years 1971 through 2012.

As of the end of 2011, the California list stood at 649 species. In 2012, the committee accepted first California records of the Northern Gannet (Morus bassanus), Common Cuckoo (Cuculus canorus), and Gray Hawk (Buteo plagiatus); the details of these records will be published in the next report. These records, combined with the recent split of the Xantus’s Murrelet into the Scripps’s Murrelet (Synthliboramphus scrippsi) and Guadalupe Murrelet (S. hypoleucus) (Chesser et al. 2012), bring the total number of accepted species on California’s state list as of August 2013 to 652. At its 2013 annual meeting, the committee removed the Yellow-crowned Night-Heron (Nyctanassa violacea), Harris’s Hawk (Parabuteo unicinctus), Lesser Black-backed Gull (Larus fuscus), and Parakeet Auklet (Aethia psittacula) from its review list.
Species accounts are organized with English and scientific names first, followed in parentheses by the total number of individuals accepted for California and the number of new individuals accepted in this report. Following the heading are accounts for records accepted (as applicable), followed by records not accepted (as applicable) because identification was not established or because natural occurrence was questionable. An asterisk (*) preceding the species’ name indicates that the CBRC discontinued reviewing records of the species after 2011. A double asterisk (**) following the number of accepted records indicates that the species has been reviewed for a restricted interval, so the number of accepted records does not represent the total number of records for the state. Date ranges for each record are those accepted by the CBRC, and instances where these differ from those published in North American Birds are indicated with italics. A dagger (†) following an observer’s initials indicates submission of a photograph, (S) indicates submission of a sketch, ($) indicates submission of audio recordings, (‡) indicates submission of a video, and (#) precedes a specimen number. The absence of a symbol following the observer’s initials indicates the submission of a sight record based on written description only. Additional details regarding minutiae of formatting and abbreviations may be found in previous CBRC reports, at http://www.californiabirds.org/, and in CBRC (2007). Also available at the website is the California bird list, the review list, committee news, recent photos of rare birds in California, the CBRC’s bylaws, a form for querying the CBRC database, and all annual reports from 1996 through 2009. Age terminology follows that used by CBRC (2007).

Observers are encouraged to submit documentation for all species on the CBRC’s review list, sending it to Guy McCaskie, CBRC secretary, P. O. Box 275, Imperial Beach, CA 91933-0275 (e-mail: secretary@californiabirds.org). In recent years, the proportion of records supported only by photographs, without any written documentation, has increased considerably. Even minimal written details on a bird’s appearance, accompanying photographs, can assist significantly in documenting records of rare birds. Documentation of all CBRC records is archived at the Western Foundation of Vertebrate Zoology, 439 Calle San Pablo, Camarillo, CA 93012, and is available for public review.

SPECIES ACCOUNTS

TAIGA/TUNDRA BEAN-GOOSE Anser fabalis/serrirostris (1, 1). California’s first bean-goose was at Unit 1 of the Salton Sea National Wildlife Refuge (N.W.R.), IMP, 9 Nov 2010–12 Jan 2011 (AKa†; BoM†, DL†, CAM†, GMcC, VM†, LS†, CT†, EGK†, JSm†, JLD, KZK†, TABl†, JM†, TME†, BKS†, MSa†; 2010-141; Figure 1). The bird associated closely with one adult and two immature Greater White-fronted Geese (A. albifrons) among much larger numbers of Snow (Chen caerulescens) and Ross’s (C. rossii) geese foraging in agricultural fields. Three color photos were published in N. Am. Birds (one on the cover of 65[1] and two on 65:199). Few records that the committee has accepted have engendered so much controversy with respect to identification, owing to the intricacies and uncertainties of intraspecific variability and taxonomy. In 2007, the American Ornithologists’ Union North American Classification Committee split the Bean Goose into two species, the Taiga Bean-Goose and
THE 37TH ANNUAL REPORT OF THE CBRC: 2011 RECORDS

Tundra Bean-Goose, on the basis of differences in color, size, proportions, behavior, and evidence that the two taxa were largely allopatric in their breeding and winter ranges (Banks et al. 2007). Bean-geese breed at high latitudes in eastern Europe and Asia, and as implied by their English names, the Tundra Bean-Goose generally breeds on tundra farther north, the Taiga Bean-Goose in taiga farther south. So defined, both species occur as rare visitors to western Alaska. In North America outside Alaska, the Taiga Bean-Goose has been recorded on four occasions—along the Iowa/Nebraska border in 1984–1985, in Quebec in 1987, in Nebraska in 1998, and in Washington in 2002; the Tundra Bean-Goose has been reported outside Alaska only twice, in Quebec in 1983 and the Yukon in 2000 (Banks et al. 2007).

Authors addressing the identification of the Taiga and Tundra bean-geese include Kurechi et al. (1983), Oates (1997), Mlodinow (2004), and Brown (2010). The main features distinguishing them are the head and bill shape (slightly concave culmen with shallowly sloping forehead on the Taiga vs. steeper forehead and convex or straight culmen on the Tundra), the shape of the “grinning patch” along the tomium (longer, thinner, and less conspicuous on the Taiga vs. shorter, deeper, and more pronounced on the Tundra), the ratio of culmen to head length (≥1 on Taiga vs. <1 on Tundra), and call notes (deeper and shorter with a nasal “ang” quality in the Taiga vs. longer, higher, and less nasal in the Tundra). Although the average Taiga Bean-Goose has more yellow-orange on the bill than does the Tundra, there is overlap in this character.

Identification criteria are clouded by intraspecific variability. Within each species, body, neck, and bill size seem to vary clinally, decreasing from east to west, and the difference in size between some western females and eastern males is considerable. Variation in the bean-goose complex has been categorized by as many as seven subspecies, but Sangster and Oreel (1996) classified the birds as two monotypic species encompassing this clinal variation. On the basis of molecular analyses, Ruokonen et al. (2008) suggested a realigned split between A. middendorffii of the eastern taiga and A. fabalis of the tundra and western taiga. They cautioned, “in the absence of diagnostic morphological traits, morphological measurements or genetical analyses are needed for reliable identification of the taxa especially in wintering areas.”

Initially, CBRC members agreed that the Salton Sea bird was likely a Taiga Bean-Goose but were divided over whether the Tundra Bean-Goose could be definitively eliminated. Despite excellent photos, the features of the bird in question did not lend themselves to an easy identification. Various observers reported that the “grinning patch” on the tomium seemed to be a better fit for a Tundra and that in some postures the bill and head shape suggested the Tundra, with a more acute angle between the forehead and bill and a short-looking bill. The bird’s foraging behavior was also more typical of a Tundra than a Taiga bean-goose. Its close association with other geese (especially the Greater White-fronted) likely influenced its choice of foraging areas more than any innate habitat preferences. Vocalizations, which would have assisted considerably with the identification, were apparently not heard or recorded.

The committee solicited opinions from authorities in Europe and Asia, but none conveyed strong opinions that the bird was a Tundra Bean-Goose. Rather, some considered it likely, others definitively, a Taiga Bean-Goose: Mariko Parslow (in litt.) and Masayuki Kurechi (in litt.) concluded, for example, that multiple measurements (photos) ruled out the Tundra Bean-Goose. Kurechi considered the birds most similar to the Taiga Bean-Geese breeding around the lower Kolyma River and wintering (at least in part) in Shimane Prefecture, Japan, a connection established via satellite telemetry. These birds breed farther west than and are smaller than those that have been classified as subspecies middendorffii. Kurechi considered the Salton Sea bird to be about the same size as or slightly smaller than representatives of the lower Kolyma population and opined that it therefore likely originated even farther west (on the basis of the cline of size decreasing from east to west). Such populations have not been well
Figure 1. The size and proportions of the head and bill of California’s first bean-goose, shown here with an adult Greater White-fronted Goose (Anser albifrons) at the Salton Sea National Wildlife Refuge, Imperial Co., 16 Nov 2010 (2010-141), suggested that it was likely a Taiga Bean-Goose (A. fabalis). However, its characters did not neatly fit any known population of either that species or the Tundra Bean-Goose (A. serrirostris), and the committee ultimately accepted it as a Taiga/Tundra Bean-Goose.

Photo by Kenneth Z. Kurland

Figure 2. The bright rufous coloration and features of the bill processes of this female Common Eider (Somateria mollissima) at Crescent City, Del Norte Co., 20–29 Nov 2011 (2011-182), indicate the subspecies dresseri, which is typically restricted to northeastern North America and thus was unexpected in California.

Photo by Larry Sansone
studied, either morphologically or genetically. Parslow noted that some large male Tundra Bean-Geese (russicus) and specimens of Scandinavian and eastern European origin resemble the Salton Sea bird, being small overall but resembling *middendorffii* in bill and head shape. Nial Moores (in litt.) commented that *middendorffii* is a shorter-distance migrant than Taiga Bean-Geese breeding farther west so western birds might be better candidates for vagrancy to California.

Although European experts (e.g., Dan Brown, in litt.) largely agreed that the bird was a better match for the Taiga than for the Tundra, some commented that the short-necked appearance of the Salton Sea bird was quite unlike the long-necked, sometimes swanlike look typical of the Taiga Bean-Goose.

Ultimately, six CBRC members voted to accept the record as pertaining to a Taiga/Tundra Bean-Goose only, leaving the specific identity unconfirmed. Brown (2010) and Luokonen et al. (2008) concluded that some bean-geese may be impossible to identify without measurements or genetic analysis.

All members agreed that the bird’s natural occurrence was not an issue. The plumage was not abnormally worn and neither hallux was missing. There are apparently very few bean-geese in captivity, possibly none in North America (Mlodinow 2004).

TRUMPETER SWAN Cygnus buccinator (147, 57). One juvenile was with Tundra Swans (*C. columbianus*) at Lake of Pines, NEV, 20–26 Dec 2008 (JML; DR†; 2009-069). Five adults were at Modoc N.W.R., MOD, 26 Nov–1 Dec 2009 (SCR†; 2011-029; two of these lingered until 23 Jan 2010 (SCR†; 2011-030). Four first-winter birds were near Nelson, BUT, 11–12 Jan 2011 (BEW†; 2010-157); as many as 11 had been reported at this location 24 Nov 2010–11 Jan 2011 (*N. Am. Birds* 65:156 & 335), but the CBRC received documentation for these four. Two adults were on Waltz Road near Sheridan, PLA, 19–24 Jan 2011 (DR†; 2011-173). Two adults were northeast of Tipton, TUL, 8–10 Dec 2011 (DFa†; SSum†; MES†; 2011-271). Fourteen (10 adults and 4 first-winter birds) at Modoc N.W.R., MOD, 28–30 Dec 2010 (SCR†; 2011-031) and up to 24 (14 adults and 10 first-winter birds) there 28–30 Dec 2011 (SCR†; 2011-240) likely included returning birds accepted from the area of Alturas, MOD, in previous years. Clearly, the Trumpeter Swan now winters regularly in eastern Modoc County. The group of 24 on 30 Dec represented the highest concentration ever recorded in California and included a leucistic first-winter bird that was completely white like an adult but had extensive pink in the bill and bright yellow feet. Such leucistic individuals occur with some regularity, particularly in Wyoming and Montana (McEneaney 2005). A family group of two adults and three first-winter birds was near Durham, BUT, 31 Dec 2011–9 Jan 2012 (JL†; 2011-231). The committee has discontinued reviewing records of this species after 2011.

IDENTIFICATION NOT ESTABLISHED: Most members thought the identification of an adult and a first-winter bird reported from American Valley, PLU, 18 Dec 2010 (2011-178) may have been correct, but the description was not thorough enough to eliminate the possibility that the birds were Tundra Swans (*C. columbianus*). **NATURAL OCCURRENCE QUESTIONABLE:** The CBRC considered one at Auburn, PLA, 5 Mar 2011 (RP†; 2011-172) the same as one there 6–9 Apr 2009 (2009-122) and one of two there 17 Feb–25 Mar 2010 (2010-014; Johnson et al. 2012). Although both birds may have escaped or been released by a nearby waterfowl breeder (Johnson et al. 2012), they have been recorded only seasonally at this location.

FALCATED DUCK Anas falcata (3, 1). An adult male at Colusa N.W.R., COL, 8 Dec 2011–10 Feb 2012 (GF†; DT; DBr†; DWN†; RLB†; JM†; CAM†; GMcC; VM†; LS†; TABe†; KRT†; SLS; DWA†; JD: 2011-205) thrilled observers from all over North America, providing California with its first record since 2003. Photos showed possible tears or holes in the webbing, and a bent toe, on the left foot. Although such injuries could have been suffered in the wild, they prompted some to speculate that the bird may have been held in captivity. The vast majority of North American
records of Old World ducks such as the Falcated Duck, Baikal Teal (A. formosa), Smew (Mergellus albellus), and Common Pochard (Aythya ferina) away from Alaska are of adult males, presumably the most desirable to waterfowl fanciers (some can be readily purchased over the Internet). But adult males are also the most readily identifiable, and in the absence of bands, clipped halluces, or excessive cage wear, in recent years the CBRC has typically accepted records of flight-capable individuals such as this one. In addition, the date span of this record fits a naturally occurring wintering bird, and this record was accepted unanimously on the first round. After an expected absence through the breeding season, the bird returned to Colusa N.W.R. on 2 Dec 2012.

KING EIDER Somateria spectabilis (40, 2). Single females were near Marshall on Tomales Bay, MRN, 22–29 Jan 2011 (LH†, DW†; 2011-019) and off the Pt. Reyes lighthouse, MRN, 5–7 Jun 2011 (DSS†; 2011-082), making 2011 the first year since 1993 with multiple records. The vast majority of California records are from fall to early spring; the bird off Pt. Reyes was only the sixth King Eider recorded in June.

COMMON EIDER Somateria mollissima (2, 1). An adult female was at Crescent City, DN, 20–29 Nov 2011 (ADB†; RLB†, BP†, LS†, KPA; 2011-182), the location of California’s only prior record, of an adult male 5–18 Jul 2004 (2004-101; Cole et al. 2006). Whereas the adult male was of the race that occurs closest to California (v-nigrum of Alaska), the female had bright rufous plumage and rounded, not pointed, tips to the long bill processes (Figure 2), indicating some other subspecies. Information compiled by Ken Able led to the conclusion that the bird was most likely of the race dresseri, representing a first record for the Pacific Ocean. The breeding and winter ranges of dresseri are in northeastern North America, so the identification led to evaluation of the bird’s provenance during a second round of voting. Able’s research revealed that several hundred examples of dresseri are held in captivity, including at least two private collections in Washington state. The Crescent City female showed no abnormal wear or other signs of captivity, and there are single records of dresseri from Illinois and Wisconsin and two from Colorado (AOU 1957). The committee considered natural vagrancy likely, and the record was accepted unanimously on the second round.

SMEW Mergellus albellus (3, 0). IDENTIFICATION NOT ESTABLISHED: A report of a male on the Smith River, DN, 5 km upstream from its mouth 18 Nov 2011 (2011-186) garnered little support, as the description did not eliminate other, more likely species such as the Bufflehead (Bucephala albeola).

YELLOW-BILLED LOON Gavia adamsii (91, 3). A second-year bird was upstream from Parker, Arizona, on the Colorado River, SBE, 15 Jan–4 Aug 2011 (LHa†, DVP†; AEK, SR†, JPS†, JWe†; 2011-008). Alternate-plumaged adults were at Battery Godfrey, Presidio National Park, San Francisco, SF, 14 Oct 2011 (HC, MEa, PS; 2011-171) and on salt pond A4 in Sunnyvale, SCL, 25 Oct–2 Nov 2011, found dead (specimen not preserved) on 4 Nov 2011 (MJMam†, LS†, DEQ; 2011-155), the latter being the first recorded for Santa Clara County. IDENTIFICATION NOT ESTABLISHED: An alternate-plumaged adult reported from Pt. Pinos, MTY, 21 Jun 2008 (2009-080) may well have been correctly identified, but the documentation lacked detail sufficient for some members to accept an unseasonal summer record. A northbound migrant reported from Pt. Piedras Blancas, SLO, 10 Apr 2011 (2011-087) and two migrants from that location 1 May 2011 (2011-088) were likewise not documented adequately.

SHORT-TAILED ALBATROSS Phoebastria albatrus (37**, 5). A second- or third-year bird was seen 65 km west-southwest of Pigeon Pt., SCZ, 28 Mar 2011 (GSM†; 2011-265) during a National Oceanic and Atmospheric Administration research cruise. Single all-dark or mostly dark birds, likely in their first year, were seen 84 km southwest of Año Nuevo Pt., SM, 21 Apr 2011 (RMc; 2011-061), 10 km
Figure 3. California’s third Great-winged Petrel (Pterodroma macroptera), off Santa Cruz Co., 26 Aug 2011 (2011-122), exhibited the extensive pale feathering on the face and forehead, stout bill, and broad, dark underwings that collectively distinguish this species from other dark gadfly petrels.

Photo by Greg Lavaty

Figure 4. This White-chinned Petrel (Procellaria aequinoctialis) at Cordell Bank, Marin Co., 16 Oct 2011 (2011-149), shown here behind a Northern Fulmar (Fulmarus glacialis), was the third recorded in California.

Photo by Thomas A. Blackman
off Fort Bragg, MEN, 15 May 2011 (JWh; RFo†, KAH, RHu†, RJK†; 2011-073), 3 km west of Bodega Canyon, SON, 19 Nov 2011 (DSS†; 2011-183), and from Southeast Farallon I., SF, 6 Nov 2011 (OJS; JRT; 2011-174). As the population of the Short-tailed Albatross continues to increase, this species is now regular in Alaska waters and rare, but increasingly frequent, off British Columbia, Washington, Oregon, and California (Howell 2012).

GREAT-WINGED PETREL *Pterodroma macroptera* (4, 1). One 16 km southwest of Table Rock, SCZ, 26 Aug 2011 (ABo†, DLS; RF†, JK†, GL†; 2011-122; Figure 3) showed more pale feathering on the crown than one seen off Santa Cruz, SCZ, 18 Sep 2010 (2010-104; Johnson et al. 2012), suggesting that these were different individuals. All four of California’s records through 2011 are from the period 21 Jul–18 Sep, and all have been of the pale-faced subspecies *gouldii*.

HAWAIIAN PETREL *Pterodroma sandwichensis* (14, 1). One was 11 km south-southwest of Southeast Farallon I., SF, 13 Aug 2011 (MD S, DW; DKu†, JMy†;
While the sketch depicted a bird with a dark “cowl” more typical of the Galápagos Petrel (*P. phaeopygia*), photos showed the dark hood was limited, with a pale notch at the lower rear portion of the auriculars, as characteristic of the Hawaiian (Force et al. 2007, Pyle et al. 2011b). Given the challenges of assessing such features on the ocean, photos of any Hawaiian/Galápagos Petrel in California are desirable.

GALÁPAGOS/HAWAIIAN PETREL Pterodroma phaeopygia/sandwichensis (26, 2). Single birds 73 km southwest of Pt. Piedras Blancas, SLO, 10 May 2011 (MH; 2011-081) and 145 km south of San Clemente I., LA, 16 Aug 2011 (JSF, PEL; 2011-121) were accepted as Galápagos/Hawaiian Petrels. The views (and thus the descriptions) of these birds were not adequate to allow identification to species. It is evident that the Hawaiian Petrel is a regular component of California’s offshore avifauna, whereas the Galápagos Petrel ranges north only to 20° N (Howell 2012). Nevertheless, the CBRC accepts as a Galápagos/Hawaiian Petrel any record of a bird of this pair that cannot be definitively identified as one species or the other.

WHITE-CHINNED PETREL Procellaria aequinoctialis (3, 2). Single individuals were 11 km north of San Miguel I., SBA, 6 Sep 2011 (TMcG†; WTH, DKe†, ASE†, TW†; 2011-126; photo published in *N. Am. Birds* 66:200) and at Cordell Bank, MRN, 16 Oct 2011 (TMcG†; TAb†, GT†; 2011-149; Figure 4). Although both birds were in similar stages of wing molt, careful study of photos revealed that the molt of the October bird was slightly behind that of the September bird, confirming that they were different individuals. California had only one previous record, off Half Moon Bay, SM, 18 Oct 2009 (2009-194; Pyle et al. 2011a). With three records within three years, we wonder whether California can expect a continued increase in the White-chinned Petrel or if the records represent a pulse, like that of the Shy Albatross (*Thalassarche cauta*).

MAGNIFICENT FRIGATEBIRD Fregata magnificens (12**, 0). IDENTIFICATION NOT ESTABLISHED: One at Newport Beach, ORA, 10 Sep 2011 (CW; DMcH, JM, SW; 2011-130) was described as having an all-black head and white underparts, consistent with a female Magnificent Frigatebird. However, the majority of the committee believed that the documentation was not thorough enough, especially given the brevity of the sighting, to eliminate the possibility of a female Great Frigatebird (*F. minor*). An immature at Pt. Loma, SD, 30 Oct 2011 (PW†; 2011-161) was also not accepted beyond “frigatebird sp.” As both the Great Frigatebird and Lesser Frigatebird (*F. ariel*) have occurred in California, the committee requires that any record of the formerly frequent Magnificent clearly eliminate the two other Pacific frigatebirds; it is considering whether or not to formally accept such birds as “frigatebird sp.”

MASKED BOOBY Sula dactylatra (16, 1). A subadult was at Dana Pt., ORA, 17–24 Dec 2011 (RBMcN; CT†, VM†, BJSt†, CAM, OJ†; 2011-217).

MASKED/NAZCA BOOBY Sula dactylatra/granti (11, 1). One in its first spring at Pt. La Jolla, La Jolla, SD, 23 Apr 2011 (SW; RR S; 2011-059) was described as having a pale gray bill, suggesting the Masked, but it lacked a complete pale collar, suggesting the Nazca. The committee agreed with the observers that this individual was best not identified to species. Identification criteria for juveniles and first-year birds were proposed by Pitman and Jehl (1998), but many of these birds may not be identifiable to species in the field (CBRC 2007).

BROWN BOOBY Sula leucogaster (125, 3). In a detailed analysis for the com-

NEOTROPIC CORMORANT Phalacrocorax brasilianus (33, 8). At least two adults were at Parker Dam, SBE, between late 2010 and early 2011. An adult was there on 26 Dec 2010 (LHa†, DVP†; 2010-185). Record 2011-007 included an adult on 16 Jan 2011 (with a second just over the state line in Arizona), an adult on 17 Jan 2011, and an adult on 4 Feb 2011 that showed two generations of feathers, distinguishing it from 2010-185 (DVP†; SR†; 2011-007). The committee voted that at least two individuals were represented by these records, including single individuals at Parker Dam 3 Dec 2011–21 Jan 2012 (TABe; DKa†, CAM†, DVP; 2011-201) and 2 km away at Quail Hollow on the Colorado River, SBE, 17 Apr 2011 (TABe†; 2011-054). For several years three or four have been on the Arizona side of L. Havasu several kilometers from Parker Dam, and some individuals occasionally stray over the state line into California, making it difficult to know how many different individuals are involved in these records. An adult was southwest of Lack and Lindsey roads, south end of the Salton Sea, IMP, 27 Mar–9 Apr 2011 (BoM†; 2011-043). At Ramer L., IMP, an adult and a second-year bird were attending a partially constructed nest 8–9 Apr 2011; the nest was completed and both birds were seen at it through 14 Jun. On 23 Jun, the nest was gone and only the second-year bird, which lingered in the area to 3 Sep 2011, was seen (GMcC; BoM†, JML†, BJS†; 2011-048). California has one previous nesting “attempt”—by a single bird that built a nest near the mouth of the New R., Salton Sea, IMP, but did not attract a mate (CBRC 2007). Given the increase in numbers in Arizona, where the species is now resident as far north as Phoenix (Radamaker and Corman 2008), we can expect further attempts. A second-year bird was at Headgate Dam, SBE, near Parker, Arizona, 20–23 Jul 2011 (DVP†; 2011-106). An adult was at Fig Lagoon near Seeley, IMP, 2 Sep–11 Dec 2011 (GMcC; 2011-124), and another was nearby at Sunbeam L., IMP, 3–11 Dec 2011 (GMcC; 2011-206). IDENTIFICATION NOT ESTABLISHED: The report of a juvenile on Southeast Farallon I., SF, 6 Sep 2010 (2011-036) exemplified the difficulty in identifying recently fledged cormorants. The bird was well described, photographed, and reported as the first Neotropic for northern California and the entire California coast in N. Am. Birds (65:158). The dark lores and supraloral area, acute angle of the posterior edge of the dull yellow gular pouch, mostly dark maxilla, dark breast, and long tail (barely shorter than the neck) pointed toward the Neotropic, though the bird’s structure appeared intermediate between that of a Neotropic and a Double-crested Cormorant (P. auritus). A year later, the observer inspected a dead juvenile cormorant on Southeast Farallon I. that looked very similar to the claimed Neotropic but whose measurements were consistent with the Double-crested, which breeds on the Farallones. He therefore retracted the identification as a Neotropic, and the committee unanimously agreed on the record’s second round. Documentation of one reported at Ramer L., IMP, 20 May 2011 (2011-075) was inadequate for acceptance. One reported at the north end of L. Havasu, SBE, 28 Oct 2011 (2011-165) was likely identified correctly, but given the distance (more than 1 km) and brevity of the observation, the record was not accepted.

TRICOLORED HERON Egretta tricolor (61**, 3). Adults were at San Elijo La-
YELLOW-CROWNED NIGHT-HERON Nyctanassa violacea (59, 7). Two adults at Famosa Slough/San Diego River mouth, SD, 28 Apr–7 Sep 2011 (JPe†; PEL, BLC†; 2011-062) were presumably the same birds present in the vicinity intermittently since 27 Apr 2006 (2006-056, 2007-166, 2008-092, 2009-085, and 2010-041; Johnson et al. 2012). A third adult at this location 5 Jul 2011 (JPe†; 2011-100) was considered the same bird present here 15 May–8 Aug 2010 (2010-042; Johnson et al. 2012) and 9 Jul–20 Aug 2009 (2009-112; Pyle et al. 2011a). A second-year bird was in Del Mar, SD, 6 May–10 Jul 2011 (PEL; GMcC, EW†, SBr†, JPe†; 2011-066). An adult was at San Elijo Lagoon, SD, 22 Jun 2011 (JK, SSut; 2011-097). Two chicks were in a nest at Imperial Beach, SD, 27 Jun–20 Jul 2011 (JPe†; 2011-096); one was found long dead on 28 Jul (SDNHM #52127), while the second was seen as a fledgling on 1 Aug. A juvenile at L. Balboa, Encino, LA, 26 Aug 2010 (PN†; 2010-092) was accepted on the third round after it was decided the blurry photos proved the bird was not the hybrid Yellow-crowned × Black-crowned Night-Heron (Nycticorax nycticorax) seen 32 km away at Malibu Lagoon around the same time. Two adults at the Imperial Beach Sports Park, Imperial Beach, SD, 17 Dec 2011–29 Jul 2012 (PEL; GMcC, JPe†; 2011-254) were presumably the same as some of those previously accepted from this location, where the Yellow-crowned Night-Heron has nested annually since 2006. IDENTIFICATION NOT ESTABLISHED: A juvenile reported at Pacific Beach,
Figure 7. This bird’s relatively bright coloration in relation to a Western Wood-Pewee (*Contopus sordidulus*), including a thin eye ring, and crisp white edges to the wing coverts and tertials, caught the attention of Debby and Jim Parker, who found this Eastern Wood-Pewee (*C. virens*) in Birchim Canyon near Bishop, Inyo Co., 24–26 Oct 2011 (2011-159).

Photo by Jon L. Dunn

Figure 8. This Great Crested Flycatcher (*Myiarchus crinitus*) in Zzyzx, San Bernardino Co., 21 Sep 2011 (2011-136) was only the sixth to be found in California’s interior.

Photo by Brad Singer
GLOSSY IBIS Plegadis falcinellus (26, 2). An adult at Owens L., INY, 11–12 Jul 2009 (CHo†; DHo†, BS†; 2009-125) went through four rounds of voting before being accepted unanimously. The appearance of red in the eyes in photos raised concerns of a hybrid with the White-faced Ibis (P. chihi), but the apparent red was likely a photographic artifact, as the bird's features otherwise fit a Glossy Ibis perfectly. An adult was at the San Jacinto Wildlife Area near Lakeview, RIV, 18–28 Jun 2011 (CMcG †; CAM†, GMcC, LS†, DAB; 2011-085). IDENTIFICATION NOT ESTABLISHED: The unseasonal report of one at Unit 1 of the Salton Sea N.W.R., IMP, 8 Mar 2010 (2010-024) was supported by only blurry photos and a scant description. The committee had accepted only one March record, from the Prado Basin, RIV, 17 Mar 2008 (2008-044; Pike and Compton 2010). The description as “purplish” of the facial skin of a basic-plumaged adult on Rd. 102 southeast of Woodland, YOL, 27 Aug 2010 (2010-093) suggested a hybrid.

BLACK VULTURE Coragyps atratus (7, 3). One at L. Casitas, VEN, 15–30 Oct 2011 (ABe†, BED†, MP†; 2011-158) was evidently the same as the one that wandered through Goleta, SBA, 10–13 Sep 2009 (2009-156), Santa Paula, VEN, 29 Nov–4 Dec 2009 (2009-221), L. Casitas/Ojai, VEN, 4 Jan–22 Feb 2010 (2010-016), and then back to Goleta, SBA, 18 Jul–6 Nov 2010 (2010-073), as revealed by the molt sequence and pattern of facial skin evident in photos (Johnson et al. 2012). The same characters indicated that one at Buellton, SBA, 14 Jan 2011 (BLSt†; 2011-004) was a different individual. The flight feathers of a Black Vulture at the San Diego Wild Animal Park, San Pasqual, SD, 6 Mar 2011 (EGK†, TRS†; 2011-020) were extremely worn, leading four members to question its natural occurrence in the first round of voting, but alternative explanations (feather mites, electrocution) for this wear are possible, and the committee unanimously accepted the record in round two. This same bird (identified by patterns of wear) appeared in Goleta, SBA, 16–22 Apr 2011 (RHir†; 2011-089); such long-distance dispersal to the northwest further suggested that the bird had occurred naturally. Another was at Lone Pine, INY, 5 Aug 2011 (JLD†; 2011-112). IDENTIFICATION NOT ESTABLISHED: One reported near the Miramar landfill, San Diego, SD, 7 Jun 2011 (2011-086) was perched and seen only from a moving car by naked eye.

HARRIS’S HAWK Parabuteo unicinctus (64, 12). A sizeable incursion of Harris’s Hawks, the largest in California since 1994, occurred in 2011. Single adults were near Jamul, SD, 22 Mar–26 May 2011 (JK†, MM†; 2011-042), near Boulevard, SD, 30 Mar 2011 (EAE; 2011-044), at Afton Canyon, SBE, 27 Mar 2011 (MC; 2011-046), and at Borrego Springs, SD, 11 Apr–7 Dec 2011 (WTH, SES†; 2011-050), the latter being considered the same bird as 2009-172 and 2010-124. One in its first spring was at Blythe, RIV, 14 Apr 2011 (JMMc†; 2011-051). A pair of adults at Jacumba, SD, 18 Apr 2011–31 Dec 2012 (TC†; PEL, PKo†, DDiT, GMcC, MBr, SSo, JK†, EGK†, DWA†; 2011-058) nested in an acacia tree; the female was nest-building in early May, incubating by 11 May, and feeding a single chick by 21 Jun. The chick fledged around 1 Aug and was seen through 31 Dec 2012 (PKo†; JK†, PEL, EGK†; 2011-138). This pair was observed nest-building again in Feb 2012. Two additional Harris’s Hawks were also at Jacumba, SD, 12 Oct 2011–6 Jan 2012 (PEL; CAM†, LS†, RoR; 2011-154). An adult was at the north end of Poe Road, south end of the Salton Sea, IMP, 28 Apr 2011 (DJo†; 2011-063). Two adults were suspected of nesting (though no evidence was observed) in McCain Valley near Boulevard, SD, 5 May–9 Aug 2011 (SMR†; EM†, RoR; 2011-067). Despite the obvious influx of Harris’s Hawks in 2011, there was still some resistance to acceptance of the records for Jamul and Afton Canyon on the grounds that these records were outside of the
THE 37TH ANNUAL REPORT OF THE CBRC: 2011 RECORDS

species’ historical distribution and outside the distribution of records during the 1994 incursion (Patten and Erickson 2000). One member also expressed concern that the bird at Blythe may have been descended from birds transplanted along the Colorado River. NATURAL OCCURRENCE QUESTIONABLE: An adult at San Joaquin Wildlife Sanctuary, Irvine, ORA, 25–29 Nov 2011 (BC†; BED†, JEP, CAM†; 2011-191) was unwary and approachable, and was near the coast where vagrancy of Harris’s Hawks is less likely than in inland desert areas. Given the incursion of 2011, most members thought that this bird might have occurred naturally. The committee removed this species from its review list at its 2013 annual meeting.

COMMON CRANE Grus grus (1, 1). One at Lake Earl, DN, 5–8 May 2011 (ADB†; KR†, AJ†, CCo†‡, CAM†, GMcC, DWN†, MMR†, LS†; 2011-065; photo published in N. Am. Birds 65:569) provided California’s first record and the first for the west coast south of Alaska (Figure 5). Retained juvenal secondaries, along with pre-definitive features of the head and bill, suggested this bird was in its second or possibly third spring (P. Pyle pers. comm., 2013). This record engendered considerable discussion of the bird’s likely provenance. Most North American records considered to be of naturally occurring birds are from the middle of the continent (e.g., Nebraska, Kansas, and New Mexico) in March and early April with Lesser Sandhill Cranes (G. canadensis canadensis) that breed in Alaska and northeastern Russia. Presumably, Common Cranes occasionally take up with these Sandhills and remain with them through the winter and migration. There are also several records of Common Cranes stopping during migration near Fairbanks, Alaska, in May (also with Lesser Sandhill Cranes). In early May, when the Lake Earl bird appeared, any naturally occurring Common Crane that had wintered in North America should already be in Alaska or Russia. Thus the timing of this bird’s occurrence and the fact that it was alone (rather than with Sandhills) were cause for concern. Moreover, Common Cranes are held in captivity in North America, and a known escapee from New York, which eventually bred with a Sandhill in New Jersey, set a precedent for wandering by escaped Common Cranes. However, the Lake Earl bird showed no abnormal wear, was unbanded, and had no clipped toes or other signs that it had ever been held in captivity. Furthermore, because some Common Cranes do not breed until they are 4–6 years old (Makatsch 1970, Glutz von Blotzheim et al. 1973), an immature bird might stray from a “normal” pattern of migration, both temporally and geographically. On the basis of plumage pattern, a Common Crane that appeared in the Queen Charlotte Islands, British Columbia, from 3 July into August 2011 may well have been the same as that at Lake Earl, suggesting that it was a lost wanderer. Though the committee agreed the bird’s origin could not be known with certainty, after two rounds of voting only two members questioned its natural occurrence.

*AMERICAN GOLDEN-PLOVER Pluvialis dominica (53, 1). A juvenile was at the Madera water-treatment plant, Madera, MAD, 21 Sep 2007 (GW†; 2011-127). The committee reviews records of the American Golden-Plover only from 2004 to 2009.

LESSER SAND-PLOVER Charadrius mongolus (11, 1). An alternate-plumaged adult at Bolsa Chica, ORA, 25 Jun–2 Jul 2011 (BED†; CAM†, EGK†, GMcC, TRS†, MMe†; 2011-092) provided Orange County with its first record and was the first of this species recorded in California since 2005. This record also established an early date; the earliest previous occurrence was 10–12 Jul 2005 near McKinleyville, HUM (2005-083; Iliff et al. 2007). All California records have been of fall migrants.

WILSON’S PLOVER Charadrius wilsonia (20, 4). Single males at the Tijuana River mouth near Imperial Beach, SD, 24 Mar 2011 (MSa†; JLD, EGK†, GMcC; 2011-041) and at Bolsa Chica, ORA, 29 Mar 2011 (PKn†; 2011-105) were the first recorded in California in March; the previous early date was 2 Apr 2010 at the Santa Margarita River mouth, SD (2010-030; Johnson et al. 2012). Adult females were
Figure 9. This vireo photographed at Southeast Farallon Island, San Francisco Co., 9 Oct 2009 (2009-200) was in its first fall by the brown juvenal primary coverts contrasting with the replaced greater coverts of the formative plumage (see text). Note how different images of the same bird, in different posture and lighting, can make the malar contrast appear distinct or indistinct; because of the ambiguity of this feature, the committee concluded that it could have been either a first-fall male Cassin’s Vireo (Vireo cassini) or a first-fall female Blue-headed Vireo (V. solitarius), not accepting the record as the latter.

Photos by Matt Brady (A) and Jim Tietz (B)

Figure 10. Discovered on Christmas Day 2011 (photo taken 27 Dec), this adult Blue Jay (Cyanocitta cristata) remained in Chico, Butte Co., through spring 2012 (2011-228).

Photo by John T. Lewis
Figure 11. Two Northern Wheatears (*Oenanthe oenanthe*) were found on California’s coast in fall 2011. (A) The one photographed in Malibu, Los Angeles Co., 23 Sep 2011 (2011-137), appears to be an adult (and thus a female) because of its black wings and tail, broad and fresh primaries, and gray wash to the back and lesser coverts. (B) The other, at Anchor Bay, Mendocino Co., 2-5 Oct 2011 (2011-145) shows browner and more pointed wings and duller brown plumage, indicating an immature in its first fall.

Photos by Daniel Tinoco (A) and Robert J. Keiffer (B)

Figure 12. This Wood Thrush (*Hylocichla mustelina*) brightened up the undergrowth at Shoshone, Inyo Co., 25 Oct–7 Nov 2011 (2011-157).

Photo by Nancy Overholtz
at Border Field State Park, SD, 23 Jun 2011 (MSa†; 2011-090) and Carpinteria Salt Marsh, SBA, 23 Jul–11 Sep 2011 (PAGa†; WTF †, CAM†, DWN†, JLD†, OJ†, SBT†; 2011-109); although both birds were heavily worn, different patterns of wear confirmed that they were different individuals. Eleven of the state’s 20 accepted Wilson’s Plovers have occurred since 2005, suggesting a recent upswing in occurrence or perhaps increased coverage of beaches by researchers monitoring the Snowy Plover (C. alexandrinus) and Least Tern (Sternula antillarum).

COMMON RINGED PLOVER Charadrius hiaticula (1, 1). An alternate-plumaged one-year-old male at the Davis Wetlands, YOL, 19–26 Aug 2011 (ToE†; SCH†, LB†, DWN†, CAM†, LS†, GMcC, BY†, JLD†, LH†, JM†, JCS†; 2011-118; Sterling and Easterla 2012), provided the first accepted record for California and the second for western North America outside western Alaska, the first being of a vocal immature at Port Susan Bay, Washington, 23 Sep 2006 (Aanerud 2011). The one at Davis also called frequently, facilitating the identification. See Sterling and Easterla (2012) for details of this record. California’s one previous report, from at Pt. Reyes, MRN, 9 Sep 1996, was of a bird well seen and heard by an experienced observer (1997-071; Rottenborn and Morlan 2000), but the committee was reluctant to accept a first state record without photos or documentation from more observers.

UPLAND SANDPIPER Bartramia longicauda (30, 1). An Upland Sandpiper calling and displaying near Bellota, SJ, 25–28 Jun 2011 (LP†; 2011-093) was the first recorded in the Central Valley. Previous records were all of spring (15 May–13 Jun) or fall (8 Aug–28 Oct) migrants, but that for Bellota fits neither of those categories. This species has been declining over much of its range, and it has been recently extirpated as a breeding species in Washington and Oregon (P. E. Lehman pers. comm.).

BAR-TAILED GODWIT Limosa lapponica (39, 1). A bird acquiring alternate plumage was at the Santa Barbara harbor, SBA, 21 May 2011 (WTF†; 2011-076; photo published in N. Am. Birds 65:570). As summarized by Hamilton et al. (2007), the vast majority of California’s Bar-tailed Godwits have been fall migrants from Monterey County northward. The one in Santa Barbara was the first recorded in May and only the second apparent spring migrant, the first being near Crescent City, DN, 3–5 Jun 1984 (1984-186; Dunn 1988). This was also a first for Santa Barbara County and only the ninth south of Monterey County.

LITTLE STINT Calidris minuta (19, 6). One in its first fall with extensive formative feathering at Abbott’s Lagoon, Pt. Reyes, MRN, 16–17 Dec 2010 (AK†; KHa†; 2011-114) is the latest recorded in California; the previous latest record was of one in formative plumage collected at Harper Dry L., SBE, on 21 Nov 1988 (1990-210; Heindel and Garrett 1995). The combination of dark legs, lack of webbing between the toes, long primary projection, and bill length/shape eliminated the Western (C. mauri) and Least (C. minutilla) Sandpipers. Distinction from the Red-necked Stint (C. ruficollis), which is very similar in formative and basic plumages, rested primarily on the rusty-brown edging on the retained juvenile tertials and upperwing coverts, secondarily on body shape and a split supercilium. Alternate-plumaged adults were at the Alexandre Dairy near Fort Dick, DN, 6–8 Jul 2011 (ADB†; KMB†, KRT†, JCS†; 2011-101), Davis Wetlands, YOL, 15–17 Jul 2011 (ToE†; SCH†, LH, SBT†, MBr, MMe†; 2011-104), and Plute Ponds on Edwards Air Force Base, LA, 23–25 Jul 2011 (KLG†; NF†, MFt†, KH-L†, CAM†, LS†; 2011-108; photo published in N. Am. Birds 65:715). While the timing and southward progression of these records led to speculation that at least two of them represented the same bird, comparison of photos suggests that these were all different individuals. Other alternate-plumaged adults at Crab Park, HUM, 15–16 Aug 2011 (DCol; 2011-221) and Mad River County Park, HUM, 21 Aug 2011 (DCol, RFo; 2011-119) were different individuals on the basis of plumage differences noted by Daryl Coldren, who saw both birds. Five individuals
in 2011 bested the previous single-year high of three in 2010.

WHITE-RUMPED SANDPIPER Calidris fuscicollis (25, 1). One acquiring alternate plumage along Wheeler Road at the north end of the Salton Sea, RIV, 8 May 2011 (AD†; 2011-069) provides the earliest accepted record for California; the previous early date was 17 May 1986 at Stockton, SJ (1986-341; Langham 1991). The committee has taken an especially conservative approach to all reports of this species prior to mid-May, but the photos of 2011-069 were adequate for acceptance by all but one member, who thought the bird might be a Western Sandpiper.

CURLEW SANDPIPER Calidris ferruginea (41, 2). A bird acquiring alternate plumage was at the J Street Marina, Chula Vista, and the nearby saltworks at the south end of San Diego Bay, SD, 24–27 Apr 2011 (JML†; BLC, GMcC, MSa†; 2011-057), while an alternate-plumaged bird was in adjacent Imperial Beach, SD, 24–30 Jul 2011 (GMcC; ABL, CMcG †, AnM†, VM†, DWN†, LS†, TAB†, BED†, CAM†, JN†; 2011-107; photo published in N. Am. Birds 65:715). IDENTIFICATION NOT ESTABLISHED: After two rounds of review, most members found the photos of a somewhat distant sandpiper at Owens Lake, INY, 16 Sep 2007 (2007-208) insufficient for identification and thought that the bird might have been a Stilt Sandpiper (C. himantopus).

COMMON SNIPE Gallinago gallinago (1, 1). A hatch-year bird shot by a hunter in the San Jacinto Valley, about 1.5 km northwest of Lakeview, RIV, 11 Dec 2011 (KLG†; 2011-215) is the first recorded in California and the first for western North America away from the Aleutian Islands/Bering Sea region. Although the hunter retained the specimen, Kimball Garrett took numerous measurements (including the width of the outermost rectrix, much broader in the Common than in Wilson’s), photographs, and a small sample of tissue for genetic analysis. The features distinguishing the Common Snipe and Wilson’s Snipe (G. delicata) have been reviewed by Carey (1992), Carey and Olsson (1995), Bland (1998, 1999), Dunn and Alderfer (2007), and Pyle (2008). Most are difficult to impossible to assess in the field, but whiter underwings (with less dark barring) and broader white trailing edges to the wings (see Figure 6) may be noticeable.

LITTLE GULL Hydrocoloeus minutus (107, 4). The CBRC considered an adult at L. Perris and the San Jacinto Wildlife Area, RIV, 6–27 Mar 2011 (CAM; DFu†, JLD; 2011-023) the same as one at this location 1–14 Mar 2010 (2010-019; Johnson et al. 2012) and 1–10 Mar 2009 (2009-056; Pyle et al. 2011a). Individuals in full juvenal plumage were at China L., KER, 29 Aug 2011 (LS†; JLD†; 2011-123) and L. Havasu, SBE, 10 Sep 2011 (LHa S, DVP; 2011-131). Juvenile-plumaged birds had been previously recorded in California on four occasions, all during the period 15 Aug–5 Sep. First-winter birds were at Prado Regional Park, SBE, 14–18 Dec 2011 (HBK; TABe†, BrSt†, CAM, DWAt†, BJSt†; 2011-212) and L. Los Carneros in Goleta, SBA, 29 Dec 2011 (LW†; 2011-230).

BLACK-TAILED GULL Larus crassirostris (3, 0). An adult was at Malibu, LA, 12 Feb 2011 (JF†; 2011-015). A majority of the CBRC considered this bird probably the same as the one 60 km to the southeast in Long Beach, LA, 8–21 Nov 2010 (2010-140; Johnson et al. 2012). IDENTIFICATION NOT ESTABLISHED: An adult reported near Vernalis, STA, 28 Mar 2011 (2011-052) may have been an adult or near-adult Lesser Black-backed Gull (L. fuscus). Reports from the north end of the Salton Sea, east of Avenue 86, RIV, 9 Apr 2011 (2011-049) and Salt Creek, east shore of the Salton Sea, RIV, 30 May 2011 (2011-080) were inconclusive.

ICELAND GULL Larus glaucoides (11, 4). Second-winter birds apparently of the subspecies kumlieni were at the Ogier Ponds north of Morgan Hill, SCL, 4 Dec 2010 (SCR†; 2011-026) and 5–9 Mar 2011 (SCR†; RWR†; 2011-027, same as 2011-026), at Pillar Pt. Harbor, Half Moon Bay, SM, 4 Feb 2011 (AJ†; 2011-017),
and at the mouth of Pilarcitos Creek in Half Moon Bay, SM, 24 Feb 2011 (Aj†; 2011-260). An even paler second-winter bird at the Davis water-treatment plant, YOL, 19 Feb–14 Mar 2011 (ToE†; 2011-242) could have been a paler kumlieni or possibly nominate glaucoides. These four individuals were larger than most Iceland Gulls previously accepted in California, being similar in size to many Thayer’s Gulls (L. thayeri). While there may have been a bias in the past toward considering only smaller birds (i.e., females and smaller males) to be acceptable as Iceland Gulls, the committee recognizes that only a small percentage of California’s apparent Iceland Gulls are very small, dainty, round-headed, and fine-billed. All four individuals were also in their second year, the age at which the melanism in the wingtips reaches its maximum, and thus less likely than first-cycle birds to have pale wingtips as a result of fading and wear. First-year birds that are as pale as some Kumlien’s Gulls on the east coast are not very rare in California in late winter, but most such birds have solid darker tail bands and secondary bars suggesting faded Thayer’s. Previously accepted records extended from 30 Dec to 7 Mar; these new records expanded this interval to 4 Dec–14 Mar. IDENTIFICATION NOT ESTABLISHED: An adult at the mouth of Salmon Creek, SON, 9 Jan 2008 (2011-120) may have been a Kumlien’s Gull, as the photos showed a smallish gull with dark gray, not black, in the primaries. However, the images did not show the bird from multiple angles, making it difficult for members to assess the bird’s size and shape; the bird may have been a small Glaucous-winged Gull (L. glaucescens). One photographed at the Recology Composting Facility, STA/ SJ, 27 Mar 2011 (2011-264) could not be identified conclusively.
LESHER BLACK-BACKED GULL *Larus fuscus* (95, 16). In 2011, 18 individuals were recorded, two of them being considered continuing birds, as follows: at the Nimbus Fish Hatchery, SAC, an adult 9 Jan–5 Feb 2011 (BG†; CCoa†; DBr†; LP†; 2011-002); at Pillar Pt. Harbor, SM, a first-winter bird 18 Jan 2011 (PA†; 2011-150); at Mecca Beach, RIV, adults 1–4 Feb 2011 (CMcG†; 2011-012, considered the same as one there 10–28 Feb 2010 [2010-015; Johnson et al. 2012] and 18 Jan–15 Feb 2009 [2009-013; Pyle et al. 2011a]), and 1 Feb–13 Mar 2011 (CMcG; TAb†, BrS†; 2011-013); at Lower Oatay L., SD, a first-winter immature 5–8 Feb 2011 (PEL; JK†, GMcC, LS†, BJS†, VM†, CAM†; 2011-014); at the Davis water-treatment plant, YOL, a first-winter immature 21 Feb–14 Mar 2011 (ToE†; 2011-246; photo published in *N. Am. Birds* 65:513); at the American Ave. landfill, FRE, a first-winter immature 3 Mar 2011 (GWT†; 2011-028, a first for Fresno County); at Salt Creek on the east shore of the Salton Sea, RIV, a first-winter immature 12–13 Mar 2011 (CMcG; TAb†, BrS†; 2011-024); at Clear L., LAK, one likely in its fourth spring 20 Mar 2011 (FEH†; DEW†; 2011-047), presumably the same as an adult at Redbud Park, Clear L., LAK, 21 Nov 2011–20 Jan 2012 (FEH†; 2011-185); at Obsidian Butte, south end of the Salton Sea, IMP, a one-year-old 30 May–30 Jun 2011 (DDiT†; GmC, JPaw†; 2011-079) and three-year-olds 18 Sep–9 Nov 2011 (GmC; 2011-133) and 20 Dec 2011 (GmC; 2011-227); at the South Wilbur Flood Area, KIN, a two-year-old 7 Sep 2011–18 Feb 2012 (MES†; SLS†, JFL†, SSum†, ESH†; 2011-125); at the Norco Egg Ranch, near Lakeview, RIV, an adult 19 Nov 2011–13 Jan 2012 (HBK; TAb†, CAM†, BJS†; 2011-193, considered the same as the one there 28 Dec 2010–26 Mar 2011, 2010-188; Johnson et al. 2010) and a second-winter bird 20 Nov 2011–10 Jan 2012 (HBK; CAM†, BrS†, Aek; 2011-194); at Clear L. south of Lakeport, LAK, one in its third or fourth fall 21 Nov 2011 (FEH†; 2011-262); at the Yolo County Landfill, YOL, an adult 10 Dec 2011 (SCH†; 2011-214); and at Alviso, SCL, an adult 18 Dec 2011 (DMcT†; 2011-234). IDENTIFICATION NOT ESTABLISHED: At the Alexandre Dairy near the Smith River, DN, a first-winter bird 3 Dec 2011 (SCH†; 2011-234). Records of the Lesser Backed-gull have increased dramatically in recent years, and the committee removed this species from its review list at its 2013 annual meeting.

SLATY-BACKED GULL *Larus schistisagus* (43, 5). An adult was at the Potrero Hills landfill, SOL, 25 Feb–8 Mar 2011 (RMu S; 2011-245); although the committee rarely accepts records of this species lacking photographs, the thorough details and annotated sketch were convincing. Other adults were at the Pilarcitos Creek mouth, Half Moon Bay, SM, 11 Mar 2011 (AJ†; 2011-257) and Pacific Commons Linear Park in Fremont, ALA, 17–29 Nov 2011 (NA†; MP, JLD†, DEQ†, JTin, AD; 2011-180), the latter preceding California’s previous earliest fall date of 2 Dec. An advanced third-spring bird was at Pomponio State Beach, SM, 4 Mar 2011 (OJ†; 2011-021). One in its second spring was at Half Moon Bay, SM, 5 Mar 2011 (DSS†; 2011-102). IDENTIFICATION NOT ESTABLISHED: Features apparent in photos of an adult gull at Ferry Pt., Miller/Knox Regional Shoreline, CC, 11 Feb 2011 (DSS†; 2011-243) were consistent with a Slaty-backed Gull, but the photos did not show the primary pattern well, and no written details accompanied the report. Accompanying the recent proliferation of digital photography, which has been a boon to the documentation of bird records in general, has been a decrease in written details, and many records submitted to the committee lack any description of what the observers noted in the field. Even minimal details on a bird’s appearance, accompanying photographs, can assist significantly in documenting rare bird records.

THICK-BILLED MURRE *Uria lomvia* (50, 0). IDENTIFICATION NOT ESTABLISHED: One reported at Pt. Pinos, MTY, 29 Jan 2011 (2011-018) was seen rather briefly in flight. The description of a dark head with contrasting white chin, white flanks, and upperparts more blackish than the brown-tinged upperparts of a Common Murre (*U. aalge*) all fit the Thick-billed nicely. However, the bill was not scrutinized or described in detail. Moreover, while white flanks should allow a Thick-billed Murre to be distinguished from Common Murres of the race *californica*, some individuals of the race *inornata*, which breeds in Alaska and British Columbia, have white flanks, and *inornata* could conceivably reach California in winter. The committee is reluctant to accept fly-by records of the Thick-billed Murre.

LONG-BILLED MURRELET *Brachyramphus perdix* (29, 1). One in formative or basic plumage was 200 m off the north jetty of the harbor at Crescent City, DN, 3 Feb 2011 (JJ†; 2011-011).

SNOWY OWL *Bubo scandiacus* (61, 1). A record of one at Delevan N.W.R., COL, 9 Jan 1971 was accepted on the basis of old field notes taken shortly after the observation but only recently submitted (FH; 1971-501).

ELF OWL *Micrathene whitneyi* (3**, 0). One of a pair (2010-050; Johnson et al. 2012) that nested at Corn Spring in eastern Riverside County in 2010 returned to the nest site 17 Apr–28 May 2011 (TABe; DEQ, RT§; 2011-056). See Johnson et al. (2012) for more information on the Elf Owl’s recent status in California.

BROAD-BILLED HUMMINGBIRD *Cynanthus latirostris* (81, 3). A first-fall female at Palomarin near Bolinas, MRN, 6 Oct 2011 (RD†; 2011-259) was unusual by being relatively early, a female, and from northern California. One near Mission Valley in San Diego, SD, 6 Nov–2 Dec 2011 was more typical, being a male in early winter from the southern coast (MP; PEL†; 2011-170). Another adult male was at Cottonwood Springs, Joshua Tree National Park, RIV, 10 Mar 2011 (CHA†; 2011-022).

RED-BELLIED WOODPECKER *Melanerpes carolinus* (0, 0). IDENTIFICATION NOT ESTABLISHED: First state records require thoroughly convincing documentation to gain acceptance. A reported Red-bellied Woodpecker at Caswell State Park, STA, 17 Sep 2011 (2011-134) was seen and described only briefly by a single observer. Most members concluded other species of “ladder-backed” woodpeckers such as the Nuttall’s Woodpecker (*Picoides nuttallii*) or a female Williamson’s Sapsucker (*Sphyrapicus thyroideus*) were not adequately eliminated. Although generally prone to only limited vagrancy, this species is expanding its range north and west, and records from near Calgary, Alberta, Coeur d’Alene, Idaho, and Ruby Lake National Wildlife Refuge, Nevada (Burton and Anderson 2013), demonstrate its capability of wandering west.

GYRFALCON *Falco rusticolus* (11, 0). IDENTIFICATION NOT ESTABLISHED: Most members considered the submitted video of a large falcon at Smith River, DN, 12–14 Nov 2007 (2007-259) inadequate to support the identification as this species.

EASTERN WOOD-PEWEE *Contopus virens* (12, 1). A pewee in Birchim Canyon, INY, 22–26 Oct 2011 caught the attention of two observers by the late date and the
bird’s relatively bright plumage, which included a smooth pale gray nape and rear auriculars contrasting with a darker cap, a whitish throat, thin bright eye ring, and a pale mandible. Suspecting an Eastern Wood-Pewee, the observers kept tabs on the bird, which finally was heard vocalizing on the fourth day of observation, confirming its identity (DPa†, JPar‡; JLD†, JoH†, TH, CHo†, RoH, NO†; 2011-159; Figure 7).

DUSKY-CAPPED FLYCATCHER Myiarchus tuberculifer (88, 6). One first-winter bird at Shoshone, INY, 5–7 Nov 2011 was relatively early (LSW†; 2011-166). Other immatures wintered at Aviara Golf Course in Carlsbad, SD, 11 Dec 2011–2 May 2012 (SBrt†; DWA†, TAB†, CG†, CAM†, GMcC, BJS†; 2011-211), San Lorenzo River in Santa Cruz, SCZ, 17 Dec 2011–16 Jan 2012 (PB†; SG†, JLR†, PST; 2011-220), and Golden Gate Park, SF, 27 Dec 2011–28 Jan 2012 (ASH†; MEat†, OJ†§, JMr†, KS†, LS†; 2011-225). Another of uncertain age was at Demuth Park in Palm Springs, RIV, 20–27 Mar 2011 (BW†; TABe†, JLD, GMcC, SJM†; 2011-034). One at Veterans Memorial Park in Bell Gardens, LA, 2 Feb–21 Mar 2011 (RB†; BED†, KLG†; 2011-010) returned the following fall, being noted 5 Nov 2011–6 May 2012 (RB†; CAM†, AS†; 2011-232). Finally, one returned for its fifth consecutive winter to La Mirada Creek Park, LA, 1 Dec 2011–25 Feb 2012 (JRw†‡; JSF†‡; 2011-233; 2008-040, 2008-187, 2009-222, and 2011-037; Johnson et al. 2012). IDENTIFICATION NOT ESTABLISHED: One reported on Clark Mt., SBE, 6 July 2011 (2011-103) would have represented a first summer record for California. While many members thought the identification may have been correct, the observer’s incomplete and brief view and inconclusive photographs were not sufficient to confirm such an unprecedented date and location.

GREAT CRESTED FLYCATCHER Myiarchus crinitus (55, 1). One at Zzyzx, SBE, 21–22 Sep 2011 was only the sixth recorded for California’s interior (BrS†; TABe†, JLD†, CAM†, JEP†; 2011-136; Figure 8). IDENTIFICATION NOT ESTABLISHED: A Myiarchus seen by two observers on 26 and 27 May 2010 in Olivenhain, Encinitas, SD, may have been correctly identified but no vocalizations were heard, and some members were concerned the bird may have been a vagrant Brown-crested Flycatcher (M. tyrannulus). There is only one accepted spring record of the Great Crested Flycatcher for California.

THICK-BILLED KINGBIRD Tyrannus crassirostris (20, 1). One at the mouth of Poggi Canyon in Otay Valley, Chula Vista, SD, 25 Oct 2011–25 Mar 2012 (DWA†, TJ†, GMcC, RBMCn†; JPt; 2011-184) returned for its second documented winter (it was an adult when first found; 2010-176, Johnson et al. 2012). A first-year bird at Middle Ranch on Santa Catalina I., LA, 19 Nov 2011–3 Apr 2012 (LF†; JKi†; 2011-192) represented California’s first record from an offshore island.

These and other reports of birds seemingly intermediate between the Blue-headed and Cassin’s (V. cassini) vireos prompted several committee members to re-examine identification criteria of these two species through study of specimens and consultation of outside experts. Findings indicated some characters previously thought to distinguish these two species can be shared, but the majority of birds of known age should be identifiable (P. Pyle in litt., 2011). The extent of white edging in the outer rectrices is less reliable for identification than previously thought, although within each age/sex

Class it averages broader in the Blue-headed than in Cassin’s (P. Pyle in litt., 2011). Head color, often the primary feature used to distinguish these two species, is also variable; the brightest 2–3% of adult male Cassin’s Vireos overlap with the dullest 2–3% of immature female Blue-headed Vireos, illustrating the importance of age and sex in accurate identification. Malar contrast, sharper in the Blue-headed than in Cassin’s, is helpful, though apparent contrast can vary with a bird’s posture. Some individuals, even those well photographed, remain unidentifiable because of overlap between bright males of Cassin’s and dull females of the Blue-headed (Figure 9). The best features to age these vireos are the color of the primary coverts (browner and contrasting with the brighter replaced greater coverts in first-year birds, duskier, with greenish edging, and not contrasting with the wing coverts in adults), and the narrower and more worn and pointed rectrices of first-year birds (Pyle 1997).

Yellow-green Vireo *Vireo flavoviridis* (103, 3). First-fall individuals were at Neary Lagoon in Santa Cruz, SCZ, 16–19 Oct 2011 (SG†; JoG†, CK†, SL†, WN†, SBT†; 2011-148) and Southeast Farallon I., SF, 18 Oct 2011 (MD; MBr†, ME†; 2011-251). A third of uncertain age was in Goleta, SBA, 23 Oct 2011 (DMC; RFC; 2011-152). All three represented dates and coastal locations typical for this vagrant in California. Identification Not Established: A brief report of one in Chula Vista, SD, 10 Sep 2010 (2011-263) lacked diagnostic details, mentioning the bird had pale yellow flanks rather than the extensively yellow underparts extending up to the sides of the neck as expected on a Yellow-green Vireo, and the date was unusually early.

Blue Jay *Cyanocitta cristata* (15, 1). An adult found on 25 Dec 2011 in Chico, BUT, remained through 8 May 2012, the latest date the species has been documented in California (MF†; TABe†, SBT†; 2011-228; Figure 10).

Winter Wren *Troglodytes hiemalis* (8, 3). One in Malibu, LA, 18 Dec 2005 (KLG; 2010-164) was heard vocalizing and seen briefly on a Christmas Bird Count. Two found by the same observer in Sacramento County were supported with video and sound recordings, one along the American River Parkway 28 Sep–5 Dec 2009 (CCo†‡§; 2011-219), the other at the Consumnes River Preserve 27 Nov 2011–25 Feb 2012 (CCo‡§; 2011-241). Vocalizations most readily distinguish the Winter Wren from the Pacific Wren (*T. pacificus*), until recently considered conspecific (Toews and Irwin 2008, Chesser et al. 2010). Although there is some variation in the common call notes of the Winter Wren, no overlap has yet been reported in the quality of the voices of the Winter Wren and the Pacific Wren. Identification Not Established: A wren photographed at Stovepipe Wells in Death Valley, INY, 2 Nov 2002 (2010-163) was not heard vocalizing, and most members declined to accept a record based on plumage characteristics alone. In an analysis of 26 adult Winter Wren and about 200 adult Pacific Wren specimens, Peter Pyle (in litt., 2013) found considerable overlap in plumage characteristics of both species, reinforcing the limitations that exist in identifying either species on plumage characteristics alone. A report from near Blythe, RIV, 16 Apr 2011 (2011-060) was not accepted because the description of the call was incomplete and how the Pacific Wren was eliminated was not explained. With only eight records (none for spring) so far accepted, the committee still takes a cautious approach with this species until its identification, schedule, and distribution are better understood. Observers of this species should record any calls, if possible, or otherwise describe the calls and plumage in detail.

Red-flanked Bluetail *Tarsiger cyanurus* (2, 1). Biologists working on San Clemente I., LA, found this remarkable vagrant on 6 Dec 2011 (JR†; JTS†, SDNHM #53312; 2011-202); it represents only the second record for North America outside of western Alaska. The first for California (and the lower 48 states) was also from an off-shore island, Southeast Farallon I., 1 Nov 1989 (Patten and Erickson 1994).
After a few days of searching for and not refinding the bird on San Clemente I., the observers finally discovered it stabbed on a cactus spine—the victim of a Loggerhead Shrike (*Lanius ludovicianus*). Philip Unitt nonetheless prepared the headless remains of this first-fall female as a specimen. Remarkably, this is the third Old World species of the Muscicapidae recorded on San Clemente I., following records of the Stonechat (*Saxicola torquatus*) in Oct 1995 (2005-005; Cole et al. 2006) and the Bluethroat (*Luscinia svecica*) in Sep 2008 (2008-116; Pike and Compton 2010). Red-flanked Bluetails of the nominate race breed primarily in northern taiga from the Kamchatka Peninsula and Japan west to Finland and winter in southeast Asia. In North America, besides the two records listed above and one near Vancouver, British Columbia, 13 Jan–Mar 2013 (http://blog.aba.org/2013/01/abarare-red-flanked-bluetail-british-columbia.html), it is a very rare spring and fall vagrant to western Alaska islands.

NORTHERN WHEATEAR Oenanthe oenanthe (13, 2). Two were photographed (Figure 11): an adult female at Malibu, LA, 23 Sep 2011, found near dusk and gone the next day (DT†; 2011-137), and a first-fall female near Anchor Bay, MEN, 2–5 Oct 2011 (PK; KA†, RJK†, DTo, RTr, JWh; 2011-145). Although two accepted records seem remarkable for a single season, there is a precedent: the falls of 1988, 1992, 1995, and now 2011 have all had two accepted sightings of this Old World rarity, which had not been recorded in California since 2001.

WOOD THRUSH Hylocichla mustelina (28, 2). Two fall vagrants were found in California’s interior, where half of California’s Wood Thrushes have occurred. One at Galileo Hill, KER, 1 Oct 2011 (SLS; AH, KHL; 2011-140) is California’s earliest in fall by eight days. Another was in Shoshone, INY, 25 Oct–7 Nov 2011 (LW†; PEL†, CAM†, NO†; 2011-157; Figure 12).

RUFOUS-BACKED ROBIN Turdus rufopalliatus (17, 1). One was at Picacho State Recreation Area, IMP, 13 Nov 2011 (GjH; 2011-198).

CURVE-BILLED THRASHER Toxostoma curvirostre (28, 1). One of the subspecies *palmeri* singing in El Monte, LA, 10 May–6 Jul 2011 was the second for Los Angeles County, the fourth for the coastal slope of California, and the first for California in summer (CAM†; BED†, JLD†, JSF†, KLG; 2011-072). Another returned for its second winter (23 Nov–3 Dec 2011) to Black Meadow Landing, Colorado R., SBE (TAB†; 2011-199; previously accepted as 2011-003; Johnson et al. 2012). IDENTIFICATION NOT ESTABLISHED: A thrasher with a deformed, abnormally long bill was 16 km southeast of Holtville, IMP, 21 Jan–3 Feb 2011 (2011-009). It was either a Bendire’s (*T. bendirei*) or a Curve-billed Thrasher and unfortunately did not vocalize.

SNOW BUNTING Plectrophenax nivalis (124, 2). One photographed near Orick, HUM, 14–15 Nov 2010 (TK†; LET†; 2010-148) had considerable white in the rump, tail, and secondaries, apparent dark bases to the outer greater coverts, and was pale overall, raising the question of its being a McKay’s Bunting (*P. hyperboreus*) or a hybrid McKay’s × Snow Bunting. Outside expert J. Rogers (in litt., 2010), however, advised that this bird was within the range of a first-fall male Snow Bunting. See Rogers (2005) for more information on distinguishing these species. Another apparent first-winter male Snow Bunting was near Kneeland, HUM, 15 Nov 2011 (MJMa†; 2011-210).

WORM-EATING WARBLER Helmitheros vermivorum (120, 1). One was at Ramer Lake, IMP, 26–27 Nov 2011 (CrS†; HBK, BK†, KZK†, CAM†, GMcC; 2011-195).

GOLDEN-WINGED WARBLER Vermivora chrysoptera (75, 2). A male photographed in Birchim Canyon, near Bishop, INY, 2 Jun 2011 was the 25th recorded in eastern California (JPa†, DPa; NO†, CHo†, RoH; 2011-084; Figure 13). A first-fall female on Santa Barbara I., SBA, 20–21 Oct 2010 (WT†; 2010-181) was the
second for the Channel Islands.

CONNECTICUT WARBLER Oporornis agilis (115, 3). One was at the fish docks on Pt. Reyes, MRN, 12–13 Sep 2011 (SCH; 2011-128). One in its first fall at Oxnard, VEN, 2–5 Oct 2011 (SCr†; JCa, DC†, JLD, HBK, CAM; 2011-144) was initially found and photographed by a 12-year-old observer. A third on Southeast Farallon I., SF, 20 Oct 2011(MBr, MD, DMx†; 2011-252), also in its first fall, is one of latest recorded in California.

MOURNING WARBLER Geothlypis philadelphia (141, 1). One was in Eureka, HUM, 14–16 Sep 2011 (SEM†, JSa, SBT; 2011-168). IDENTIFICATION NOT ESTABLISHED: A singing Geothlypis lacking white eye arcs, observed near Brooks, YOL, 19 May 2011 (2011-074), may have been a Mourning Warbler, but several committee members had concerns about the identification. The relative length of the undertail coverts was not noted, and description of the hood pattern, in which the black was concentrated on the lores yet absent from lower part of the breast, may have been better for the MacGillivray’s Warbler (G. tolmiei) or a hybrid.

CAPE MAY WARBLER Setophaga tigrina (20**, 12). Twelve records accepted in 2011 were far above the average reported in California in recent years. A spring male was photographed in Birchim Canyon near Bishop, INY, 14 May 2011 (DPa†; BJK, NO†; 2011-071). Ten, apparently all in their first fall, were found between 11 Sep and 23 Oct: at Pt. Reyes, MRN, 11–25 Sep (SBT; 2011-162), Lake Merced, SF, 14–15 Sep (DMo; RF, AIM, JMr, LS†; 2011-129), Laguna Niguel, ORA, 17 Sep (RBMcN†; 2011-132), Fort Mason, SF, 26–27 Sep (DMO†; MEn†; 2011-143), at Southeast Farallon I., SF, 28 Sep (MBrt, DMx†, JRT; 2011-249) and 1 Oct (MBrt, DMx†, JRT; 2011-250; different individual), Lighthouse Field, SCZ, 30 Sep (JMry; 2011-141), Twenty-nine Palms, SBE, 30 Sep (TAbF; CAM†; 2011-146), Santa Barbara I., SBA, 22–25 Oct (PAGa†; WFT†, MVi†; 2011-156), and the campus of the University of California, Santa Cruz, SCZ, 23 Oct (JoGS; 2011-151). Finally, a first-winter male was found on the Pt. Reyes Christmas Bird Count in Inverness, MRN, 17 Dec 2011 (SCyt†; 2011-226). The committee added this species to the review list in 2011 on the basis of a significant downward trend in California reports. From 1980 to 1995, California averaged 5.5 reports per year, but from 2000 to 2009, that number dropped to 3.3 (J. Dunn, in litt.) The Cape May Warbler’s population cycles with outbreaks of the Spruce Budworm (Choristoneura fumiferana) in the boreal forest, so 2011 may have been a good summer for budworms. IDENTIFICATION NOT ESTABLISHED: The description of a bird observed briefly in Los Angeles, LA, 17 May 2011 (2011-078) was incomplete and unconvincing.

PINE WARBLER Setophaga pinus (103, 2). A male was at Laguna Niguel Regional Park, ORA, 12–13 Nov 2011 (RBMcN†; 2011-175), and a female was in Santa Maria, SBA, 2–3 Feb 2011 (JMC; 2011-039). Two males returned for a second winter: one to Palos Verdes Estates, LA, 31 Oct 2011–14 Feb 2012 (MBy; RJN, JEP; 2011-236), another to Hansen Dam, LA, 11 Nov 2011–16 Mar 2012 (KLG†; 2011-237; previously accepted as 2011-025 and 2010-159, respectively; Johnson et al. 2012).

*YELLOW-THROATED WARBLER Setophaga dominica (139, 7). Singing males were at the Big Sur River mouth, MTY, 5 Jun 2010 (MiSt; 2011-045) and Vandenberg Air Force Base, SBA, 20 Apr 2011 (JMC; 2011-055). In fall, one was at Pt. Reyes, MRN, 10 Oct 2009 (NS†; 2009-246), at Lake Merced, SF, 5 Sep 2011 (HCy†; 2011-135), and at Santa Barbara I., SBA, 19 Oct 2011 (NAL; WFT†; 2011-176). One first found on the relatively early fall date of 13 Sep 2011 at Ferry Park in San Francisco, SF, remained through at least 30 Dec 2011 (JHy†; PBa†, TAbF†, DMOt†, DEQ†, DSS†, LS†, JMr, MVe†; 2011-142). It had a yellow spot on the lores and a relatively long bill, suggesting S. d. dominica, but a white chin, typical of the more
frequent subspecies *S. d. albilora*. A small amount of yellow on the lores is not unusual for *S. d. albilora* (Pyle 1997, Jaramillo 1993), making subspecific identification more challenging. McKay (2008) suggested synonymizing *S. d. albilora*, arguing that the morphological and genetic differences between albilora and dominica are weak. Also in winter was one at Park La Brea, LA, 30 Dec 2011 (BK†; 2011-238). An older record of one at Pt. Reyes, MRN, 10 Oct 2009 was also accepted (NS†; 2009-246). The committee reviews records of this species through 2011.

GRACE’S WARBLER *Setophaga graciae* (61, 2). A fall migrant was at the Ocean Meadows Golf Course in Goleta, SBA, 5 Nov 2011 (DMC; 2011-224), and two winter records were accepted, of a first-year bird at Greenwood Cemetery in San Diego, SD, 16 Dec 2011–18 Feb 2012 (DBz†; PEL, GMcC, RBMcN†, BJS†, MSh†; 2011-216) and an adult at Bella Vista Open Space in Goleta, SBA, 26 Oct 2011–26 Feb 2012 (DMC†; KR†; 2011-223), the latter returning for its fourth consecutive winter (2009-046, 2009-217, and 2010-179; Johnson et al. 2012).

LE CONTE’S SPARROW *Ammodramus leconteii* (34, 0). IDENTIFICATION NOT ESTABLISHED: The description of a sparrow at the Palo Alto Baylands, SCL, 10 Nov 1976 (1976-501) suggested Le Conte’s Sparrow but was written several days after the observation and after field guides were consulted. The location is now known to host a small wintering population of Nelson’s Sparrow (*A. nelsoni*), which was unknown at the time of the observation. There is only a single accepted record of Le Conte’s Sparrow for the mainland San Francisco Bay area (CBRC 2007, www.californiabirds.org/cbrc_book/update.pdf).

PYRRHULOXIA *Cardinalis sinuatus* (27, 2). A female was in Inyokern, KER, 7–8 May 2011 (SLS; KHL, CAM†, BSt†; 2011-068), and an adult male was in a backyard in Niland, IMP, 5–12 Aug 2011 (TABe†, MJB†, HBK, CAM†, DMx†, GMcC; 2011-111).

PAINTED BUNTING *Passerina ciris* (107, 0). IDENTIFICATION NOT ESTABLISHED: A single-sentence description suggested an adult male was in Ventura, VEN, 17 Oct 1980 (2011-261) but was too brief to convince the committee, which discontinued reviewing records of this species after 2004.

RUSTY BLACKBIRD *Euphagus carolinus* (24**, 6). An adult male at Bodega Bay, SON, 18 Nov 2010 (DBr†; 2010-166) caused pause for a few members because of its overall shiny black appearance—a characteristic usually associated with the Brewer’s Blackbird (*E. cyaanocephalus*). However, it had thin pale rusty edges to the tertials, back and upper breast and a faint black mask across the face with black lores, as well as structural differences including a slender bill—traits in which the adult male Rusty differs from Brewer’s. A female at Clear Lake Riviera, LAK, 23–28 Oct 2011 was a first for Lake County (VMi†; JWh; 2011-164). Males were at Ridgecrest, KER, 5–14 Nov 2011 (KHL†, CAM, ASH†, SLS†; 2011-167) and Galileo Hill, KER, 18 Nov 2011 (SLS†; 2011-181). A female was at the San Joaquin Wildlife Sanctuary, ORA, 26 Nov 2011 (BA; TABe†, BED†, VP†, SSof†; 2011-190), and another spent much of the winter at Thousand Palms Oasis, RIV, 7 Dec 2011–26 Feb 2012 (GS†; TABe†, CAM†, GMcC, CMcG†, SJM†; 2011-203). IDENTIFICATION NOT ESTABLISHED: The description of a supposed Rusty Blackbird at Ridgecrest, KER, 1 Nov 2011 (2011-169) lacked confirming details. A report from the Woodlands Wastewater Treatment Plant, YOL, 28 Oct 2010 (2010-190) barely described what the bird looked like.

COMMON GRACKLE *Quiscalus quiscula* (87, 3). Spring vagrants were in southeastern California at the River Lodge Resort along the Colorado River 6 km southwest of Parker Dam, SBE, 16 Apr 2011 (TABe†; 2011-053) and Big Pine, INY, 4 Jun 2011 (JoH†; TH†; 2011-083). A male in Cypress, ORA, 9 Nov 2011 (BED†; 2011-213) represented a date typical for a fall vagrant. IDENTIFICATION
NOT ESTABLISHED: A male icterid photographed in Sierra County, 3 Jul 2011 (2011-196) did not show the typical coloration of subspecies *versicolor* of the Common Grackle, lacking any apparent bronzy tones to the body or bluish tones to the head, and most committee members suspected the bird could be a Brewer’s Blackbird (*Euphagus cyanocephalus*) × Great-tailed Grackle (*Q. mexicanus*), a hybrid that has occurred in California before (Rogers and Jaramillo 2002).

BLACK ROSY-FINCH *Leucosticte atrata* (16, 1). An adult male visiting a feeder in Aspendell, INY, 21 Feb 2011 was the sixth recorded at this location (BST†; JLD, CAM, JPar†, DPa, SLS; 2011-016). All of California’s records are from Inyo and Mono counties.

COMMON REDPOLL *Acanthis flammea* (81, 1). One that hit a window in June Lake, MNO, on 1 Dec 2011 (BaM†, KNN†; 2011-197, LACM #115935) was—at the time—unprecedented for California so early and so far south. This bird was also the first of an invasion of the Common Redpoll during the winter of 2011–2012 that was remarkable not only in the number of individuals but also in how far south many of them strayed. Most of these records will be covered in the 2012 annual report.

CORRIGENDA

It was recently brought to our attention that CBRC record 2004-124, of a Crested Caracara observed 20–24 Aug 2004 in Mendocino County, had been observed at two different locations over 60 km apart. Unfortunately, all publications referencing this record (Cole et al. 2006, CBRC 2007, and Nelson and Pyle 2013) mention only the initial location. The bird was first observed flying north near Manchester S. P. 20 Aug 2004, then seen and photographed feeding on a deer carcass in Westport 22–24 Aug 2004. If the bird followed the coastline, it flew over 75 km.

The list of people who contributed observations listed in the committee’s 36th report (Johnson et al., 2012) inadvertently omitted Diana L. Humple, Barbara E. Kus, Emilie Strauss, and Glen Tepke.

DATA SOLICITATION

Sightings for 2011 published in *N. Am. Birds* for which the CBRC has received no documentation are of up to 11 Trumpeter Swans near Durham, BUT, Jan 2011 (documentation of only four was submitted) (*N. Am. Birds* 65:335); a Yellow-billed Loon at Table Bluff, HUM, 3 May (*N. Am. Birds* 65:512); an Iceland Gull in Half Moon Bay, SM, 14 Mar (*N. Am. Birds* 65:514); single first-cycle and second-cycle Lesser Black-backed Gulls on 9 Mar, and an adult 8–14 Mar, at Folsom Lake, PLA, and one along the American River Parkway, SAC, 12 Mar (*N. Am. Birds* 65:514); and a Long-billed Murrelet off Duncan’s Landing, SON, 4 Dec (*N. Am. Birds* 66:341). We welcome submission of documentation for these reports.

ACKNOWLEDGMENTS

The committee thanks the following persons for advice on records summarized in this report: Mariko Parslow-Otsu, Masayuki Kurechi, Nial Moores, Martin Garner, Dan Brown, Thede Tobish, Tristan Reid, and Richard Millington for comments (and Leo Ohtsuki for a translation of Kurechi’s comments) on the bean-goose, Tiago
Rodrigues for comments on the Common Snipe, Ken Able for his thorough analysis of the Common Eider, Peter Pyle and Jim Tietz for analysis of Brown Booby records on Southeast Farallon I., Peter Pyle, Dave Compton, and Oscar Johnson for their analysis of Black Vulture records, Jason Rogers and Paul Lehman for their comments on the genus *Plectrophenax*, and Matt Heindel for his comments on Blue-headed Vireo identification. Peter Pyle compiled comments and photographs of specimens for identification of the Blue-headed Vireo and Winter Wren. Collections staff at the California Academy of Sciences (CAS), Western Foundation of Vertebrate Zoology (WFVZ), and Museum of Vertebrate Zoology (MVZ) helped the committee in various ways and we thank them for their aid. We extend special thanks to James R. Tietz for updating the table of records published in *Rare Birds of California* and to Joseph Morlan for maintaining the corrigenda to *Rare Birds of California* and for developing and updating the data query, all of which are available on the CBRC’s website, www.http://californiabirds.org/. The following past and present CBRC members provided valuable comments on drafts of the manuscript: Jon L. Dunn, Kimball L. Garrett, Oscar Johnson, Paul E. Lehman, Guy McCaskie, Peter Pyle, Daniel S. Singer, and James R. Tietz. This report benefited considerably from reviews and comments by Alan Contreras, Daniel D. Gibson, Kurt Radamaker, and Philip Unitt.

Finally, the CBRC would not exist without the cooperation of birders and ornithologists throughout California. We especially thank the following 265 people who contributed observations for records included in this report: Kenneth P. Able, Peter Adriaens, Douglas W. Aguillard, Bruce Aird, Richard Aracil, Noah Arthur, Patricia Bacchetti (PBa), Richard Barth, Alan D. Barron, David Batzler (DBz), David A. Bell, Thomas A. Benson (TABe), A. Bertke (ABe), Mark J. Billings, Thomas A. Blackman (TAbi), Len Blumin, Steven Brad (SBr), Abraham Borker (ABo), Matt Brady (MBr), Dan Brown (DBr), Philip Brown, Kenneth M. Burton, Martin Byhower (MBy), Dick Cabe, Phil Capitolo, Scott Carey (SCy), Barbara L. Carlson, Jeff Cartier (JCa), Scott Cartier (SCr), Jamie M. Chavez, Daryl Coldren (DCol), Luke Cole, David M. Compton, Chris Conard (CCo), Travis Cooper, Hugh Cotter, Rebecca F. Coulter, Bill Crowe, Mike Curry, Brian E. Daniels, David Davis, Al DeMartini, Mark Dettling, Jochen Dierschke, Ryan DiGaudio, Dean DiTommaso (DDiT), Matthew Dodder, Jon L. Dunn, Todd Easterla (ToE), Mark Eaton (MEA), Tom M. Edell, Elias A. Elias, Megan Elrod (MEI), Dane Fagundes (DFa), Linda Farley, Jon S. Feenstra, Robbie Fischer (RFi), Jon Fisher, Mike Fisher (MFI), Rick Fournier, Rob Fowler (RFo), Mary Freeman (MFr), Nick Freeman, Gary Fregien, Wes T. Fritz, Dave Furseth (DFu), Peter A. Gaede (PAGa), John Garrett (JoG), Kimball L. Garrett, Steve Gerow, Greg Gillson, Brian Gilmore, Peter A. Ginsburg (PAGi), Cory Gregory, Charity Hagen (CHA), Frank Hall, Steve C. Hampton, Keith Hansen (KHa), Alvaro Jaramillo, Michael Harrison, Lauren Harter (LHa), Raymond Hasey, Karen A. Havlena, Jack Hayden (JHy), Floyd E. Hayes, Gjon Hazard (GjH), Jo Heindel (JoH), Tom Heindel, Kelli Heindel-Levinson (KHL), Doug Henderson (DHe), Jason Henderson (JHe), Ron Hirst (RHir), Alan S. Hopkins, Debbie House (DHo), Chris Howard (CHO), Rosie Howard (RoH), Andrew Howe, Lisa Hug, W. Terry Hunefeld, Eugene S. Hunn, Richard Hubacek (RHu), Jeff Jacobsen, Oscar Johnson, Tom Johnson, David Juliano, Alan Justice, Al Kalin (AKa), Eric G. Kallen, Doug Karalun (DKa), Joel Karvonen, Robert J. Keiffer, Jay Keller, Barbara J. Kelly, Clay Kempf, David Kennedy (DKe), Howard B. King, Julie King (JKi), Pat Kirkpatrick, Andy Kleinhesselink, Peter Knapp (PKn), Paul Konrad (PKo), Alexander E. Koonce, Barbara Krause (BK), Bhaskar Krishnamachari, Kenneth Z. Kurland, Tony Kurz, Dave Kutilek (DKu), Sarah Lane, Jerry M. Langham (JML), James Laughlin, Andrew B. Lazere, Rick LeBaudour (RLB), Greg Lavaty, Paul E. Lehman, Nick A. Lethaby, John F. Lockhart, Dan Lockshaw, Michael J. Mammoser (MJMam), Emily Mastrelli, Curtis A. Marantz, Marcie Mason, Dan Maxwell (DMx), M. J. Mazurek (MJMaz), Sean E. McAllister, Guy McCaskie (GMcC), Chet McGaugh (CMcG), Todd McGrath (TMG), Dorothy McHaney (DMCh), Jim McHaney, David McIntyre (DMcI),
THE 37TH ANNUAL REPORT OF THE CBRC: 2011 RECORDS

Jimmy M. McMorran (JMMc), Robert B. McNab (RBMcN), Anthony Mercieca (AnM), Ryan Merrill (RMe), Alex Merritt (AlM), Martin Meyers (MMe), Bartshe Miller (BaM), Bob Miller (BoM), Viviki Miller (VMi), G. Scott Mills, Joe Morlan (JMr), Dominik Mosur (DMo), Vic Murayama, Chris Murray (CMu), Roger Muskat (RMu), Jean Myers (JMy), Stephen J. Myers, Wendy Naruo, David W. Nelson, Kristie N. Nelson, Pornpat Nikamanon, Janice Nordenberg, Richard J. Norton, Gary Nunn, Nancy Overholtz, Matthew Page, Daniel D. Palmer, Michael Park, Debby Parker (DPa), Jim Parker (JParr), Jim Pavlicki (JPaw), Jim Pea (JPe), David Pereksta, Roger Perkins, Vincent Phan, James E. Pike, Linda Pittman, Bob Power, David E. Quady, Roger Radd (RoR), J. Leighton Reid, Robert W. Reiling, Sandy Remley, Richard Rideout, Steven M. Ritt, Deren Ross, Kerry Ross, Stephen C. Rottenborn, Richard Rowlett (RiR), Jonathan Rowley (JRw), Matt Sadowski (MSa), Mike San Miguel (MSanM), Larry Sansone, Paul Saraceni, Jesse Sargent (JSa), Adam Searcy (ASe), Ken Schneider, Brad K. Schram, Debra L. Shearwater, Alison Sheehey (ASH), Ginny Short, Brad Singer (BrS), Daniel S. Singer, James P. Smith, Jerry Smith (JSm), Susan E. Smith, Pete Sole, Craig Solgaard (CrS), Steve Sosensky (SSo), Lea Squires, B. J. Stacey, Mark E. Stacy, Justyn T. Stahl, Mike Stake (MSt), Trent R. Stanley, Bob Steele (BSI), Susan L. Steele, John C. Sterling, Mark Stratton (MSn), Noah Strycker, Steven Summers (SSum), Sherman Suter (SSut), Linda Swanson, Dan Tankersley, Glen Tepke, Christopher Taylor, Scott B. Terrill, Richard Thomas, James R. Tietz (JRT), Jerry Ting (JTin), Daniel Tinoco (DTi), Dorothy Tobkin (DTO), Richard Trissel (RTr), Leslie E. Tucci, David Vander Pluym (DVP), David E. Quady, Martijn Verdoes (MVe), Matt Victoria (MV), Brad Waggoner, Len S. Warren, Lynn Watson, Bruce E. Webb, Elsa Weber, Douglas E. Weidemann, John West (JWe), Stan Walens, Jerry White (JWh), Phillip White, David Wimpfheimer, Gary Woods, Tim Worfolk, Connie Wulkowicy, Stan Wulkowicy, David G. Yee, and Bob Yutzy.

LITERATURE CITED

Chesser, R. T., Banks, R. C., Barker, F. K., Cicero, C., Dunn, J. L., Kratter, A. W.,

Accepted 4 September 2013
NOTES

RARE AND UNUSUAL BIRDS OBSERVED ON TERN ISLAND, FRENCH FRIGATE SHOALS, NORTHWESTERN HAWAIIAN ISLANDS

PHILLIP J. HOWARD and SARAH C. HARVEY, Garcia and Associates, 2601 Mission Street, Suite 600, San Francisco 94110; philliphoward85@gmail.com
STEVEN M. RITT, 505 Upper Paw Paw Road, Marshall, North Carolina 28753

The Northwestern Hawaiian Islands are a series of 10 small islands and atolls that extend northwest for 2000 km from the main Hawaiian Islands (Pyle and Pyle 2009). The islands are part of the Hawaiian Islands National Wildlife Refuge, Papahānaumokuākea Marine National Monument, and provide a sanctuary for millions of nesting seabirds and thousands of wintering shorebirds (Pyle and Pyle 2009). Tern Island is located at the northwestern tip of the French Frigate Shoals and is the largest (~12 hectares) and only human-made island in the shoals. The Northwestern Hawaiian Islands’ location in the Pacific Ocean offers exceptional opportunity for assessment of patterns of avian migration and vagrancy. The islands lie within the trans-Pacific migration route of several shorebirds from Alaska that migrate long distances (Gill et al. 2005) and is within the influence of several seasonal macro-meteorological processes (e.g., Aleutian Low, Hawaiian High, and associated synoptic disturbances) that affect bird movement and migration along the North Pacific coasts (e.g., Christoforou and Hameed 1997).

From June through December 2010, Howard and Harvey were stationed on Tern Island, monitoring seabirds as part of the U.S. Fish and Wildlife Service’s Northwestern Hawaiian Islands Nesting Seabird Monitoring Study. While on the island, we noted several rare and unusual species, including the first Fork-tailed Swift (Apus pacificus) recorded in the French Frigate Shoals and first Japanese White-eye (Zosterops japonicus) recorded in the Northwestern Hawaiian Islands.

We first observed a Short-eared Owl (Asio flammeus) roosting on the island on 14 June and saw it sporadically until 16 July (Figure 1). Short-eared Owls, including some collected and confirmed by size as the migratory subspecies A. f. flammeus (Pyle and Pyle 2009), have been reported regularly from the Northwestern Hawaiian Islands. Having obtained only photo documentation of the bird, we cannot exclude its having been A. f. sandwichensis, a slightly smaller and darker subspecies resident in the main Hawaiian Islands but thought by Pyle and Pyle (2009) to be absent from the Northwestern Hawaiian Islands. Our observation is unusual in that it is only the second in summer of nine previous records of this species from French Frigate Shoals, though there are scattered June records of this owl from Midway (Pyle and Pyle 2009).

We observed two Least Terns (Sternula antillarum) sporadically from 31 July through 12 August, when we found one dead. Unfortunately, we lacked facilities to preserve this specimen and the carcass had to be discarded. The remaining bird was last seen on 31 August. No breeding or nesting was observed. The Least Tern is an occasional nonbreeding visitor and rare breeding visitor to both the Northwestern and main Hawaiian Islands (Pyle and Pyle 2009). The similar Little Tern (S. albifrons) has also been documented on the Northwestern Hawaiian Islands, where it is also an occasional nonbreeding visitor and rare breeder (Pyle and Pyle 2009). The birds we observed showed no contrast between the gray back and uppertail coverts, as expected for the Least Tern (Figure 2), whereas the Little Tern shows a distinct contrast between the gray back and white uppertail coverts (Melgar 2001). Although currently undocumented on the Hawaiian Islands, Saunders’s Tern (Sternula sandersi) differs from the similar Least Tern by its square white forehead patch and olive or reddish-
brown legs with any yellow being restricted to the feet (Melgar 2001). The birds we observed had completely yellow legs and the white forehead patch extended back into the black forehead, as in the Least Tern (Figure 2).

Howard and Harvey observed a single adult White-tailed Tropicbird (*Phaethon lepturus*) flying over the island on 12 August. The bird did not stop to forage or roost, and we took no photos. The combination of black outer primaries contrasting with white primary coverts, a relatively small bill, and fast snappy wingbeats distinguished this from other species of tropicbird (Harrison 1983).

The White-tailed Tropicbird breeds in the main Hawaiian Islands but has only recently established itself as a breeding species in the Northwestern Hawaiian Islands, as a result of human settlement on Midway. Nonbreeding individuals disperse widely through the Pacific (Pyle and Pyle 2009). Amerson (1971) hypothesized that this species could nest on La Perouse Pinnacle in the French Frigate Shoals, but we saw none there during three one-day trips to the pinnacle that coincided with the species’ breeding season.
We saw a swift on 30 October as it flew over the island at sunset. Later that evening we found what was likely the same individual perched on the outside mesh covering of a window and from photographs we were able to identify it as a Fork-tailed or Pacific Swift (*Apus pacificus*; Figure 3). The bird remained perched there overnight and was last seen on the morning of 31 October. This species is considered a very rare vagrant in the Hawaiian Islands, with no known observation on the main southeastern islands and only two records in the Northwestern Hawaiian Islands, both at Midway, in 1995 and 1999 (Pyle and Pyle 2009).

The Fork-tailed Swift breeds from central Siberia east to Kamchatka, southern China, and the Malay Peninsula and winters south to Australia (Higgins 1999, Brazil 2009, DSEWPaC 2013). Though its main migration route is along the coast of Asia, there are casual records of this species as far north as the Bering Sea and Gulf of Alaska, in the Yukon, Canada, and south to the Marshall and Mariana islands (Gibson and Byrd 2007, Pyle and Pyle 2009). Almost all of these records, like ours, are from autumn after most birds have arrived on their nonbreeding grounds in Australia (Higgins 1999, Brazil 2009, DSEWPaC 2013).

We first noted a Great Blue Heron (*Ardea herodias*) on 4 October, observing it foraging until finding it dead on 6 November (Figure 4). Unfortunately, we lacked facilities to preserve this specimen and the carcass had to be discarded. The Great Blue Heron is considered a vagrant throughout the Hawaiian Islands, with very few observations on the main Hawaiian Islands and only one confirmed record (September 1988) in the Northwestern Hawaiian Islands, this also on Tern Island (Pyle and Pyle 1999, Brazil 2009, DSEWPaC 2013).
The similar Gray Heron (*A. cinerea*) has been recorded in the westernmost Aleutian Islands and the Pribilof Islands in Alaska, and in the Northwestern Hawaiian Islands subsequent to our observation (Maynard 2010). The Gray Heron, however, lacks the rufous thighs and leading edge of the wings characteristic of the Great Blue Heron (Figure 4).

Howard and Harvey observed a single Japanese White-eye (*Zosterops japonicus*) for about a minute on 15 November as it foraged among bushes. It flew off, not to be seen again, and no photos were taken during the observation period. The Japanese White-eye was first introduced to O‘ahu in 1929 and has rapidly expanded its population and range since. It is now considered the most abundant landbird in the main Hawaiian Islands, but as of 2010 had not spread into the Northwestern Hawaiian Islands (Pyle and Pyle 2009). Our observation apparently establishes the first record for this species in the Northwestern Hawaiian Islands.

Although in its native range northern populations of the Japanese White-eye are migratory, the specimen records indicate, and most literature assumes, that only the nonmigratory, nominate subspecies, *Z. j. japonicus*, occurs on the Hawaiian Islands (Pyle and Pyle 2009). However, records from far at sea (185–490 km south-southwest of Kaua‘i) and on Johnston Atoll (1200 km from Kaua‘i) indicate a tendency for individuals of the Hawaiian populations to disperse (Pyle and Pyle 2009).

This study was funded by the U.S. Fish and Wildlife Service. The findings and

Figure 3. Fork-tailed Swift (*Apus pacificus*) on Tern Island, French Frigate Shoals, Northwestern Hawaiian Islands, 30 October 2010.

Photo by Phillip Howard
conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. We especially thank Paul Lehman and Robert Gill for guidance and review of the manuscript.

LITERATURE CITED

Figure 4. A carcass of a Great Blue Heron (Ardea herodias), presumably the same individual found alive and photographed on Tern Island, French Frigate Shoals, Northwestern Hawaiian Islands, 4 October 2010. The rufous thighs and leading edge of the wings (right panel) distinguish this from the similar Gray Heron (A. cinerea), which has also been recorded from the archipelago (see text).

Photo by Phillip Howard, 6 November 2010
NOTES

Accepted 3 July 2013

White-tailed Tropicbird

Sketch by George C. West
A WINTER RECORD OF A LITTLE BUNTING FROM INTERIOR OREGON

ALAN CONTRERAS, 1150 Darlene Lane, No. 171, Eugene, Oregon 97401; acontrer56@gmail.com
CRAIG TUMER, 3439 NE Sandy Boulevard, PMB 231, Portland, Oregon 97223; craig@greatskua.com

On 28 January 2013 we were birding in central Wallowa County, extreme northeastern Oregon. Late in the afternoon we entered the town of Joseph in order to check the town’s feeders a second time that day. There was 3–4 inches of snow on the ground and birds were concentrated. As we checked one feeder from the car, Contreras noticed a sparrow-like bird in a tree and was astonished to see a Little Bunting (Emberiza pusilla), a species he had seen only once before, at Gambell, Alaska. Tumer agreed with the identification and got out of the car and obtained several diagnostic photos, the best of which is Figure 1.

Kyle Bratcher relocated the bunting later that day in an area of dense, leafless shrubbery near an active feeder, but it quickly disappeared. Trent Bray subsequently found the bird near a block away and obtained additional photos (see Oregon Birds 39[1]:3, 2013), and eventually Kendrick Moholt joined the four of us for reasonable views of the bird in dense shrubbery, where we obtained a few additional photos. The bunting was reported by a few observers, and missed by many others, during the following two days, but it was not found again thereafter until 23 March, when relocated by Adrian and Christopher Hinkle. It was still skittish, but a few people saw it through 25 March 2013, when it was last reported.

This is the first record of the Little Bunting for Oregon and, to our knowledge, the first winter record and the first noncoastal record in North America. We made no major effort to age or sex the bird, as this is difficult to do in the field, and our photos show insufficient detail.

The Little Bunting was first documented in North America on 6 September 1970 when one was found on a U.S. Coast Guard icebreaker in the Chukchi Sea, approximately 150 miles off Icy Cape, Alaska (Watson et al. 1974). It now occurs casually but almost annually in fall in northwestern Alaska, with most reports at Gambell, St. Lawrence Island, between late August and early October (Howell et al. in press). A high count of 10 individuals was reported there in autumn 2007 (N. Am. Birds 62:134, 2008). This species remains exceptionally rare elsewhere in western Alaska, where known in the Pribilof and Aleutian islands. There is only one spring record, of a single bird at Gambell 2–4 June 2008 (Radamaker and Powell 2010).

The first North American record south of Alaska was of one photographed at Point Loma, San Diego County, California, 21–24 October 1991 (McCaskie 1993). Since then, single individuals have been found at Southeast Farallon Island, California, 27–28 September 2002 (Cole and McCaskie 2004) and 14 November 2012 (www.californiabirds.org), and at Rancho San Jose de Castro, Baja California Sur, Mexico, 8 October 2008 (Radamaker and Powell 2010). The date of 14 November represents the latest seasonal record for North America.

The Little Bunting breeds widely across northern Eurasia, from northeastern Fennoscandia (Byers et al. 1995, Svensson et al. 2009) east across northern Russia to Anadyrland in the Russian Far East (Flint et al. 1984, Gibson and Byrd 2007, Brazil 2009). Migration is primarily through the eastern half of Asia, but a few vagrants reach western Europe and Iceland annually (Lewington et al. 1991, Howell et al. in press). The Little Bunting is a rare migrant offshore in Japan (Shimba 2007, Brazil 2009) and a vagrant to Wrangel Island (Portenko 1973), which lies at the western edge of the Chukchi Sea, north of the species’ breeding range in the Russian Far East.

NOTES

Wintering is mainly from Nepal and northeast India across central Asia and southern Siberia to central coastal China and southern Taiwan (Byers et al. 1995, Brazil 2009); small numbers winter in Japan (Shimba 2007). Flint et al. (1984) reported the Little Bunting to prefer montane and nearby areas in winter. The Oregon record is therefore slightly farther north than the species normally winters, although perhaps in typical semi-montane habitat, as Joseph lies at an elevation of 4190 ft at the base of the 9900-ft Wallowa Mountains.

It is worth noting that the western breeding population of this species makes a long eastward movement in fall, moving from Fennoscandia and northwestern Russia to eastern Siberia before turning southeast (Byers et al. 1995), a pattern roughly analogous to that of the westernmost Gray-cheeked Thrushes (*Catharus minimus*), which breed on the Chukchi Peninsula (Portenko 1973) and migrate primarily east across northwestern North America before turning south or southeast east of the Rockies (American Ornithologists’ Union 1998). The populations of the Little Bunting breeding in eastern Russia apparently do not follow such a pattern in fall, although they are much closer to North America and the probable source of records at Gambell as early in fall as late August, an established pattern of occurrence (Lehman 2005). The immediate source of a particular vagrant is, of course, speculative.
NOTES

Thanks to M. Ralph Browning and Paul E. Lehman for helpful comments on a draft of this note.

LITERATURE CITED

Accepted 10 April 2013
BOOK REVIEWS

Moments of Discovery is a compilation of 20 autobiographic chapters by biologists who traveled in Middle America, mainly for ornithological field work, from the 1930s to the 1990s. The authors include big names in ornithology of this region: Miguel Álvarez del Toro (the only Mexican author), Robert F. Andrle, John M. Bates, Lula C. Coffey, Walter W. Dalquest, Robert W. Dickerman, Stephen W. Eaton, Ernest P. Edwards, John T. Emlen, Jr., Paul D. Haemig, Joyce Heck, Joe T. Marshall, Jr., Paul S. Martin, Don Owen-Lewis, A. Townsend Peterson, John H. Rappole, Charles G. Sibley, Walter A. Thurber, Dwain W. Warner, and Kevin Winker. This collection is intended to preserve a record of events that have gone mostly unrecorded in print. The majority of the travels described took place in Tamaulipas and Veracruz, with most others in central Mexico, Chiapas, and Central America; relatively few pages deal with field work in Baja California and Sonora. The black-and-white photographs included in some chapters are interesting. The map of Middle American states and countries inserted between the preface and chapter 1 should have been larger and should have indicated the location of places mentioned in each of the chapters; as it stands I do not think it is at all useful.

I enjoyed reading this book for several reasons: because of the historical importance of many of these events in Middle American ornithology, because sometimes they document ecosystems now long gone, because sometimes the biological observations brought back pleasant memories or nicely described idiosyncrasies of Mexican culture, and because the descriptive styles of some chapters are works of art in themselves and the anecdotes are humorous and fun to read. I have a greater respect for some of these authors and a greater knowledge of their contributions to the study of Middle American natural history after reading these autobiographies.

However, almost every chapter, the author’s own included, contains errors. In the preface Kevin Winker admits “Each chapter is given mostly as the author wrote it. My editorial hand has generally been light.” I think this decision was unfortunate because it compromises the accuracy of the information. (I can provide a list of these errors in case Dr. Winker is interested in publishing a second, revised edition.)

Álvarez del Toro’s beautifully written chapter recounting his first trip to El Triunfo is an English translation of an account he published in his 1990 autobiography ¡Así Era Chiapas!: 42 Años de Andanzas por Montañas, Selvas y Caminos en el Estado, published by the John D. and Catherine T. MacArthur Foundation. The translation is very good, except that both mentions of goldfinches at El Triunfo refer to the Brown-backed Solitaire (Myadestes occidentalis)—in Mexico jilguero refers to the Brown-backed Solitaire but in Spain to the European Goldfinch (Carduelis carduelis). There are a couple of typos, and the date of the trip is lacking.

Dickerman’s chapter has a surprising typo, with the name of a subspecies of the Red-winged Blackbird (Agelaius phoeniceus arthuralleni) that he named himself misspelled (p. 91)! In most of the other chapters, by far the majority of errors are misspellings of Spanish names or words, extremely disappointing for a book on Latin America. This is one more of many books with total disregard for getting Spanish words and names right. It is beyond me why the authors and editor would not have the courtesy or try harder to be culturally and editorially accurate.

Another source of error is scientific inaccuracy. There was an attempt to provide the current (in 2010) English and scientific names of species the first time they are mentioned in each chapter. This worthy goal was usually, but not always, achieved.
Examples of this problem plagued Eaton’s chapter: both the Boat-tailed Grackle (Quiscalus major) and Great-tailed Grackle (Q. mexicanus) are mentioned in Guatemala; there is a potentially confusing section mentioning both Passerini’s (Ramphocelus passerinii) and Scarlet-rumped Tanagers when, to be precise, the author was writing about Cherrie’s Tanager (R. costaricensis); “a large, spotted rodent” is named “an agouti (Dasyprocta),” when if it had a spotted coat it must have been a paca (Agouti); an “Elaenia” mentioned in the highland forest of “Sierra Colorado,” (actually Cerro Colorado, Hidalgo) is clearly an error (the Greenish Elaenia, Myiopagis viridicata, is possible there, though); and both the Cactus Wren (Campylorhynchus brunneicapillus) and Chestnut-capped Brush-Finch (Arremon brunneinucha) are mentioned near Hutizilac, Morelos, when it is actually related species that occur there.

Edwards’s chapter well describes the Tawny-collared Nightjar (Antrostomus [in 2010 Caprimulgus] salvini) but does so under the names “Buff-collared Nightjar (Caprimulgus ridgwayi).” An endnote to Martin’s chapter mentions collecting an Eastern Towhee in Tamaulipas, but this refers to specimen Denver Museum of Natural History 48875, a Spotted Towhee. Sibley’s chapter mentions collecting a pair of Aplomado Falcons (Falco femoralis) near Rancho Guirocoba, Sonora; this would be shocking if correct. I looked it up through www.ornisnet.org: the falcon that Sibley collected near Rancho Guirocoba is a Bat Falcon (F. rufigularis) (which makes more biogeographic sense). Sibley’s chapter also seems to treat maculatus and erythropthalmus as interchangeable names for the Spotted Towhee, which they are not (but nevertheless the summary of Sibley’s findings on Pipilo systematics in Mexico is absolutely fascinating).

In sum, this book provides fun and absorbing reading for those interested in the historical, cultural, and biological aspects of Middle American travels by earlier naturalists, though it would have benefitted greatly from a heavier editorial hand.

Héctor Gómez de Silva

The Travails of Two Woodpeckers examines the historical perspectives and the apparent ultimate extermination of two of the most iconic bird species in North America. The authors thoughtfully weave an intriguing story for each of the species’ demise, replete with historical accounts, natural-history accounts, along with conservation theory and endangered-species management. The book has been broken up into three main chapters, the first focusing on the Ivory-billed Woodpecker (Campephilus principalis), the second on the Imperial Woodpecker (C. imperialis), and the third addressing conservation issues, past and present.

In the account of the demise of the Ivory-billed Woodpecker, we are taken through the history of the species’ discovery and description, the description of its preferred habitat, and some of its population dynamics and life history. By the time the alarm bell for the Ivory-billed Woodpecker sounded, because of a significant population decline in the early the 20th century, only limited information existed on crucial life-history requirements. One of the most respected naturalists of the era was James Tanner, who believed that habitat loss was the most compelling reason for the Ivory-bill’s decline in the U.S. Tanner believed that the Ivory-bill was a specialist in foraging, requiring huge tracts of virgin bottomland forest to find sufficient food. The authors believe that this assertion by Tanner started the perceived misbelief that sustained logging...
of primary forest was the primary cause for the decline of the species. The authors of *The Travails of Two Woodpeckers* make a compelling alternative argument, that the true driver of the of the species’ ultimate demise was instead unrelenting depredation in the form of collecting for museums, subsistence hunting, curiosity hunting, and shooting through ignorance. They believe that the most crucial negative effect of timbering on the woodpecker may not have been to deplete its food supply but to facilitate an increase in shooting: lumber roads improved access to forests and led to substantially increased numbers of people in the forests. The Ivory-billed Woodpecker in Cuba (possibly a distinct species?) faced a similar threat, although that population managed to persist into the late 20th century.

The Imperial Woodpecker of the Sierra Madre Occidental of Mexico was the largest woodpecker in the world. It was recorded less than 40 miles south of the U.S. border in Chihuahua near the Mesa de Guacamayas, south and east of the Chiricahua Mountains, Arizona. The first specimens were collected by a contract hunter in the Sierra Bolaños in the state of Jalisco, and were shown to the ornithological world at the Zoological Society of London in 1832. They were the size of ravens, nearly two feet in length! Unlike the Ivory-bill, it was noted early on that the Imperial was hunted regularly by indigenous peoples as well as by the Mexicans at the time. Carl Lumholtz wrote (p. 71), “The giant woodpecker is seen in the more remote parts, but it is on the point of being exterminated, because the Tarahumares consider his one or two young such a delicacy that they do not hesitate to cut down even large trees to get at their nests. The Mexicans shoot them because their plumage is thought to be beneficial to health. It is held close to the ears and the head in order to impart its supposed magnetism and keep out the maleficent effects of the wind. In the pairing season these birds keep up a chattering noise, which to my ears was far from disagreeable, but very irritating to a Mexican whom I employed. He used to shoot the birds because they annoyed him.” Indeed, a local nickname of the bird was “un gran pedazo de carne” (a great piece of meat). Although habitat destruction in the form of intensive logging certainly degraded the Imperial Woodpecker’s preferred habitat, Snyder, Brown, and Clark present a convincing argument that human depredation was actually the driving force behind the species’ decline.

While visiting Tutuaca in southern Chihuahua on a WFO-organized field trip in 2003 (a site also visited by the authors in preparation for this book), I was able to listen to an elder Mexican in the remote ejido telling of his childhood and the Imperial Woodpecker. From my field notes on that trip, “Don Bernardino stated that at the age of 15 (he was born in 1947), it was not uncommon for him and his father to see between 1 and 3 Imperial Woodpeckers (*Campephilus imperialis*) in one day while on their way out to the main highway which links Hermosillo and Chihuahua City (Hwy. 16) while getting provisions for their house. That places the dates at around 1962 when Bernardino saw the birds. He mentioned that the early populations of the Thick-billed Parrots were larger, and that the individual flocks were much more extensive than they are now, with groups of 50–60 seen commonly during the day. He (Bernardino) has huge concerns that their numbers may continue to decrease in much the same way that the population of Imperial Woodpeckers did.... He now only sees small flocks of parrots daily, and he does not want this bird to disappear as the ‘Carpintero imperial’ did. It is sobering and humbling to speak with a man who has seen a species of bird go extinct in his backyard while ‘on his watch.’”

The last section of the book presents an overview of the demise of the two woodpeckers, with valuable insights on conservation biology and lessons learned during their research for the book. The most intriguing idea the authors present is the warning that sometimes explanations for declines of endangered species become widely accepted before alternative explanations are examined and the original hypothesis is fully tested. Snyder certainly has a great deal of experience with this tenet, and he and
his co-authors made it clear that the consequences of misidentification of causes of declines and lack of identification of limiting factors can mislead conservation efforts and waste initiative and money.

Overall I was impressed with this book, with both the historical accounts of the species and the analyses of their declines, as well as with the conservation biology presented throughout. I recommend this book for those interested in learning more about these two charismatic species, as well as those who have an interest in biological investigation and conservation biology. It’s a good read, and one which will give WFO members close to northern Mexico a reason to dream about what could have been.

Dave Krueper

Wing your way to...

SAN DIEGO, CALIFORNIA
9–12 OCTOBER 2014

The 39th annual conference of the Western Field Ornithologists will be held in San Diego, California, 9–12 October 2014, at the Marriott Courtyard hotel at Liberty Station, less than 1 mile from the San Diego airport and Fisherman’s Landing, from which our pelagic trips will depart.

We are still in the early stages of planning for this meeting, but expect a wide diversity of presentations, workshops, social events, and full-day and half-day field trips, both terrestrial and pelagic.

The conference will include a symposium on avifaunal change in western North America to be published subsequently as a volume of WFO’s monograph series Studies of Western Birds. We welcome and solicit contributions to this symposium and peer-reviewed publication. To inquire about participating, please contact Dave Shuford at dshuford@pointblue.org or Bob Gill at rgill@usgs.gov.

Please watch www.westernfieldornithologists.org/conference.php for details as they become available. But plan now to join us next year in San Diego!
FEATURED PHOTO

DARK-FACED COMMON MURREs OFF CENTRAL CALIFORNIA IN FALL AND WINTER

PETER PYLE, The Institute for Bird Populations, P. O. Box 1346, Point Reyes Station, California 94956; ppyle@birdpop.org

ABSTRACT: While most basic-plumaged Common Murres (Uria aalge) show white facial plumage and tips to the secondaries, some individuals off central California from September through November have dark faces and secondaries. To investigate the plumage state and age of such birds, I examined specimens and photographs of Common Murres taken off central California and conclude that outgoing and incoming alternate feathers as well as early-replaced and late-replaced dark basic and formative feathers all may contribute to this variation. Hypermelanism may account for a small proportion of cases. The early onset of prebasic molt—before hormone signaling switches from dark feathers typical of the alternate plumage to white feathers typical of the basic plumage—may be responsible for most of the darkest-faced birds in basic plumage. This type of asynchrony of molt and the signal for change in plumage appears to occur more often in second-cycle birds, which initiate the prebasic molt earlier than do older adults, and it may also explain plumages in chicks and juveniles molting during May and June. Common Murres in basic plumage from colonies in central California appear to acquire dark facial feathers more often than birds from more northerly colonies, which could relate to earlier breeding and molt in central California.

The definitive prealternate molt of Common Murres (Uria aalge) breeding in central California can commence as early as November, rather than extending from January through April as in most other alcids and waterbirds (Ainley et al. 2002, Pyle 2008, 2009). The definitive prebasic molt in these murres occurs just after breeding, from July through September, at which time they lose the fully dark-headed alternate plumage and typically gain white basic feathering in the face, including the sides of the nape, posterior portion of the auriculars, subauricular area, chin, and throat. Because of the early start of the prealternate molt, full basic plumage may therefore be worn for as little as one to two months from September to November, as is the case in the more southern populations of the Common Murre breeding in the Atlantic (Harris and Wanless 1990). Populations of the Common and Thick-billed (U. lomvia) murres that breed farther north undergo prealternate molt later and can retain full basic plumage into March (Ainley et al. 2002, Gaston and Jones 1998, Pyle 2008). The earlier timing of the prealternate molt in central California populations may reflect the earlier breeding cycle of these birds, as adults begin occupying colonies as early as late October (Ainley and Boekelheide 1990), much earlier than at northern colonies (Gaston and Jones 1998, Ainley et al. 2002).

Although most basic-plumaged Common Murres show white faces, individuals with partially or completely dark faces occur off central California from September through November. The upper image on this issue’s outside back cover shows a typical white-faced Common Murre in basic plumage; the lower shows a partially dark-faced individual. Both were photographed
on 7 October 2012 near Cordell Bank off Bodega Bay, California. A dark face has been used as a field mark to distinguish the Thick-billed from the Common Murre in basic plumage (Roberson 1980, Stallcup 1990, Gaston and Jones 1998), so the occurrence of dark-faced basic-plumaged Common Murres off central California needs to be further understood, and other field marks are needed to distinguish the two murre species (CBRC 2007).

Dark-faced adult Common Murres in fall could result from any or all of three molt/plumage scenarios: (1) a late or incomplete definitive prebasic molt, resulting in worn retained dark alternate feathers in the face; (2) an early definitive prealternate molt, resulting in fresh or incoming dark alternate feathers in the face; and/or (3) definitive basic feathers in the face that are dark or partially dark. Similarly, first-cycle murres might show dark or partially dark rather than white formative feathers in the face. To investigate these possibilities, I examined 221 specimens of post-juvenile Common Murres collected in California and housed at the California Academy of Sciences (CAS; 168 specimens) and Museum of Vertebrate Zoology (MVZ; 53 specimens). I also observed and photographed Common Murres during nine pelagic field trips off central California between Fort Bragg and Half Moon Bay from August through November in 2011 and 2012.

METHODS

I used the presence of emerging or pin feathers to indicate active molt in the faces of murre specimens. For each specimen in full basic or formative plumage (in which evidence of molt was lacking), and for murres observed in the field, I scored the face as (1) entirely or almost entirely white, (2) primarily white with sparse dark flecking, (3) primarily white with moderate dark flecking, or (4) primarily dark with some white feathering (Figure 1). The amount of white on the tips of juvenal and basic secondaries also varied; on specimens I scored this trait as (1) wide, (2) moderate, (3) thin, or (4) absent (Figure 2). I categorized specimens as first-cycle or adult on the basis of differences in color of the primary coverts, bill size and color, and bill width at the gape (Pyle 2008, 2009; Figure 1); in the field, I aged murres by bill size and color. Second-cycle murres could not be aged by plumage after completion of the second prebasic molt. However, I inferred that specimens with bill widths at the gape in the bottom quarter of the range for birds after their first cycle (19.6–20.7 mm of the full range 19.6–23.8 mm; Pyle 2009) were in their second cycle. This approach is consistent with results of bill-width data from other alcids that can be confirmed as second-cycle by plumage or other features. Sex was assumed from information on specimen labels.

RESULTS

Among adult specimens of the Common Murre from central California, 36 were collected while undergoing definitive prebasic molt. These birds had worn, dark alternate head feathers mixed with incoming white feathers. They ranged in date from 8 July (CAS 10020 with a few incoming white basic feathers) to 2 October (CAS 15796 with a few remaining alternate feathers). In addition, a one-year-old individual (MVZ 145340) collected from
Carmel Bay on 16 May was molting in white facial feathers with black tips (Figure 3A and B), as was another one-year-old, also collected 16 May, from Admiralty Island, Alaska (MVZ 69). Concurrent replacement of back, rump, and underpart feathers, as well those of the head, indicated that they were undergoing the second prebasic rather than the first prealternate body molt.

Thirty specimens of adults had been collected while undergoing definitive prealternate molt of the head, with the incoming feathers dark. The range of dates for these was 8 November (CAS 16077 with a few incoming alternate feathers) to 17 January (MVZ 75130 with a few basic feathers remaining and being replaced). The range of dates for 64 adults collected in fully dark (alternate) head plumage was 9 December (CAS 16070) to 27 August (CAS 15478 and 15482). I also observed a Common Murre with fully dark alternate head plumage off Half Moon Bay on the earlier date of 22 Nov 2011, the only such individual of more than 100 murres I scrutinized on this date. Two murres collected in June and July (CAS 68 and 75127) showed fully dark heads except for white tipping to some of the alternate face feathers (Figure 3C and D).

Sixty-one specimens of basic-plumaged adults, without outgoing or
incoming alternate feathers, had been collected in California between 16 September (CAS 15786) and 15 March (CAS 10024, after second cycle). Other than the latter specimen and those collected 12 February (CAS 43160, after second cycle; Figure 1) and 24 February (MVZ 17756, second cycle), all basic-plumaged murres were collected between mid-September and early January. Twenty-nine first-cycle birds in formative plumage (lacking juvenal or, apparently, first alternate body feathers) were collected between 18 August (CAS 48176) and 9 April (MVZ 145352).

Birds in complete basic and formative plumage showed varying amounts of dark in the face (Figures 1 and 4; images on inside and outside back cover). In all cases, the dark coloration resulted from white-based basic feathers with dark tips of varying width (Figure 1). By contrast, alternate feathers were entirely dark. Murres with facial-plumage scores of 2 or 3 typically showed white on the sides of the nape and in the auricular and malar regions but dark-tipped throat feathers. By contrast, those with a plumage score of 4 typically displayed dark on the sides of the nape and in the auricular and malar regions but whiter throats (Figures 1 and 4).

The mean facial score was greater in basic-plumaged (2.26, \(n = 61 \)) than in formative-plumaged (1.76, \(n = 29 \)) Common Murre specimens (Figure 5; ANOVA, \(P = 0.006 \)). Facial-plumage scores of specimens were similar to
those for both basic-plumaged \((n = 209)\) and formative-plumaged \((n = 100)\) murres scored on four pelagic trips off Half Moon Bay and Bodega Bay between 30 September and 6 November, when few or no alternate feathers should be expected on the basis of specimen data (Figure 5; \(P = 0.30\) and \(0.78\), respectively). By contrast, both basic-plumaged \((n = 55)\) and formative-plumaged \((n = 31)\) murres scored off Fort Bragg in northern California on 6 November 2011 showed significantly less dark in the face than did specimens and live birds scored off central California (Figure 5; \(P < 0.007\) for each of four comparisons); none of the murres off Fort Bragg had facial scores of 3 or 4. Among specimens in basic plumage, faces of females averaged slightly darker than those of males (mean score: female \(2.35, n = 26\); male \(2.15, n = 34\)), but this difference was not significant \((P = 0.432)\).

The amount of white on the tips of the secondaries averaged less in basic-plumaged (mean score \(1.66, n = 61\)) than in formative-plumaged (mean score \(1.41, n = 29\)) specimens, but this difference was not significant (ANOVA; \(P = 0.084\)). As with facial score, the sexes had a similar amount of white in the secondaries \((P = 0.278)\). Among basic-plumaged birds, the mean score for white in the secondaries was 1.07 for facial score 1 \((n = 15)\),
1.27 for facial score 2 ($n = 23$), 1.50 for facial score 3 ($n = 14$), and 2.78 for facial score 4 ($n = 9$), indicating that murres with darker faces also showed less white in the secondaries (linear regression, $P < 0.001$). The mean secondary score for birds with facial score 4 was also significantly greater than those of each of the other three groups (ANOVA, $P < 0.001$), while secondary scores of the other three groups did not differ from each other ($P > 0.098$). Most basic-plumaged murres with facial scores of 1 through 3 showed wide or moderate white secondary tips (only one specimen in each class showed thin tips), whereas of 8 murres with facial score 4, none showed wide white tips, four showed moderate tips, two showed thin tips, and two showed no white tips (CAS 15978 and 16078; Figure 4; see also lower photo on outside and upper photo on inside of this issue’s back cover). Similarly, formative-plumaged murres with facial scores 1 through 3 all had wide or moderate white tips to the secondaries, whereas the one specimen with a facial score of 4 (CAS 15788) showed no white in the secondaries (Figure 4). Specimens of murres with a facial score of 4 also appeared to average darker in the flanks and underwing coverts than did those of scores 1 to 3 (Figures 1 and 4; images on inside and outside back cover), but I did not quantify these characters.

Eight basic-plumaged specimens and one formative-plumaged specimen...
received a facial score of 4 (Figure 4), representing 13% of basic-plumage specimens and 3% of formative-plumaged specimens. On the four field trips off central California between 30 September and 6 November, 19 of the 209 (9%) basic-plumaged birds but none of the 100 formative-plumaged birds scored had dark faces. By bill width, five of the eight (63%) dark-faced specimens in basic plumage were in their second cycle (cf. Figure 4), whereas only 19 of 58 (33%) birds with facial scores 1 to 3 were in their second cycle; overall, faces were significantly darker in second-cycle birds (mean 2.63) than in older birds (mean 2.03; ANOVA, $P = 0.019$). A dark-faced bird in basic plumage photographed in Monterey Bay 15 September 2012 (inside back cover, top image) appears to have a medium-small bill, also sug-
gesting a second-cycle bird. On the other hand, another dark-faced adult, photographed 2 October 2012 off Half Moon Bay (inside back cover, bottom photograph) had a large bill and was attended by a young bird in formative plumage, suggesting it was a male at least four years of age, on the basis of minimum age at first breeding (Gaston and Jones 1998, Ainley et al. 2002); breeding males rather than females attend their young after fledging. Finally, of 33 specimens of juvenile murres at CAS and MVZ, three (9%) showed dark faces, while all five murres collected as chicks showed dark natal down in the face (Figure 6), corresponding to descriptions of the natal down of Common Murre (Gaston and Jones 1998, Ainley et al. 2002).

DISCUSSION

On the basis of this study, dark-faced and partially dark-faced Common Murres collected and observed off central California (Bodega to Monterey bays) during the fall may be completing their prebasic molt (September), initiating their prealternate molt (November), or in full basic or formative plumage (September through November). Of murres in full basic or formative plumage, most have white or mostly white faces. A small proportion, however, perhaps 10–15% of those in basic plumage and <5% of those in formative plumage, have mostly dark faces. Many of these also have little or

![Figure 6. Variation in the head plumage of chicks and juveniles of the Common Murre. The nestling (top, CAS 88095) was collected on Southeast Farallon Island 7 June 1964; the juveniles (middle, CAS 15545; bottom, 15546) were collected on Monterey Bay 19 August 1909. CAS 88095 shows the pattern typical of natal down; CAS 15545 was one of only three of the sample of 33 juveniles showing dark auriculars.](image)
no white on the trailing edge of the secondaries and appear to have darker underparts. Field observers should beware that such dark-faced birds can be confused with Thick-billed Murres. The distribution of dark and white in the face and secondaries suggests that the mechanisms resulting in the darkest-faced birds (facial score 4) may be different than those that result in the whiter-faced categories (facial scores 1 to 3).

Dark formative or basic feathering in the faces of Common Murres could result from asynchrony of the cycles of molt and deposition of melanin in the growing feathers. When a molt is early or late relative to the hormone cycle that signals pigment deposition, the resulting feathers may resemble those associated with earlier or later plumages (Pyle 1997, 2008, Howell 2010). Common Murres undergoing prebasic molt early, for example, might begin replacing feathers before hormone signaling switches the color from dark to white. Such birds might be expected to show more dark in the nape and auriculars and more white in the chin and throat, since within a molt dorsal head feathers are often replaced prior to ventral feathers (Pyle 2008).

The darkest-faced murres (facial score 4) showed such a pattern, having completely or largely dark napes and auricular regions and whiter chins and throats (Figure 4; photos on inside and lower outside of back cover), suggesting that they initiated their prebasic molt early, before hormone signaling had switched from dark to white. A similar mechanism may result in reduced or no white tips to the secondaries and darker underparts and underwing coverts in these birds. Being unconstrained by breeding, one-year-old alcids typically undergo the second prebasic molt earlier than older birds undergo subsequent prebasic molts (Pyle 2009), and this difference might account for the high proportion of darker-faced second-cycle birds I observed. For

Figure 7. Completely dark Common Murre with two in typical alternate plumage, photographed 24 July 2013, 14 km southeast of the Farallon Islands, flying south. That the dark bird was carrying a fish indicates it was breeding, perhaps on the Farallon Islands.

Photo by Dru Devlin NOAA/ONMS/ACCESS
example, the one-year-old murres collected 16 May (MVZ 145340 and MVZ 69) appeared to be undergoing early second prebasic molts that would have resulted in facial scores of 4 (Figure 3A and B). Older birds with darker faces (Figure 4) may represent 2- to 4-year-olds that had not bred yet or breeders that failed early the previous year, which could result in earlier prebasic molt. Possibly, this pattern of pigmentation extends to nestlings and chicks, resulting in darker-faced downy chicks and juveniles that hatched early (Figure 6). Some breeding birds also appear to show dark faces (lower inside back cover); another possible explanation for dark faces in these and other birds might be a later-than-normal signal for deposition of melanin imposed upon typical timing of prebasic molt. Although Ainley et al. (2002) reported females to molt earlier than males, I found only a slight and nonsignificant trend for females to show faces darker than those of males.

Murres undergoing a late prebasic molt, on the other hand, might start acquiring partially dark faces as hormonal signaling switches back to producing feathers typical of alternate plumage. Because molt of ventral tracts is later (see above), these birds might show white napes and auricular regions but partially dark chins and throats. Most murres of intermediate categories (facial scores 2 or 3) showed this pattern (Figure 1), indicating they may have undergone a late prebasic or preformative molt the previous fall, and/or that hormone signaling for dark feathers may have been early. Likewise, an early prealternate molt, before hormone signaling had fully switched to dark, might produce white in the faces, as shown by the two specimens with white-tipped alternate feathers (Figure 3C and D).

That early-replaced basic feathers appeared to be white with dark tips, and early-replaced alternate feathers dark with white tips, suggests that hormone signaling can switch quickly, as feathers are growing, as also suggested by such patterns in some ducks and ptarmigan (Pyle 2005, 2007), although some murres with facial scores 2 and 3 also appeared to have dark-tipped white throat feathers (Figure 1), opposite of what might be expected from a late prebasic or preformative molt. If asynchrony of the hormones stimulating molt and melanin deposition does explain variation in the patterns of the Common Murre’s face, these results suggest that the signaling cycle produces dark-tipped white facial feathers in May and June, white facial feathers from July through September, white-tipped dark or dark-tipped white feathers in October, and dark feathers from November through April, although individual and age-related variation in the timing of this signaling is likely. If these interactions extend to the natal period, it could explain the dark faces developed by downy chicks in May and June and the dark faces of some early-hatched juveniles that may undergo the prejuvenal molt in early June. The precise timing and mechanisms of birds’ pigment-deposition cycles are largely unknown and in need of further study.

Alternatively, the darkest-faced murres in formative and basic plumage could represent a polymorphism rather than asynchrony of pigmentation and molt cycles (cf. Sibley 2000:243). I examined or observed few murres intermediate between the whiter-faced categories (facial scores 1 through 3) and darkest-faced category (facial score 4). In both basic and formative plumage only the darkest-faced birds lacked white on the tips of the secondaries, and these birds also appeared to show more dark in the underparts and
underwing coverts. The single dark-faced specimen in formative plumage (Figure 4) is difficult to explain by the hypothesis of asynchronous hormone signaling and molt cycles. A completely dark individual was collected near the Farallon Islands on 30 May 1911 (CAS 18072; Figure 3E and F), and another was photographed 24 July 2013 near the Farallon Islands (Figure 7). Presumably these two birds represent hypermelanism.

However, the incidence of dark faces in central California in fall, 9–15% of basic-plumaged murres, is greater than typically attributable to a plumage abnormality such as complete or partial hypermelanism, and murres breeding farther north appear to show less dark in the face in general (see below). These observations suggest that asynchrony of the hormone signaling and molt cycles rather than polymorphism likely accounts for most or all dark-faced Common Murres in basic plumage off central California. Completely dark plumage, as seen in Figures 3E and F and Figure 7, also could result from extreme asynchrony of hormone cycles producing completely dark underparts during the previous prebasic molt, coupled with dark head feathering from the prealternate molt. In this regard, it is interesting that the darkest-faced birds also had darker basic feathers elsewhere, suggesting that signaling for dark feathers in birds undergoing early prebasic molt affects not just the head feathers replaced during the prealternate molt.

In summary, outgoing and incoming alternate feathers, and early-replaced and late-replaced basic feathers, all may contribute to the occurrence of dark-faced Common Murres off central California from September through November, as may hypermelanism in a small proportion of individuals. The lack of dark-faced murres observed off Fort Bragg on one pelagic field trip (6 November 2011) suggests the murres in that area may have come from other breeding populations, such as those in Mendocino, Humboldt, and Del Norte counties, northern California (Carter et al. 1992, Manuwal et al. 2001). At the largest of these colonies, on Castle Rock, Del Norte County, breeding appears to occur three weeks to a month later than at Southeast Farallon Island (R. Golightly and C. Strong pers. comm., Manuwal et al. 2001). The later breeding could result in later second and definitive prebasic molts, bringing molt into closer synchrony with the hormone cycle signaling for a white face. Further study of the complex interaction between molts and feather coloration of the Common and Thick-billed murres throughout their breeding ranges is needed for an understanding of geographic variation in facial plumages, and whether the cycles’ interactions are influenced more by genetic or environmental factors.

ACKNOWLEDGMENTS

I thank Maureen Flannery (California Academy of Sciences) and Carla Cicero (Museum of Vertebrate Zoology) for assistance and access to specimens, Debi Shearwater for invitations to lead pelagic field trips for Shearwater Journeys, Rick Golightly and Craig Strong for information on the Castle Rock murre colony, and Alan Wight, Al Jaramillo, and Dru Devlin for use of their photographs. Jeff N. Davis, Ian Jones, Al Jaramillo, and Steve N. G. Howell reviewed the manuscript or provided feedback on murre plumages. I am forever indebted to Rollo Beck, who collected and prepared the great majority of specimens examined for this study. This is publication 463 of the Institute for Bird Populations.
LITERATURE CITED

The California Bird Records Committee of Western Field Ornithologists revised its 10-column Field List of California Birds in July 2009. The list covers 641 species, plus 6 species on the supplemental list. Please send orders to WFO, c/o Robbie Fischer, Treasurer, 1359 Solano Drive, Pacifica, CA 94044. Price for 9 or fewer, $2.75 each, for 10 or more, $2.50 each, which includes tax and shipping. Order online at http://checklist.westernfieldornithologists.org.
Common Murre (*Uria aalge*), Monterey Bay, California, 15 September 2012. This individual shows a particularly dark head and lacks white on the trailing edge of the secondaries. The medium-small bill suggests the bird may be in its second cycle.

Photo by Alvaro Jaramillo

Common Murres (*Uria aalge*), off Half Moon Bay, California, 2 October 2011. The juvenile appeared to be following this dark-headed adult, suggesting that the latter was a male at least four years of age.

Photo by Peter Pyle