Western Specialty: Black-chinned Hummingbird

Female Black-chinned Hummingbird (*Archilochus alexandri*) on its nest, Southwest Research Station, Chiricahua Mountains, Cochise County, Arizona. Note the situation of the nest on a down-sloping twig with a thicker branch above it. In this issue of *Western Birds*, Harold F. Greeney, Chris E. Hamilton, Evelyng K. Astudillo-Sánchez, Susan M. Wethingon, Eric R. Hough, Christina Ripplinger, and Krista K. Schmidt (pp. 326–330) summarize the placement of 412 Black-chinned Hummingbird nests in the Chiricahua Mountains of Arizona, finding that 65% were built in such situations. They suggest that this arrangement helps not only shelter the nest but to screen it from predators that may be crawling along the thicker branch above.
Volume 46, Number 4, 2015

Comparison of Vocalizations of Four U.S. Subspecies of the White-breasted Nuthatch
Edward R. Pandolfino and Nathan D. Pieplow278

Indications That the Common Redpoll is Double Brooded in Alaska
Brandi Ringgenberg and Kevin Winker291

Ryan J. Merrill and Matt Bartels299

NOTES

Nest-Site Selection of the Black-chinned Hummingbird in Southeast Arizona

Colorado’s First Accepted Record of the Cave Swallow
Steven G. Mlodinow and Tony Leukering ..331

Two Thrush Species Feed the Same Nestlings
Larry Siemens336

New Montezuma Quail Records from Chihuahua, Mexico
Israel Moreno-Contreras, Ana Gatica-Colima, and Diana Venegas ...339

Eccentric Preformative Molt in the Spotted Towhee
Stephen M. Fettig and Charles D. Hathcock343

Book Reviews
Jeffrey S. Marks and Justyn Stahl ..347

Thanks to Western Birds’ Reviewers and Associate Editors350

Featured Photo: Hybridization between the Dusky Grouse and Sharp-tailed Grouse
Ryan P. O’Donnell ..351

Index Daniel D. Gibson ..353

Front cover photo by © Larry Siemens of Redding, California: nestlings of Townsend’s Solitaire (Myadestes townsendi) at Leoni Meadows, El Dorado Co., California, 2 July 2015—nestlings fed by an American Robin (Turdus migratorius) as well as their own parents.

Western Birds solicits papers that are both useful to and understandable by amateur field ornithologists and also contribute significantly to scientific literature. Particularly desired are reports of studies done in or bearing on North America west of the 100th meridian, including Alaska and Hawaii, northwestern Mexico, and the northeastern Pacific Ocean.

Send manuscripts to Daniel D. Gibson, P. O. Box 155, Ester, AK 99725; avesalaska@gmail.com. For matters of style consult the Suggestions to Contributors to Western Birds (at www.westernfieldornithologists.org/docs/journal_guidelines.doc).
COMPARISON OF VOCALIZATIONS OF FOUR U.S. SUBSPECIES OF THE WHITE-BREASTED NUTHATCH

EDWARD R. PANDOLFINO, 1328 49th Street, Sacramento, California 95819, erpfromca@aol.com
NATHAN D. PIEPLOW, 2480 Kittredge Loop Dr. #0848, Boulder, Colorado 80310, npieplow@gmail.com

ABSTRACT: There are distinct regional differences among the vocalizations of the White-breasted Nuthatch (Sitta carolinensis), but only one subspecies (S. c. carolinensis) has been the subject of published vocal analyses. We used recordings made throughout the ranges of four U.S. subspecies to compare their vocalizations qualitatively and quantitatively, finding that these vocalizations may be categorized in three groups, eastern (S. c. carolinensis), interior west (S. c. nelsoni and S. c. tenuissima), and Pacific (S. c. aculeata). All four subspecies sing a simple song consisting of an evenly spaced series of overslurred notes. The rate of this song varies from <5 notes/sec to >12 notes/sec. The pitch of these songs increases from east to west, being lowest in S. c. carolinensis and highest in S. c. aculeata. Sitta c. aculeata also has an additional song unique to that taxon consisting of a series of sharply slurred, evenly spaced notes that fall, then rise, and then fall in pitch. Both S. c. carolinensis and S. c. aculeata frequently give a simple call note that is very distinctly and rapidly modulated; it is significantly higher in pitch in S. c. aculeata than in S. c. carolinensis. Neither interior subspecies makes a similar call. Both interior subspecies commonly give two calls absent from the repertoires of S. c. carolinensis and S. c. aculeata, one consisting of tightly paired notes given at a constant pace, the other a very rapid, unevenly spaced series of single notes given in short bursts. We found no diagnostic differences between the two interior subspecies in either song or calls.

Although as many as six subspecies of the White-breasted Nuthatch (Sitta carolinensis) have been described within the United States, only four of them occupy substantial geographic ranges: roughly, S. c. carolinensis in the East and the Great Plains, S. c. nelsoni in the central and southern Rocky Mountains and eastern Great Basin, S. c. tenuissima in the high and eastern Sierra Nevada, eastern Cascades, and western Great Basin, and S. c. aculeata west of the Sierra Nevada and the Cascades (Hawbecker 1948, Spellman and Klicka 2007, Grubb and Pravosudov 2008). Phillips (1986)
recognized also S. c. cookei in northeastern North America (synonymized with S. c. carolinensis by Wood 1992) and S. c. oberholseri found in the Chisos Mountains of western Texas. Four or five additional subspecies occur in Mexico.

Except for the pale back of S. c. carolinensis, plumage and structural differences among the subspecies are subtle, with significant overlap in most variables (Pyle 1997, Mlodinow 2014), making consistent visual field identification difficult. Genetic analyses suggest that each of the four widespread subspecies represents a distinct clade, and that the White-breasted Nuthatch may comprise three or four biological species (Spellman and Klicka 2007, Walstrom et al. 2011).

It is well-known that the vocalizations of White-breasted Nuthatches differ regionally (Dunn and Blom 1987, J. L. Dunn in Gaines 1988, Sibley 2000, 2014, Mlodinow 2014), falling into three regional groups: an eastern group corresponding to S. c. carolinensis, an interior west group corresponding to S. c. nelsoni and S. c. tenuissima, and a Pacific group corresponding to S. c. aculeata. However, the only detailed published analysis of White-breasted Nuthatch vocalizations (Richison 1983) was restricted to one site in Minnesota and therefore included only the eastern subspecies (S. c. carolinensis). Most other publications that have addressed the vocalizations of this species have likewise been restricted to the eastern subspecies (Tyler 1916, Kilham 1972, 1981, Harrap and Quinn 1996, Elliot 2005). Thus the vocalizations of the other White-breasted Nuthatch subspecies have not been analyzed in detail.

Differences in vocalizations can both represent and reinforce barriers to gene flow, serving as a mechanism for assortative mating and thus promoting speciation (Newton 2003). Therefore, an analysis of the White-breasted Nuthatch’s vocalizations may help clarify its taxonomy. We analyzed recordings from throughout the ranges of these four subspecies and compared vocalizations both qualitatively and quantitatively to better understand the variation in their vocalizations, to determine which, if any, vocalizations can be used

![Figure 1](image_url)
to identify these taxa in the field, and to compare variation in vocalizations to previously described morphologic and genetic variation among these taxa.

METHODS

Figure 1 shows the locations of all recordings used in our analyses. These recordings included those available from the archives of the Cornell Laboratory of Ornithology’s Macaulay Library (macaulaylibrary.org/), recordings available at www.xeno-canto.org/, our own recordings, and recordings obtained from other recordists (all recordists noted in the Acknowledgments). We selected recordings from locations within the range of each subspecies consistent with published morphometric data, avoiding locations where the ranges of subspecies may be in contact.

We selected recordings of quality sufficient for quantitative analysis. For each recording, we measured four variables: note duration, note rate (number of notes per second), number of notes in a continuous series of notes, and difference in frequency between successive partials (pitch). The partials are the multiple tones that make up a single nasal sound; on the spectrogram, they appear as individual traces arranged in a vertical stack. We used frequency difference between partials rather than fundamental frequency as a proxy for pitch because the purported fundamental frequencies in White-breasted Nuthatch vocalizations are frequently faint or absent. In complex sounds consisting of a stack of partials in harmonic series, the frequency difference between partials is equal to the frequency of the fundamental, and the human ear hears the pitch of the fundamental even if one or more of the lowest partials, including the fundamental, are filtered out (Fastl and Zwicker 2007). Thus a listener hears these sounds at the frequency of the difference between the partials, not at the frequency of the strongest partial on the spectrogram.

It is possible that White-breasted Nuthatch vocalizations are not harmonic series (i.e., that the difference in frequency between partials is not equal to the frequency of the fundamental). At least in the similarly structured sounds of the Black-capped Chickadee (Poecile atricapillus), the stack of partials on the spectrogram can actually represent a set of heterodyne frequencies (frequencies produced by the combination of two different frequencies) generated by the acoustic coupling of the two sides of the syrinx, rather than a harmonic series with a true fundamental frequency (Nowicki and Capranica 1986). In sounds of this type, the pitch the human ear perceives does not always match the frequency difference between partials (Fastl and Zwicker 2007), but the discrepancy is likely to be small in most cases.

For all measurements we used the selection boxes in Raven Pro (www.birds.cornell.edu/brp/raven/RavenOverview.html) applied to spectrograms of the vocalizations. For the time variables (duration of notes and rate of delivery), we averaged measurements from at least four consecutive series of calls or songs for each individual. We defined frequency as the difference between the loudest partial (darkest on the spectrogram) and the partial just above it at the temporal midpoint of the note. For this variable, we averaged at least ten different measurements from at least five consecutive songs or calls for each individual.
To assess the significance of differences between measures of vocalizations in comparisons of more than two subspecies, we used Mann–Whitney U-tests and applied Bonferroni adjustments (Dytham 2003).

Terminology

A bewildering variety of names has been used to describe White-breasted Nuthatch vocalizations. For example, the single nasal call of S. c. carolinensis has been variously described as a quank (Tyler 1916, Richison 1983), kun or kaan (Kilham 1981), yank (Dunn et al. 1983, Elliot 2005, Sibley 2014), and yenk or renk (Sibley 2000). The corresponding single call of S. c. aculeata has been described as wheer (Dunn and Alderfer 2011) or as eeern or beeerf (Sibley 2000) Also, the common contact calls often given by foraging pairs (a vocalization not analyzed here) have been termed hits (Tyler 1916, Richison 1983), tucks (Richison 1983), and inks (Elliot 2005, Sibley 2014). For the purposes of this analysis, we use the terms below for each of the vocalizations studied:

Overslur. We use this term to describe a sound that rises and then falls in pitch (Pieplow 2007).

Quanks. We use this general term for the notes in each of the calls analyzed as it suggests the very nasal quality of all these notes.

Modulated quanks. These comprise the single overslurred notes given by S. c. carolinensis and aculeata, both of which show a distinct pattern of frequency modulation within the note.

Disyllabic quanks. These comprise the tightly paired notes given by S. c. nelsoni and tenuissima, yidi yidi yidi in Sibley (2000, 2014), yida in Dunn and Alderfer (2011). These paired notes may be given singly or in a continuous, evenly paced series.

Rapid quanks. We use this term for the very rapid bursts of notes given by S. c. nelsoni and tenuissima (yidididid in Sibley 2014).

Simple song. By this we mean the evenly paced series of overslurred notes, all on one pitch, given by all four taxa.

Tooey song. This refers to the evenly spaced series of notes given by S. c. aculeata, each note of which drops, then rises, then falls again in pitch (tuey tuey tuey in Sibley 2014).

RESULTS

Each of the four subspecies of White-breasted Nuthatch we analyzed gives a simple song consisting of an evenly spaced series of overslurred notes, all on the same pitch (Figure 2). S. c. aculeata also gives a tooey song consisting of an evenly spaced series of distinctly slurred notes, with each note first falling, then rising, and then falling again in pitch (Figure 3). It sings this tooey song much more often than it does the simple version. On the basis of over 100 observations in California and Oregon, we heard the tooey song approximately ten times as often as the simple song (simple song heard in 10 of 109 song observations).

The rate at which the notes of the simple song are delivered varies from less than 5/sec to over 12/sec, and in none of the subspecies we compared did we find a distinct division between slow and fast versions (Figure 4). There
were no significant differences in song rate (number of notes per second) or in the number of notes in a song among these taxa (Table 1). We noted that, within a given bout of singing, the rate remained remarkably constant from song to song. On average, the variation in rate of note delivery between
the fastest and slowest rate within a set of successive simple songs from an individual was less than 0.2 notes/sec (0.16, 0.19, 0.17, and 0.15 notes/sec for S. c. carolinensis, nelsoni, tenuissima, and aculeata, respectively).

The pitch of the simple song increased from east to west with the songs of S. c. carolinensis being the lowest and those of S. c. aculeata the highest (Figure 5; Table 1). The songs of S. c. carolinensis differed significantly in pitch from those of the other three taxa. The songs of S. c. nelsoni and tenuissima were not significantly different in pitch, nor were the songs of S. c. tenuissima and aculeata. The observed range of frequencies for each subspecies pair overlapped except for S. c. carolinensis vs. S. c. aculeata.

S. c. carolinensis and aculeata both give an overslurred, rapidly modulated quank note (Figure 6) that may be delivered singly, in pairs, or in short series. We found no analogous note in any recording of the other subspecies. This note averaged higher in pitch (Figure 7) in S. c. aculeata than in S. c. carolinensis. The difference in pitch for this note was highly significant \((P < 0.0001)\), with no overlap in range (487–588 Hz for carolinensis vs. 863–1036 Hz for aculeata).

Both of the interior subspecies (S. c. nelsoni and tenuissima) give two types of calls that we did not observe in any recording of the other two subspecies. Disyllabic quanks consist of tightly paired notes (Figure 8), the note

Table 1
Comparison of Pitch, Song Rate, and Number of Notes of the Simple Song of Four Subspecies of the White-breasted Nuthatch

<table>
<thead>
<tr>
<th></th>
<th>carolinensis</th>
<th>nelsoni</th>
<th>tenuissima</th>
<th>aculeata<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>24</td>
<td>24</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Mean pitch<sup>b</sup></td>
<td>673 ± 97</td>
<td>788 ± 126</td>
<td>892 ± 147</td>
<td>1039 ± 128</td>
</tr>
<tr>
<td>Range</td>
<td>504–904</td>
<td>604–1136</td>
<td>758–1200</td>
<td>917–1266</td>
</tr>
<tr>
<td>Mean rate<sup>c</sup></td>
<td>8 ± 2</td>
<td>8 ± 2</td>
<td>7 ± 2</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>Range</td>
<td>5–11</td>
<td>5–12</td>
<td>4–10</td>
<td>4–10</td>
</tr>
<tr>
<td>Mean notes<sup>d</sup></td>
<td>12 ± 4</td>
<td>10 ± 3</td>
<td>10 ± 4</td>
<td>9 ± 4</td>
</tr>
<tr>
<td>Range</td>
<td>7–22</td>
<td>6–17</td>
<td>5–20</td>
<td>4–16</td>
</tr>
</tbody>
</table>

^aSimple song only; does not include tooey songs.
^bHertz, plus or minus standard deviation.
^cNotes per second, plus or minus standard deviation.
^dNumber of notes per song, plus or minus standard deviation.
Figure 4. Distribution of song rates (notes/second) for the simple songs of *Sitta c. carolinensis*, *nelsoni*, *tenuissima*, and *aculeata*.

Pairs usually given in an evenly spaced series. However, disyllabic *quank* note pairs may also be given singly or in groups of two. These tightly paired notes produce a “rough edge” to the vocalization that can be easily distinguished by the human ear in the field. Rapid *quanks* are given in short, uneven, and very rapid bursts of notes (Figure 9). Between *nelsoni* and *tenuissima*, the rate of delivery of the notes in these calls did not differ significantly (Table 2). However, the pitches showed significant differences, with the calls of *S. c. carolinensis*...
VOCALIZATIONS OF FOUR SUBSPECIES OF WHITE-BREASTED NUTHATCH

Figure 6. Spectrograms of modulated quank calls of S. c. carolinensis (recorded 20 September 2009 in Manistee County, Michigan, by N. Pieplow; recording not used in the analysis) and S. c. aculeata (recorded 18 December 2014 in eastern Placer County, California, by E. Pandolfino). Examples of these calls can be heard at www.westernfieldornithologists.org/W-B_Nuthatch/.

nelsoni lower in pitch than those of S. c. tenuissima (Table 2). However, the difference in pitch is probably too small to be reliably distinguished by ear in the field by most observers, and the observed ranges of pitch of both disyllabic quanks and rapid quanks overlapped considerably (Table 2).

Figure 7. Comparison of the pitch (difference between partials) of modulated quank calls of S. c. carolinensis and S. c. aculeata. Error bars represent standard deviation.
VOCALIZATIONS OF FOUR SUBSPECIES OF WHITE-BREASTED NUTHATCH

Figure 8. Spectrograms of disyllabic quank calls of *S. c. nelsoni* (recorded 3 September 2008 in Mesa County, Colorado, by N. Pieplow) and *S. c. tenuissima* (recorded 22 January 2015 at Juanita Lake, Siskiyou County, California, by E. Pandolfino). Examples of these calls can be heard at www.westernfieldornithologists.org/W-B_Nuthatch/.

Figure 9. Spectrograms of rapid quank calls of *S. c. nelsoni* (recorded 9 March 2008 at Mesa Lakes Lodge, Mesa County, Colorado, by N. Pieplow) and *S. c. tenuissima* (recorded 19 April 2015 in Union County, Oregon, by E. Pandolfino). Note call of Clark’s Nutcracker (*Nucifraga columbiana*) just after rapid quank in recording of *S. c. nelsoni*. Examples of these calls can be heard at www.westernfieldornithologists.org/W-B_Nuthatch/.
DISCUSSION

Our results indicate that, from qualitative and quantitative analyses of vocalizations, these four subspecies of the White-breasted Nuthatch fall into three distinct vocalization groups. *S. c. carolinensis* and *aculeata* share qualitatively similar calls (modulated *quanks*) and song; however, both these vocalizations are delivered at significantly different pitches with no overlap in frequency. In addition, *S. c. aculeata* gives a *tooey* song unique to this subspecies. The two interior subspecies, *S. c. nelsoni* and *tenuissima*, both give call types (disyllabic *quanks* and rapid *quanks*) that were not observed in the other two subspecies. Although the pitches of the calls and songs of these two interior subspecies differ slightly, the ranges of frequency of all those vocalizations overlap.

Field Identification

Except when the pale back of *S. c. carolinensis* can be assessed, especially in contrast with the black on the tertials, it can be difficult or impossible to distinguish these four taxa visually in the field. On the basis of our analyses, *S. c. aculeata* can be confidently identified if one hears the more common *tooey* song, as no other subspecies sings a similar song. In addition, both *S. c. aculeata* and *S. c. carolinensis* can be distinguished by their modulated *quank* calls, which differ strongly from any vocalizations of *S. c. tenuissima* or *S. c. nelsoni*, and which differ from one another in pitch, with no overlap. Disyllabic *quanks* or rapid *quanks* should allow one to confidently identify a nuthatch as either *S. c. nelsoni* or *tenuissima*. The similarity of these calls and the overlap of frequencies suggest that differentiating between these two interior subspecies by call may be impossible in the field. Even if recordings are obtained, only calls outside of the range of overlap in frequency may be useful for identification. Likewise, overlapping frequencies of the simple songs of all four subspecies renders that song generally useless for identification for all except *S. c. carolinensis* vs. *aculeata*.

Table 2

<table>
<thead>
<tr>
<th>Vocalization Type</th>
<th>nelsoni</th>
<th>tenuissima</th>
<th>P</th>
</tr>
</thead>
</table>
| Disyllabic quank | n
| Mean pitch\(^a\) | 705 ± 50 | 816 ± 51 | 0.0003 |
| Range | 633–803 | 760–929 | |
| Mean rate\(^b\) | 6.7 ± 1.1 | 7.1 ± 1.0 | 0.3 |
| Range | 5.2–9.1 | 5.5–8.9 | |
| Rapid quank | 14 | 18 | |
| Mean pitch\(^a\)
| Range | 701 ± 83 | 889 ± 86 | 0.0003 |
| Mean rate\(^b\)
| Range | 620–908 | 750–1068 | |
| Mean rate\(^b\)
| Range | 20 ± 4 | 19 ± 3 | 0.6 |
| | 11–25 | 13–25 | |

\(^a\)Hertz, plus or minus standard deviation.
\(^b\)Notes per second, plus or minus standard deviation.

VOCALIZATIONS OF FOUR SUBSPECIES OF WHITE-BREASTED NUTHATCH
Taxonomic Implications

Our analyses of differences in vocalizations suggest three distinct taxonomic groups within the U.S., an eastern group consisting of S. c. carolinensis, an interior group including both S. c. nelsoni and tenuissima, and a Pacific group including S. c. aculeata. Because few recordings of White-breasted Nuthatches are available from Mexico, we were unable to analyze vocalizations of those taxa statistically. Qualitatively, however, S. c. alexandrae in the Sierra San Pedro Mártir of northern Baja California fits with S. c. aculeata on the basis of recordings of modulated quanks (www.xeno-canto.org/72055, recordist R. E. Webster) in the same frequency range as those of S. c. aculeata. Conversely, S. c. lagunae in the Sierra de la Laguna of southern Baja California fits into the interior group on the basis of recordings of disyllabic quanks (www.xeno-canto.org/72055, recordist R. E. Webster; macaulaylibrary.org/audio/161719, recordist M. J. Iliff; N. Pieplow recordings). Disyllabic and rapid quanks have likewise been recorded throughout the range of the interior Mexican subspecies S. c. mexicana (www.xeno-canto.org/229762, recordist Peter Boesman; www.xeno-canto.org/67052, recordist Daniel Lane), and S. c. oberholseri (www.xeno-canto.org/229763, recordist Peter Boesman).

Our analysis of vocalizations is consistent with both structural and plumage characters of these subspecies, which also suggest three groups with S. c. nelsoni and tenuissima more similar to each other than to aculeata and carolinensis (Hawbecker 1948, Pyle 1997, Sibley 2000). Genetic studies suggested that each of these four may be a distinct clade (Spellman and Klicka 2007, Walstrom et al. 2011). However, Hawbecker (1948) identified specimens from central southern Nevada that appeared to be intergrades between S. c. nelsoni and tenuissima, and Spellman and Klicka (2007) found mixed haplotypes between these two taxa in the same region. These genetic analyses confirmed those two interior subspecies as sister taxa more closely related to each other than to the other two U.S. subspecies. Spellman and Klicka (2007) grouped S. c. mexicana and lagunae with S. c. nelsoni, which also aligns well with the qualitative similarity of vocalizations we noted above.

Slow vs. Fast Song

Tyler (1916), Kilham (1981), Richison (1983), and Elliott (2005) studied vocalizations of S. c. carolinensis over extended periods at locations in Massachusetts, New Hampshire, Minnesota, and Ohio, respectively. Each author described both a slow song and fast song, with the fast song generally given at approximately twice the rate of the slow song. Tyler (1916) and Elliott (2005) reported never hearing songs of intermediate cadence from any individuals. But we found no clear distinction between slow and fast songs in recordings made throughout the ranges of any of the four subspecies we analyzed. It may be that a given individual sings stereotyped slow or fast songs, as Ghalambor and Martin (1999) suggested for the Red-breasted Nuthatch (Sitta canadensis), but that variation between individuals and across the range of each subspecies produces the relatively continuous set of song rates we observed (Figure 4).

There are no studies similar to the ones cited above for any of the other
subspecies of the White-breasted Nuthatch. However, we have noted two examples of S. c. tenuissima switching from a slow song to a fast song, in each case approximately doubling the cadence. One example in which an individual bird switches from slow to fast song, apparently in response to songs and calls from a distant White-breasted Nuthatch, can be heard at www.xeno-canto.org/239350. Kilham (1981) observed fast song only in agonistic encounters, while Richison (1983) and Elliott (2005) observed this song type in a variety of contexts.

It is possible that the distinction between tooey and simple songs in S. c. aculeata corresponds to the distinction between slow and fast song in other subspecies, but more study is needed.

Further Study

We made no attempt to characterize the function or context of White-breasted Nuthatch vocalizations, including by season. Studies similar to those of Richison (1983) and Elliott (2005) for the other subspecies are needed for the roles of vocalizations such as the disyllabic and rapid quanks of the interior subspecies to be understood. Such studies could also test the hypothesis that individual White-breasted Nuthatches sing two stereotyped songs at different rates, as well as investigating the function of those two songs, and the function of the tooey song in S. c. aculeata.

The possibility of vocal learning in North American nuthatches requires investigation. Strong circumstantial evidence from patterns of individual and regional variation indicates that song may be learned in the European Nuthatch (Sitta europaea; e.g., White 2012), and it is possible that song, at least, is learned in the White-breasted Nuthatch as well.

We did not perform any playback experiments in the field to test how and whether White-breasted Nuthatches differentiate between the sounds of their own subspecies and those of other subspecies. Such experiments could help clarify whether vocal differences between groups contribute to reproductive isolation. Detailed studies of the contact zones between these subspecies could help to determine the extent of reproductive isolation and gene flow, if any, between these groups, and to provide a more conclusive answer to the question of species boundaries in this complex.

ACKNOWLEDGMENTS

We thank the Cornell Laboratory of Ornithology’s Macaulay Library and the Xeno-canto Foundation for maintaining extensive archives of recordings and for making those recordings available. We are indebted to the many recordists who made and uploaded these recordings. An analysis across such a broad span of geography would not have been possible without their efforts. We thank the following recordists: A. Allen, H. Barker, L. Benner, P. Boesman, G. Budney, A. Cartier, B. Clock, I. Cruickshank, L. Davis, E. Defonso, P. Driver, E. Elias, S. Fisher, T. Graves, J. Gulledge, W. Gunn, W. Hershberger, J. Hite, V. Huber, M. Iliff, E. Jakob, T. Johnson, J. Jongsma, G. Keller, L. Kibler, B. Kroeger, D. Labarre, D. Lane, R. Little, G. MacDonald, C. Marantz, J. McGowan, B. McGuire, M. Medler, D. Minis, K. Nelson, M. Nelson, S. Pantle, T. Parker, C. Parrish, G. Reynaud, A. Rinkert, M. Robbins, A. Spencer, M. St. Michel, R. Stein, B. Walker, and R. Webster. We thank B. Byers, T. Gardali, J. Dunn, K. Garrett, and P. Unitt for many helpful suggestions and edits that greatly improved the manuscript.
VOCALIZATIONS OF FOUR SUBSPECIES OF WHITE-BREASTED NUTHATCH

LITERATURE CITED

Accepted 2 July 2015
INDICATIONS THAT THE COMMON REDPOLL IS DOUBLE BROODED IN ALASKA

BRANDI RINGGENBERG and KEVIN WINKER, University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775; kevin.winker@alaska.edu

ABSTRACT: Successfully rearing two broods in one season (double brooding) is rare at high latitudes, and few well-documented cases exist in the Arctic. There are numerous suggestions in the literature that the Common Redpoll (Acanthis flammea) is occasionally a double-brooded species. We examined banding data sets from interior Alaska, specimens in the University of Alaska Museum bird collection, and Alaska nest-record cards to understand the timing of reproduction in Alaska boreal forest and tundra. In interior Alaska Common Redpolls exhibit characteristics of breeding for over four months, plenty of time to successfully raise two broods. Furthermore, tundra breeding takes place after most boreal forest breeding, making it possible that individuals could rear two broods in different regions, as has been suggested in northern Europe. Finally, pronounced annual variation in production of young in Fairbanks was not correlated with production of tree seeds in the previous summer.

Many passerines increase reproductive success by multiple brooding, raising two or more broods in a single breeding season. The possibility of having more than one brood is determined primarily by the length of the breeding season, as well as by other environmental factors, such as food availability, microhabitat of the nest site, and the amount of parental care needed for the first brood (Hussell 1983, Gill 2007, Mulvihill et al. 2009, Jacobs et al. 2013). The Common Redpoll, Acanthis flammea, breeds during the summer in boreal taiga and shrubby tundra habitats. Individual redpolls depart their wintering areas from mid-March through April and arrive at their breeding grounds by mid-May (Knox and Lowther 2000). During the breeding season, the female, often attended by the male, takes about three days to build a nest, then lays a clutch of three to five eggs; incubation lasts 11 days and is performed solely by the female with the male occasionally bringing her food (Knox and Lowther 2000). Nestlings normally fledge after 12–15 days, although Walkinshaw (1948) reported young leaving the nest after only 9 days. Offspring begin their first prebasic molt shortly after fledging, molting from as early as mid-July to as late as late October, but primarily from August through September (Cramp and Perrins 1994). Records of post-fledging care suggest that it may be very limited (Alekseeva 1986, Haftorn 2002). For example, in Finnmark, Norway, fledglings were seen at the nest site of their presumed parents, which were in the process of renesting, but neither male nor female acknowledged the offspring and the young eventually flew off (Haftorn 2002). In total, these reproductive activities, from nest building to fledging, require 29–34 days.

It is uncommon for passerines to double brood at high latitudes. The short summers provide less time for breeding, particularly if late thaws reduce chances for successful reproduction (Elkins 1983). At Baffin Island, Canada, Hussell et al. (2014) reported unequivocal evidence of double brooding in the Northern Wheatear (Oenanthe oenanthe), the only species of seven small passerines in the North American Arctic so far definitively shown to do so. Close relatives of the redpoll, such as the Twite (Carduelis flavirostris) and
the Greenfinch (Chloris chloris), are known to double brood (Kosiński 2001, Raine et al. 2006). There is evidence that female Common Redpolls can lay replacement clutches if their first nesting attempt is not successful, and up to three clutches have been observed (Sheldon 1911, Troy and Shields 1979, Alekseeva 1986). But so far there seems to be no concrete documentation of their successful double brooding, although observations suggest that it probably does take place (e.g., Brandt 1943, Troy and Shields 1979, Seutin et al. 1991, Haftorn 2002). Relatively long periods of reproductive activity have led many to infer that the Common Redpoll is double-brooded, maybe even commonly (e.g., Evans 1966, Hildén 1969, Kessel 1989, Cramp and Perrins 1994, Knox and Lowther 2000).

There are two distinct ways in which double brooding has been inferred in the Common Redpoll: through the typical avian behavior of renesting in the same general area, and, in northern Europe, through nesting first in one region and then moving substantial distances to renest in another region where spring arrives later (e.g., Peiponen 1957, Hildén 1969, Götmark 1982, Haftorn 2002).

After breeding and before migration, adults undergo a complete prebasic molt, from around July through early September (Cramp and Perrins 1994). Small flocks start to form around mid-July and continue through August. Kessel (1989) found that on the Seward Peninsula, Alaska, departure from the breeding grounds happens mostly in September, but in some years some birds remain as late as December.

Here we examine data on Common Redpoll breeding in Alaska to determine whether the species might be double brooded there.

METHODS

We began by examining two datasets on birds banded in interior Alaska, one from the Alaska Bird Observatory and Alaska Songbird Institute (1992–2012), at Fairbanks (64° 50' N), and one from Tetlin National Wildlife Refuge (1993–2013), at Tok (63° 20' N). We considered the timing and incidence of incubation patches, eggs in oviduct, cloacal protuberances, juvénal plumage, flight-feather molt, and relative abundances of adults and birds of the year (hatch-year individuals). Proportions of adults with incubation patches, cloacal protuberances, and flight-feather molt were also calculated (on the basis of total adults, rather than of males or females, because many individuals could not be sexed). Because banding was standardized temporally, we were able to compare years directly. We did not consider flight-feather molt at Tok because of diminished banding there in June or July. All date data were analyzed on the basis of Julian dates, but we report results in calendar dates for non-leap years.

With specimens from the bird collection at the University of Alaska Museum (1963–2013) we compared evidence of redpoll breeding at Fairbanks and Tok with data from tundra in arctic Alaska (where we do not have banding data), “arctic” being defined as territory north of the Arctic Circle or north and west of the Porcupine, Yukon, and Kuskokwim rivers, and other tundra-dominated regions of western Alaska, including the Alaska Peninsula and Aleutian Islands (Arctic Research and Policy Act of 1984, amended 1990;
POSSIBLE DOUBLE BROODING OF THE COMMON REDPOLL IN ALASKA

www.nsf.gov/geo/plr/arctic/iarpcc/arc_res_pol_act.jsp). Brown streaking on the head, lack of a red cap, and/or an incompletely ossified skull identified a specimen as in its year of hatching. Flight-feather molt was specified on the label or identified by missing or uneven flight feathers. Also, we noted if the label recorded a cloacal protuberance, incubation patch, or egg in the oviduct. A few additional individuals were included from tundra-dominated regions such as Cape Peirce and Mother Goose Lake; while these western Alaska locations are not technically in the arctic, they are dominated by tundra habitats and thus provide data that complement the banding data from forested habitats in interior Alaska. We also used Alaska nest-record cards from the University of Alaska Museum, primarily from arctic Alaska.

Finally, we examined annual seed-crop data for five species of trees from the Bonanza Creek site of long-term ecological research (LTER) in the boreal forest near Fairbanks (www.lter.uaf.edu/data_detail.cfm?datafile_pkey=14) to see if there was a correlation between the abundance of juvenal-plumaged redpolls and the abundance of these seed crops. Surveys are standardized, and the sites that we used were those that had complete data for the years 1992–2012. Tree species included tamarack, Larix laricina, from site FP5A; white spruce, Picea glauca, from sites FP2A, FP4A, UP1A, and UP3A; black spruce, P. mariana, from site FP3A; birch, Betula papyrifera, from sites FP4A and UP3A; and alder, Alnus crispa, from sites FP4A and UP3A. We calculated annual seed fall for each tree species and the total from all five.

RESULTS

Data on Common Redpolls captured by the Alaska Bird Observatory began on 21 April and ended 30 September. The species was abundant from 25 April to 19 May, and eight of these days had over a hundred captures each (in aggregate), with only a portion of these birds apparently remaining later to breed. Females had incubation patches from 22 April to 31 August, a period of 132 days (Figure 1); an outlier (recording error?) on 27 September was excluded. The interval encompassing the days on which the proportion of adults with incubation patches reached 1.0 extended from 18 June to 22 August, a period of 66 days (Figure 2). Females with eggs in the oviduct were found over 47 days from 21 April to 6 June, though Alaska nest records extend laying in Fairbanks to 23 June and even later, with a record of hatching on 6 August.

We found cloacal protuberances from 21 April to 19 August, a total of 120 days of males’ possible breeding, with the highest proportion from 20 June to 19 August; Figure 3). Juvenile plumage was noted from 6 May to 29 September, a total of 146 days. Flight-feather molt was recorded from 21 April to 30 September, suggesting that post-breeding molt of adults can extend over approximately 162 days. However, only a few individuals showed flight-feather molt early in the season, increasing until 50% of captures showed it on 6 June and 15 July and more than 50% only on 22 July and afterwards. Numbers of juvenal-plumaged individuals peaked in 1995, 1998, 2003, 2006, 2009, and 2011 (Figure 4).

Redpoll data from the Tetlin bird-banding station began on 21 April and
Figure 1. Abundance by date of redpolls with incubation patches at Fairbanks (black line starting from 21 April; Alaska Bird Observatory data) and in arctic Alaska (gray bars starting at 21 May; data from specimens in the University of Alaska Museum and Alaska nest-record cards; eggs assumed to correspond with incubation patches in the adult female).

Figure 2. Proportion by date of Common Redpolls at Fairbanks with incubation patches. Gray line, daily proportion; black line, five-day moving average.
POSSIBLE DOUBLE BROODING OF THE COMMON REDPOLL IN ALASKA

ended on 2 October. Individuals exhibited incubation patches from 23 April to 8 September, giving a total of 140 days of birds in condition to incubate or brood. There were no records for eggs in the oviduct in this dataset. Cloacal protuberances were identified from 22 April to 10 June, a total of 50 days

Figure 3. Proportion by date of Common Redpolls at Fairbanks with cloacal protuberances. Gray line, daily proportion; black line, five-day moving average.

Figure 4. Numbers of redpolls in juvenal plumage banded each year at Fairbanks (black line) and Tok (gray line), Alaska (1992–2013).
of males in condition to breed. Juvenal plumage was found from 30 July to 2 October, a period of 65 days. These dates are roughly similar to those in the larger Alaska Bird Observatory dataset (not shown), but banding at Tok in June and July was insufficient to reflect the full duration of breeding and molting. The number of juvenal-plumaged birds per year peaked in 1994, 1999, 2003, 2007, 2009, and 2011 (Figure 4).

In the UAM bird collection, 23 specimens from arctic and tundra areas of Alaska had incubation patches, on dates from 21 May to 5 July (Figure 1). Three, collected on 26 July, 5 August, and 6 August, showed flight-feather molt. Thirteen, dated 3 July–31 August, were nestlings or in juvenal plumage. One with a cloacal protuberance was dated 21 July. No specimen had an egg in the oviduct. An additional seven nestings in arctic Alaska are documented in the Alaska nest records, with laying reported on 15 June, eggs in the nest on 6 June and 1 and 5 July, and hatching on 20 and 30 June and 6 July.

We found no correlation between the production of juvenal-plumaged birds by year and the seed data from Bonanza Creek LTER (seed abundance for birch, Betula, and white spruce, Picea, is in Figure 5).

DISCUSSION

Although we found no direct evidence for double brooding of the Common Redpoll in Alaska, we can infer that it probably takes place, given 29–34 days needed for a successful nesting and the relatively long period during which redpolls exhibit breeding activity in interior Alaska: 132 days of incubation

Figure 5. Annual counts of fallen seeds (1992–2012) of birch, Betula papyrifera (black line), and white spruce, Picea glauca (gray line), at the Bonanza Creek site of long-term ecological research near Fairbanks. Note that years of peak seed production do not correspond with years of peak captures of juvenal redpolls at Fairbanks in Figure 4.
patches, 120 days of cloacal protuberances, 146 days of juvenal plumage, or 162 days total of some evidence of breeding. On and near the Seward Peninsula, Alaska, Troy and Shields (1979) observed one female attempt three successive nests (only the last clutch was successful), and both they and Kessel (1989) inferred from observations and the long breeding season that this species might be double brooded there. Our data imply an even longer breeding season in interior Alaska, suggesting that seeking direct evidence of double brooding in boreal forests should be worthwhile as well.

Furthermore, comparing the timing of reproduction of redpolls in interior forest and on the tundra implies that birds breeding early at Fairbanks have time to relocate to tundra and breed again there (Figure 1). The complementarity of the timing of breeding in the two regions is highly suggestive, as is the relative scarcity of postbreeding molt in the interior until 22 July (one might expect postbreeding molt to be initiated earlier than this in single-brooded adults breeding from late April through early June). Despite the numbers of females with incubation patches in the interior early in the breeding season (Figure 1), many other redpolls in that area are apparently not breeding then (Figure 2), so not all individuals pursue a two-site strategy of double brooding. Nor may such a strategy be pursued every year. The great variation from year to year in numbers of birds in juvenal plumage (Figure 4) suggests that such a strategy may be followed only in years of ample food, as suggested in Europe (Peiponen 1957, Hildén 1969, Götmark 1982). Although we thought that this annual variation might be correlated with the production of tree seeds, we found no evidence for this (Figures 4 and 5). Common Redpolls consume the types of tree seeds that are counted at Bonanza Creek, such as those of birch, alder, and spruce; they forage primarily for seeds still in the trees, moving to the ground when seeds in the trees are exhausted or fallen (Cramp and Perrins 1994). It is possible that tree-seed production during a summer is not correlated with tree-seed availability during the following breeding season (e.g., if storms knock seeds out of the trees).

In Fairbanks, the redpoll’s breeding season extends over the rather long span of approximately four months, suggesting that the species is capable of a second brood in this area. It is also possible, given the difference in timing of breeding between the forested interior and tundra, that some individuals that raise a first brood around Fairbanks then move to tundra to raise a second brood. To test this hypothesis, one should examine redpolls arriving in the tundra for evidence of regressing incubation patches, post-ovulatory follicles, and for the possible arrival of hatch-year birds. Birds breeding in the boreal forest should be marked individually to assess whether double brooding is taking place and with what frequency.

ACKNOWLEDGMENTS

We thank April Harding Scurr of the Alaska Songbird Institute for access to the (former) Alaska Bird Observatory’s data on banded redpolls, Nicole Wells for access to Tetlin National Wildlife Refuge’s bird-banding data, Roger Ruess for access to the Bonanza Creek LTER annual tree-seed count data, and Daniel Gibson, David Hussell, and Philip Unitt for comments on earlier drafts of the manuscript.
LITERATURE CITED

Brandt, H. 1943. Alaska Bird Trails. Bird Research Foundation, Cleveland, OH.

Peiponen, V. 1957. Wechselt der Birkenzisig, Carduelis flammea (L.), sein Brutgebiet während des Sommers [Does the Redpoll change its breeding area during the summer]? Ornis Fennica 34:41–64.

Accepted 8 April 2015
Abstract: Since its eighth report (Aanerud 2011) the Washington Bird Records Committee (WBRC) has reviewed 291 reports representing 92 species and seven other subspecies and forms, accepting 232 of them, an acceptance rate of 80%. Most of these birds were observed between 2008 and 2010. Six new species and one subspecies group are added to the Washington state checklist: Providence Petrel (Pterodroma solandri), Hawaiian Petrel (P. sandwichensis), Greater Pewee (Contopus pertinax), Yellow-bellied Flycatcher (Empidonax flaviventris), Variegated Flycatcher (Empidonomus varius), Bell’s Vireo (Vireo bellii), and Interior or Lead-colored Bushtit (Psaltriparus minimus plumbeus). In addition, the WBRC removed two species, the Mute Swan (Cygnus olor) and American Black Duck (Anas rubripes) from the state checklist. The Washington state list now stands at 498 species.

The contents of this report are the results from six Washington Bird Records Committee (WBRC) meetings held between February 2008 and January 2011 and follow the eighth report (Aanerud 2011). The WBRC is a committee of the Washington Ornithological Society. In total for this report, the committee reviewed 291 reports representing 92 species (and seven other subspecies and forms). An acceptance rate of 80% resulted in 232 new records for the state. The WBRC added six new species to the checklist of Washington birds: Providence Petrel (Pterodroma solandri), Hawaiian Petrel (P. sandwichensis), Greater Pewee (Contopus pertinax), Yellow-bellied Flycatcher (Empidonax flaviventris), Variegated Flycatcher (Empidonomus varius), and Bell’s Vireo (Vireo bellii). In addition the WBRC reviewed and accepted the first record of the Lead-colored or Interior Bushtit (Psaltriparus minimus plumbeus).

The WBRC reexamined its list of review species in 2011. Species that will no longer be reviewed include the Manx Shearwater (Puffinus puffinus) (37 records), Red-shouldered Hawk (Buteo lineatus) (41 records), Hudsonian Godwit (Limosa haemastica) (31 records), Bar-tailed Godwit (L. lapponica) (51 records), Ruff (Calidris pugnax) (25 records), Buff-breasted Sandpiper (C. subruficollis) (16 records), Parakeet Auklet (Aethia psittaculosa) (14 records), Eurasian Collared-Dove (Streptopelia decaocto) (21 records), and Rose-breasted Grosbeak (Pheucticus ludovicianus) (53 records). The Blue Snow Goose was the first morph removed from review after the WBRC accepted nine reports in just three years.

In 2009 the committee voted to remove the Mute Swan (Cygnus olor) from the Washington list. No reports, in the committee’s opinion, arise from wild populations, and the Mute Swan does not meet the standard of an established introduced exotic species (as does the House Sparrow, Passer domesticus, for example). In addition, in 2011 the committee voted to remove the American Black Duck (Anas rubripes) from the state list. In the committee’s opinion, none of the reports since the 1970s are likely of birds of wild origin. It is possible that some earlier undocumented reports represent American Black Ducks of wild origin, but these have not been
reviewed. For further discussion of non-established introduced species, see Wahl et al. (2005).

The Washington list now stands at 498 species.

PROCEDURES

Procedures are consistent with those detailed in the introduction to the first WBRC report (Tweit and Paulson 1994) and expanded on in the introduction to the sixth report (Mlodinow and Aanerud 2006). A “report” is information submitted to the committee in the form of evidence substantiating the observation of a review species. A “record” is a report that has been accepted by the committee. Acceptance of a record requires an affirmative vote from all but one of its membership.

Species accounts are organized with English and scientific names first followed in parentheses by the total number of records accepted for Washington and the number of records accepted in this report. An asterisk following the total number of records indicates that the species has been reviewed for a restricted period of time, so the number does not represent the total number of sightings in the state. Each entry includes the following information: date(s) of observation, location and county, and (for accepted records) initials of the observer(s). To aid with record-keeping and future reference, each report includes a unique file number consisting of the species’ four-letter code, year of the sighting, and entry number determined by the order in which the committee received the report. For the sake of brevity in the species accounts below, the four-letter code is omitted from file numbers after the first. The names of the observers who submitted only written descriptions are by convention listed first, followed by those who submitted photographic, video, or audio documentation. The discoverer of the bird is listed only if that person contributed evidence for committee review. Additional details including information such as the number of individual birds present and notes on sex, age, and/or plumage are our assessments and do not reflect decisions made by the committee.

Beginning with this report, the committee reviewed value of maintaining a “supplementary list.” Previously, any species accepted by the committee based on a single-person sight record was added to the supplementary list. These records still underwent close scrutiny, and acceptance to this list was not intended to indicate doubt about the validity of the report. Nevertheless, the distinction between a single observer and multiple observers seemed sometimes arbitrary, and placement on a separate supplementary list implied these species were not fully on the state list. Therefore, the committee is discontinuing the supplementary list and will include species accepted without evidence such as photographs, audio recordings, or a specimen on the regular list but note them as based on “sight only” records. The number of observers will no longer serve as the basis of distinguishing these species’ position on the state list. In this report, 63% of the accepted records were submitted with at least one photo, audio, or video recordings. Although the spread of smart phones and other recording devices has made documentation easier than ever, this percentage indicates the continued value of a well-constructed, detailed written report.
COMMITTEE MEMBERS

Committee members who voted on these reports include Kevin Aanerud, Tom Aversa (until 2010), Phil Mattocks (until 2009), Ryan Merrill (from 2009), Steve Mlodinow, Dennis Paulson, Bob Sundstrom (until 2010), Bill Tweit, Brad Waggoner (from 2010), and Charlie Wright (from 2010).

Ryan Merrill joined the committee in 2009 replacing Phil Mattocks. Charlie Wright and Brad Waggoner joined the committee in 2010, replacing Bob Sundstrom and Tom Aversa, respectively. Jessie Barry left the committee in 2008 and was not replaced, reducing the number of voting members from eight to seven. Doug Schonewald was the secretary through 2010, replaced then by Matt Bartels.

THE RECORDS

Reports Accepted by the Committee

Emperor Goose (*Chen canagica*) (8*, 3). An immature was at Julia Butler Hansen National Wildlife Refuge (NWR), Wahkiakum Co., 4 Apr 2007 (EMGO-2007-1; GBl). Two, one adult and one immature, were near South Bend, Pacific Co., from 15 Jan to 23 Feb 2008 (2008-1; BT, photo: RJM; Figure 1). Two adults were at the same location 18–24 Jan 2009 (2009-1; AKa, RR).

Blue Snow Goose (*Chen caerulescens*) (9*, 1). The lone record of this color morph was of five birds at Fir Island, Skagit Co., 5 Nov 2007 (LSGB-2007-2; photo: RJM). After the WBRC accepted nine records in the three years after adding this morph to the review list, it dropped the Blue Goose from the list in 2008.

Bewick’s Tundra Swan (*Cygnus columbianus bewickii*) (12*, 3). An adult was at Conway, Skagit Co., 24 Feb–1 Mar 2008 (BESW-2008-1; SM, photo: RJM; Figure 2). Another was at Ridgefield NWR, Clark Co., 1 Nov 2008 (2008-2; photo: CLe), and one was at Brady Loop Road, Grays Harbor Co., 18 Jan–21 Mar 2009 (2009-1; photos: KeB, BW). These records bring the state total to 12 since the subspecies’ addition to the review list in 2003.

Baikal Teal (*Anas formosa*) (4, 3). An adult male was at Columbia NWR, Adams Co., 30 May 2008 (BATE-2008-1; photo: RaH; Figure 3). Adult males were also photographed at Ridgefield NWR, Clark Co., 31 Jan 2009 (2009-1; photos: BC, CCr, SK) and near Ferndale, Whatcom Co., 17 Mar 2009 (2009-2; photo: PW). In addition to the four recorded in Washington, two Baikal Teal have been found in Oregon (Nehls 2015) and seven in California (www.californiabirds.org/cbrc_book/update.pdf). The record for 30 May is the latest for the west coast of North America south of Alaska.

Tufted Duck (*Aythya fuligula*) (18*, 6). Records include: An adult male at Everett, Snohomish Co., 11 Oct 2007 (TUDU-2007-1; SM); an adult male at Priest Rapids, Grant and Yakima counties, 23 Feb–16 Mar 2008 (2008-1; DSc, ASt); a female at Lake Erie, Skagit Co., 11 Jan–4 Mar 2009 (2009-1; GBl, SM, photo: GT; Figure 4); an adult male at Drano Lake, Skamania Co., 7–16 Mar 2010 (2010-1; photo: DP); an adult male at Priest Rapids, Yakima Co., 28 Mar 2010 (2010-2; photo: RJM); and an adult male at Port Susan Bay, Snohomish Co., 24 Jun–3 Jul 2010 (2010-3; photos: TA, SM). These six records increase the state total to 18 records since the committee began reviewing the species in 1999. The Tufted Duck at Port Susan Bay is the first recorded for Washington in summer; other summer records for the west coast south of Alaska include one in 1996 from California and three from Vancouver, British Columbia (Toochin et al. 2014).
King Eider (Somateria spectabilis) (15, 1). An immature male was at Semiahmoo Spit, Whatcom Co., 17 Jan 2009 (KIEI-2009-1; JGu). A female was at Ocean Shores, Grays Harbor Co., beginning 3 Jul 2009 and was seen intermittently through at least 8 Apr 2012 (2009-3; DMo, BT, photo: GT; Figure 5). An immature male was at Potlatch State Park, Mason Co., 21 Nov 2009 (2009-2; photo: MvB).

Short-tailed Albatross (Phoebastria albatrus) (9, 2). A juvenile was 193 km west of Westport, Grays Harbor Co., on 6 Apr 2008 (STAL-2008-1; photo: GSM). Another juvenile was tracked via satellite transmitter through Washington waters 25–29 Sep 2009 (2009-1; RoS) as it moved south along the continental shelf break before continuing into Oregon and eventually reaching California. The bird hatched
on Torishima Island in the spring of 2009 and was translocated to Mukojima Island, where it fledged in May. Of Washington’s nine records, six are within the past 20 years, after the species began to recover from its near extinction in the first part of the 20th century.

Providence Petrel (Pterodroma solandri) (1, 1). In 1992, 1993, and 1996, the WBRC voted with inconclusive results on a report of a Providence (also known as Solander’s) Petrel about 50 km west of Westport, Grays Harbor Co., on 11 Sep 1983 (PRPE-1983-1; TWa, photo: MLu). The state checklist prepared by the

Figure 3. Male Baikal Teal (BATE-2008-1) at Columbia NWR, Grant Co., 30 May 2008.

Photo by Randy Hill

Figure 4. Female Tufted Duck (TUDU-2009-1) at Lake Erie, Skagit Co., 16 January 2009.

Photo by Gregg Thompson
WBRC in 1989 (Feltner et al. 1989) included the species on the basis of this report, but in 1994 the committee opted to refrain from accepting the record until more information could be gathered (Aanerud and Mattocks 2000). Reluctance to accept this record was due in part to concerns in distinguishing the species from other dark gadfly petrels. Advances in the knowledge of identification as well as the personal
experience of several committee members with these species convinced the WBRC that the extensive written description by an experienced observer was adequate for acceptance of the species to the state list. Key field marks noted include the white underwing patch bisected by a thin dark line (producing a “double flash” of white in flight), the languid flight style, overall size, dark upperparts, and relatively long tail. The photo supported the description, but only some members of the committee thought

Figure 7. Great Shearwater (GRSH-2009-1) off Westport, Grays Harbor Co., 29 August 2009.

Photo by Ryan Shaw

Figure 8. Adult Red-necked Stint (RNST-2009-1) at Ocean Shores, Grays Harbor Co., 24 July 2009.

Photo by Gregg Thompson
the identification was diagnostic from the photo alone. As a result, the Providence Petrel is accepted on the basis of a sight-only record. Murphy’s Petrel (P. ultima), also known to occur in Washington waters, is similar but smaller with more slender wings, less bull-necked than the Providence Petrel, and has a smaller bill. Additionally the described pattern of the underwing is typical of the Providence Petrel and rarely seen on Murphy’s. With respect to other dark gadfly petrels that may occur in the northeast Pacific, the pattern of the underside of the primaries eliminates both races of the Great-winged Petrel (Pterodroma macroptera macroptera and P. m. gouldi), which show a uniformly dull silvery patch. The uniform upper side of the wing eliminates the Kermadec Petrel (P. neglecta), whose outer primaries show obvious pale shafts.
Murphy’s Petrel (*Pterodroma ultima*) (6, 4). On 6 Apr 2008 two Murphy’s Petrels were observed, one 133 km and one 233 km off Westport, Grays Harbor Co. (MUPE-2008-1; GSM, photo: THu; 2008-2; GSM). Another was 90 km off Cape Disappointment, Pacific Co. (2010-1; THa, photo: RJM), and two more were 85 km off Ocean Shores, Grays Harbor Co. (2010-2; THa, RJM) on 1 May 2010.

Mottled Petrel (*Pterodroma inexpectata*) (8, 3). During a research cruise organized by the National Oceanic and Atmospheric Administration’s Northwest Fisheries Science Center, four Mottled Petrels were seen between 64 and 70 km offshore over Nitinat Canyon, Clallam Co., on 25 Mar 2009 (MOPE-2009-1; photo: RJM). The same day, four more were between 48 and 58 km offshore over Juan de Fuca Canyon, Clallam Co. (2009-2; photo: RJM). A single bird was seen at Point No Point, Kitsap Co., 27 Nov 2009 (2009-3; ASe), establishing the first Washington record away from the outer coast.

Hawaiian Petrel (*Pterodroma sandwichensis*) (1, 1). Washington’s first record is based on one photographed over the west end of Grays Canyon, Grays Harbor Co., on 27 Sep 2008 (HAPE-2008-1; BLB, BT, photo: MPI; Figure 6). Details of the underwing pattern, overall proportions, and especially the limited extent of the dark cap appear to eliminate the Galapagos Petrel (*P. phaeopygia*), with which the Hawaiian Petrel was formerly considered conspecific under the name Dark-rumped Petrel (Banks et al. 2002). In addition, contrast between the grayish sides of the neck

Figure 11. Northern Hawk Owl (NHOW-2008-3) at Hart’s Pass, Okanogan Co., 5 October 2008.

Photo by Gregg Thompson
and the blackish cowl, as well as the white curling up behind the auricular, appear to specify the Hawaiian Petrel rather than the Galapagos Petrel (Tomkins and Milne 1991, Browne et al. 1997, Force et al. 2007, Howell 2012).

Great Shearwater (*Puffinus gravis*) (3, 1). A Great Shearwater off Westport, Grays Harbor Co., 29 Aug 2009 (GRSH-2009-1; BT, photos: JPr, RSh; Figure 7) was the third recorded in Washington. Oregon has two records, California nine, and British Columbia five. Alaska has four photo-documented sightings (not all of them reviewed) (Gibson et al 2003, Gibson and Withrow 2015; D. Gibson and S. Heinl pers. comm.).

Ashy Storm-Petrel (*Oceanodroma homochroa*) (2, 1). An Ashy Storm-Petrel 233 km west of Westport on 6 Apr 2008 (ASSP-2008-1; GSM) was the second recorded in Washington. In addition to noting plumage characteristics that included narrow gray wing bars and a long forked tail, the report detailed a constant “fluttery” flight style that differed notably from the gliding of the Leach’s Storm-Petrels also present. Washington’s first Ashy-Storm Petrel was photographed in June 2006 (Aanerud 2011). There are also two reports from British Columbia waters, 172 km west of Tatoosh Island, Clallam Co., from June 2008 (Fenneman 2011, 2012), and six records from Oregon, one in 2007 one in 2009, and four in 2014 (Nehls 2015).

Frigatebird species (*Fregata* sp.) (2, 1). A frigatebird flying across the Columbia River at Stevenson, Skamania Co., 16 Apr 2008 (FRIG-2008-1; DK, BR) eluded specific identification. While one might assume that the Magnificent Frigatebird (*F. magnificens*) is the likely species, the precedents of both the Greater (*F. minor*) and Lesser (*F. ariel*) frigatebirds in the continental United States has led the committee to accept this record as “frigatebird species.” Washington has two prior records of the Magnificent and one other of a frigatebird not identified to species.

White-faced Ibis (*Plegadis chihi*) (11*, 5). Although this species was removed from the WBRC’s review list in the fifth report, a handful of reports were voted on before this decision and never formally reported. They include the following: one photographed along Frenchman Hills Road, Grant Co., 21–30 May 1999 (WFIB-1999-1; SM, HO, BT, photo: GL); three videotaped near Othello, Adams Co., 27–28 May 2000 (2000-1; BLB, KK, video: SM); one at Kingston, Kitsap Co., 30 May–2 Jun 2000 (2000-2; VN, IP); one videotaped at Columbia NWR, Adams and Grant counties, 3 Jun 2000 (2000-3; DD, video: SM); and 24 at the Walla Walla River delta, Walla Walla Co., 9 May 2001(2001-1; MD, MLD, BT). In addition one report from State Route 28 near Wilson Creek, Grant Co., on 13 Jul 2000 was accepted as a White-faced/Glossy Ibis (WFIB/GLIB-2000-1; CE, MAT). The 2001 incursion of the White-faced Ibis into Washington, estimated at a minimum of 295 birds in May and June, was
more recent incursions have been less massive, but the ibis has still occurred in the spring in most succeeding years (Tweit and Flores 2006).

Red-shouldered Hawk (*Buteo lineatus*) (41*, 1). An immature Red-shouldered Hawk observed at Ridgefield NWR, Clark Co., on 23 Sep 2007 (RSHA-2007-2; photo: SM) brought the state total to 41 records, 32 of them from 1998 to 2008, when the species was removed from the review list.

Broad-winged Hawk (*Buteo platypterus*) (18, 5). A juvenile at Hooper, Whitman Co., on 16 Sep 2007 (BWHA-2007-1; photo: MWo), a juvenile at Sentinel Bluffs, Grant Co., 9 Sep 2008 (2008-2; SM, BW), a juvenile at Washtucna, Adams Co., 12 Sep 2008 (2008-2; TL, photo: RaH), an adult along Taneum Road, Kittitas Co., 3 May 2009 (2009-1; TB), and a dark-morph juvenile caught at Chelan Ridge, Chelan Co., 28 Sep 2009 (2009-3; photo: HWI, fide SHa, KW) bring Washington’s total to 18 records, though there are a number of reports that have not been reviewed, in particular from the Chelan Ridge raptor-migration site (www.hawkwatch.org/conservation-science/migration-research-sites/74-chelan-ridge-raptor-migration-project).

Eurasian Dotterel (*Charadrius morinellus*) (4, 1). A juvenile Eurasian Dotterel north of Oysterville, Pacific Co., 12–13 Sep 2007 (EUDO-2007-1; KiB, photo: MFe) was the fourth recorded in Washington.

Hudsonian Godwit (*Limosa haemastica*) (31*, 5). The WBRC accepted five records: an adult male mostly in alternate plumage in Ellensburg, Kittitas Co., on 21 Aug 2003 (HUGO-2003-2; SD); an adult female mostly in alternate plumage at Port Susan Bay,
Snohomish Co. on 26 Jul 2007 (2007-1; photo: TA); a female at Ocean Shores, Grays Harbor Co., on 26 May 2008 (2008-1; photos: MC, JMG); a molting adult at Tokeland, Pacific Co., on 3 Aug 2008 (2008-2; photo: BW); and a female at Sunlight Beach, Island Co., 27 May 2009 (2009-1; photo: RJM). These bring the state total to 31 records, 19 of them between 1999 and 2009. The Hudsonian Godwit was removed from the review list in 2010.

Bar-tailed Godwit (*Limosa lapponica*) (51*, 4). An adult was photographed at Tokeland, Pacific Co., 15 Sep 2001 (BTGO-2001-4; NLF, PS, photo: RuS); an adult female was there 19–23 Jul 2007 (2007-7-1; photos: RJM, RuS, PS); a juvenile was in Westport, Grays Harbor Co., 14–15 Sep 2007 (2007-2; photo: TO); and a juvenile was at Bottle Beach, Grays Harbor Co., 2 Oct 2007 (2007-3; photo: MBi). These brought the state total to 51 records (34 between 1998 and 2008) before the species was removed from the review list in 2008.

Ruff (*Calidris pugnax*) (25*, 2). Records of two at Ocean Shores, Grays Harbor Co., 9 and 11 Sep 2007 (RUFF-2007-2; PK, photo: CWr) and one female at Boe Road near Port Susan Bay, Snohomish Co., 1–19 Dec 2007 (2007-4; photo: SM) bring Washington’s total to 25 records between 1999 when the Ruff was added to the review list and 2008 when it was removed.

Red-necked Stint (*Calidris ruficollis*) (4, 2). Reconsideration of the report of an adult at Crockett Lake, Island Co., on 18 Jul 1993 (RNST-1993-1; SM) resulted in unanimous acceptance. The prior vote was 5–2–1 yes–no–abstain. At the time the committee was “waiting for a multiple-observer or exquisitely detailed single-person sight report, or (better) for photographic or specimen evidence, before accepting this species” (Tweit and Skriletz 1996). Another adult was at Ocean Shores, Grays Harbor Co., 24 Jul 2009 (2009-1; photos: GT, BW; Figure 8).

Buff-breasted Sandpiper (*Calidris subruficollis*) (16*, 3). Three Buff-breasted Sandpipers were at Midway Beach, Pacific Co., on 25 Aug 2007 (BBSA-2007-1; photos: MvB, DnG); one was at Ocean Shores, Grays Harbor Co., on 11 Sep 2007 (2007-2; photo: CWr); five were on Fir Island and two were at Samish Flats, Skagit Co., also on 11 Sep 2007 (2007-3; photo: RJM). The WBRC accepted 16 records of this species (most, if not all, of juveniles) from 1999 to 2008 while it was being reviewed.

Thick-billed Murre (*Uria lomvia*) (17, 3). Thick-billed Murres were found at Point No Point, Kitsap Co., on 12 Jan 2009 (TBMU-2009-1; VN), off Grays Harbor Co. on 25 Mar 2009 (2009-2; RJM), and near Protection Island, Clallam Co., on 14 Dec 2009 (2009-3; BLB, CWr, photo: JKu).

Xantus’s Murrelet (*Synthliboramphus hypoleucus*) (10, 2). Following the AOU’s reclassification of the two subspecies of Xantus’s Murrelet as species, Scripps’s Murrelet (*S. scruppsii*) and Guadalupe Murrelet (*S. hypoleucus*) (Chesser et al. 2012), the WBRC is reconsidering all Xantus’s Murrelet reports, to confirm which can be confidently assigned to either of the new species.

Scripps’s Murrelet (*Synthliboramphus scruppsii*). One was 66 km west of Cape Alava, Clallam Co., on 8 Jul 2007 (SCMU-2007-1; GSM).

Scripps’s/Guadalupe Murrelet (*Synthliboramphus scruppsii/hypoleucus*). A murrelet of one of these two species was at least 32 km west of Westport, Grays Harbor Co., 7 Sep 2007 (SCMU/GUMU-2007-3; RJM).

Scripps’s/ Craveri’s Murrelet (*Synthliboramphus scruppsii/craveri*). Two murrelets—either Scripps’s or Craveri’s—were 61 km west of La Push, Clallam Co., on 9 Jul 2007 (SCMU/CRMU-2007-2; GSM).

Parakeet Auklet (*Aethia psittacula*) (14*, 2). One was observed 18 km WSW of Cape Alava, Clallam Co., on the surprising date of 8 Jul 2007 (PAAU-2007-1; GSM). An additional 101 were observed, and many photographed, between 9 and 75 km off Washington’s central and north coast, Clallam, Jefferson, and Grays Harbor.
counties, between 24 Mar and 8 Apr 2009 (2009-1; photos: RJM). Photographic documentation of Parakeet Auklets in these numbers, as well as unreviewed but reliable reports in other recent years from waters seldom explored at this time of year, precipitated this species’ removal from the review list. Oregon had 18 records of the Parakeet Auklet though 2010, and California had over 80 records before its committee discontinued reviewing the species.

Horned Puffin (*Fratercula corniculata*) (26, 6). One was at Westport, Grays Harbor Co., on 21 Jul 2007 (HOPU-2007-1; BLB, BT); an immature was south of Point of Arches, Clallam Co., on 5 Jun 2007 (2007-2; RJM, photo: RoH); an adult was near Quillayute Needles, Clallam/Jefferson Co., on 13 Jul 2007 (2007-3; RJM); one was near Smith Island, Island Co., 18 Aug 2007 (2007-4; photos: DaH, DoH); a dead bird (specimen not preserved) was at Midway Beach, Pacific Co., on 7 Aug 2009 (2009-1; photo: KeB); and an immature was at Grays Canyon, Grays Harbor Co., 26 Jun 2010 (2010-1; BSb, photos, BD, GSM).

Ivory Gull (*Pagophila eburnea*) (2, 1). Washington’s second was an immature at the Yakima River Delta, Benton Co., briefly on 20 Jan 2008 (IVGU-2008-1; video: BW). California has two records, British Columbia nine, and Oregon none.

Black-headed Gull (*Chroicocephalus ridibundus*) (16, 1). An adult was at Electric City, Grant Co., 29–31 Dec 2007 (BHGU-2007-2; DSc, photos: AST, EST, VG, LS). Although it was the 16th recorded in the state as a whole, it was the first found in eastern Washington.

Laughing Gull (*Leucophaeus atricilla*) (7, 3). An adult was at Ruby Beach, Jefferson Co., on 10 May 1998 (LAGU-1998-1; photo: EF; Figure 9). Another was at Hoquiam, Grays Harbor Co., on 24 Jul 2007 (2007-1; photo: GBe). A second-cycle bird at Point No Point, Kitsap Co., on 1 Jun 2008 (LAGU-2008-1; photo: VN) and then Port Susan Bay, Snohomish Co., on 7 Jun 2008 (SM) was inferred by the committee to represent the same individual, and just the second away from the outer coast.

Black-tailed Gull (*Larus crassirostris*) (5, 3). Adult Black-tailed Gulls were at Tatoosh Island, Clallam Co., on 18 Jun 2008 (BTGU-2008-1; TWo), the Walla Walla river delta, Walla Walla Co., on 29 Aug 2009 (2009-1; photos: MD, MLD), and at Tacoma, Pierce Co., 13 Oct–7 Nov 2009 (2009-2; MHo, CWr, photos: RiC, JeC, GT; Figure 10). These three records increase Washington’s total to five, all since 2004.

Iceland Gull (*Larus glaucoides*) (14, 2). An adult Iceland Gull of subspecies *kumlieni* was at the Wallula Grain Station, Walla Walla Co., on 8 Mar 2009 (ICGU-2009-1; photos: MD, MLD) and a first-cycle bird, also *kumlieni*, was at Nisqually NWR, Thurston Co., on 10 Feb 2010 (2010-1; ST, photo: DR).

Lesser Black-backed Gull (*Larus fuscus*) (18, 6). New records include one adult at Rufus Woods Lake, Douglas Co., 30 Jan 2008 (LBBG-2008-1; photos: VG, LS); one adult at the Yakima River delta, Benton Co., 22 Jan 2008 (2008-2; photo: KeB); one adult at Clarkston, Asotin Co., 8–10 Nov 2008 (2008-3; photos: KC, TeG); an adult at Nelson Island near Richland, Benton Co., on 1 Jan 2009 (2009-1; BLF, NLF); an adult at the Walla Walla River delta, Walla Walla Co., 15 Jan 2009 (2009-2; photo: MD); and one more adult at Richland, Benton Co., 16 Jan 2010 (2010-1; photos: MD, MLD, DnG, TM). All 18 of Washington’s Lesser Black-backed Gulls have occurred since 2000 and all but one have been found east of the Cascades.

Slaty-backed Gull (*Larus schistisagus*) (15, 4). A fourth-cycle Slaty-backed Gull was at the Cedar River mouth in Renton, King Co., on 28 Dec 2007 (SBGU-2007-2; photo: RJM). Three more were accepted from the fields along Wenzel Slough Road near Satsop, Grays Harbor Co.: an adult 9–17 Mar 2008 (2008-1; photos MPI, RuS, CWr), a third-cycle bird 11–17 Mar 2008 (2008-2; photo: MPI), and a second-cycle bird 11 Mar 2008 (2008-3; SF, photo: MPI).

Least Tern (*Sternula antillarum*) (5, 2). One was at Crockett Lake, Island Co., on

Eurasian Collared-Dove (*Streptopelia decaocto*) (21*, 2). Records of two at Ellensburg, Kittitas Co., 13 Apr 2007 (EUCD-2007-1; photo: DmB) and one at Battle Ground, Clark Co., 28 Jun–1 Aug 2007 (2007-2; photo: CK) were accepted before the removal of the species from the review list in 2008. Following the first state record in Spokane on 2 Jan 2000, the Eurasian Collared-Dove expanded rapidly. The first western Washington record came from Stanwood, Snohomish Co., on 9 Oct 2003. By April 2011, it had been recorded in all 39 of the state’s counties, and it continues to increase in both range and population.

Northern Hawk Owl (*Surnia ulula*) (26, 9). Records of the Northern Hawk Owl included one near Winthrop, Okanogan Co., 19 and 25 Jun 2007 (NHOW-2007-2; photo: VG, LS); one at Hart’s Pass, Okanogan Co., 9 Sep 2007 (2007-3; photo: NM); one 1.6 km west of Grand Coulee, Grant Co., 31 Dec 2007–1 Jan 2008 (2007-5; photos: VG, LS, DSc); one at Cheney, Spokane Co., 30 Oct–1 Nov 2008 (2008-1; JuC, CCo, photos: BuD, KC); one at Tiffany Meadows, Okanogan Co., 12 Oct 2008 (2008-2; JDM); one at Hart’s Pass, Okanogan Co., 27 Sep–18 Oct 2008 (2008-3; photo: GT; Figure 11); one 19 km west of Okanogan, Okanogan Co., 7–14 Dec 2008 (2008-4; GK); one near Mansfield, Douglas Co., 3–22 Feb 2009 (2009-1;
Figure 14. Tennessee Warbler (TEWA-2008-1) at Washtucna, Adams Co., on 8 September 2008.

Photo by Gregg Thompson

Figure 15. Magnolia Warbler (MAWA-2008-3) at Washtucna, Adams Co., on 10 September 2008.

Photo by Ted Kenefick

Yellow-bellied Sapsucker (Sphyrapicus varius) (8.2). One immature at Hood River Park in Walla Walla Co. on 7 Oct 2004 (YBSA-2004-2; MD, MLD) was at the same location that hosted a Yellow-bellied Sapsucker the previous winter (see Mlodinow and Aanerud 2008). An immature female was at Gingko State Park, Kittitas Co., on 14 Apr 2008 (YBSA-2008-3; MWe, photo: DSw).

Greater Pewee (Contopus pertinax) (1, 1). Washington’s first Greater Pewee was found at Edmonds, Snohomish Co., the morning of 23 Nov 2008 (GRPE-2008-1; DD, CR). Despite being a sight record, the detailed description specified the overall coloration, prominent crest, bill shape, entirely orange lower mandible, and call note, eliminating the possibility of an Olive-sided Flycatcher or a wood-pewee. Records in California are concentrated between November and March and range as far north as Alameda and Santa Cruz counties in the San Francisco Bay area (Hamilton et al. 2007).

Yellow-bellied Flycatcher (Empidonax flaviventris) (1, 1). Washington’s first Yellow-bellied Flycatcher was photographed at Windust Park, Franklin Co., on 30 Aug 2009 (YBFL-2009-1; CCo, JuC, photo: M Wo; Figure 12). While initially identified as a Least Flycatcher in the field, subsequent analysis of a series of close, sharp photos led to the identification as the Yellow-bellied based on the yellowish throat, large, rounded head, short bill and tail, conspicuous rounded eye ring, and extensive greenish coloration including on the sides of the breast. Although no records have been accepted for Oregon, California has 29 records of the Yellow-bellied Flycatcher, all on dates from 27 Aug to 16 Oct.

Alder Flycatcher (Empidonax alnorum) (3, 1). An Alder Flycatcher singing at Haviland, Okanogan Co., 18–19 Jun 2006 (ALFL-2006-1; photo, audio: PS, RuS, photo: M Wo) was at the same location as the Washington’s first, also singing, four years prior.

Black Phoebe (Sayornis nigricans) (15, 2). Black Phoebes were documented along Larkin Rd. near Midway Beach, Pacific Co., 7 May 2009 (BLPH-2009-1; TA) and on Mercer Island, King Co., 26 Mar 2010 (2010-1; photos: JoC, RiH, RJM), bringing the state total to 15 records.

Variegated Flycatcher (Empidonomus varius) (1, 1). The first Variegated Flycatcher for both Washington and western North America was at Windust Park, Franklin Co., 6–7 Sep 2008 (VAFL-2008-1; MD, MLD, CH, photos: RJM, SM; Figure 13). The Sulphur-bellied Flycatcher (Myiodynastes luteiventris), which has occurred on the west coast as far north as Arcata, California, was eliminated by the bird’s overall small size and relatively small bill. The Piratic Flycatcher (Legatus leucophaius), another austral migrant that has occurred in Texas and New Mexico, has a still smaller bill and lacks the rusty rump with large dusky streaks this Variegated Flycatcher showed. The dark crown, dark auricul ars, and diffuse malar stripe were also consistent with the Variegated and not the Sulphur-bellied or Piratic. There are prior records of the Variegated Flycatcher from Maine, Tennessee, and Ontario, with the Washington record representing the first from the western half of the continent (Mlodinow and Irons 2009).

Tropical Kingbird (Tyrannus melancholicus) (14, 3). One was near Mount Vernon, Skagit Co., 24 Nov–18 Dec 2008 (TRKI-2008-2; photo: RJM); one was at Hoquiam, Grays Harbor Co., 24 Oct 2009 (2009-1; photo: GT); and one was recorded calling at Westport, Grays Harbor Co., 12 Nov 2009 (2009-2; photo, audio: RJM).

Tropical/Couch’s Kingbird (Tyrannus melancholicus/couchii) (21, 5). Birds accepted as either the Tropical or Couch’s Kingbird include one at Neah Bay, Clallam

Scissor-tailed Flycatcher (Tyrannus forficatus) (8, 1). One was near Gardiner, Clallam Co., 2–3 Jul 2007 (STFL-2007-1; photos: RJM, TO).

Bell’s Vireo (Vireo bellii) (3, 3). Washington’s first Bell’s Vireo was at Wyile Slough, Skagit Wildlife Area, Skagit Co., 27–28 Sep 2007 (BEVI-2007-1; KeB, SM). The initial review of this report was tabled in 2008, but in 2011 it was accepted unanimously. The second was at Washtucna, Adams Co., on 6 Sep 2008 (2008-1; DI, SM). A singing bird was at Sun Lakes State Park, Grant Co., 20 May 2009 (2009-1; BSc, DSc). All three birds had features in their descriptions consistent with subspecies V. b. bellii, but were not conclusively identified as such by the observers or the committee. Nearby, Oregon has two records, and Idaho has one record of Bell’s Vireo (Natl. Audubon Soc. Field Notes 52:361, 1998; www.idahobirds.net/ibrc/reviewspecies/vireo_accentor.html#bevi).

Blue-headed Vireo (Vireo solitarius) (6, 1). One was at Lyons Ferry, Franklin Co., on 7 Sep 2008 (BHVI-2008-1; DI, photo: SM).

Philadelphia Vireo (Vireo philadelphicus) (5, 2). A Philadelphia Vireo was accepted from Washtucna, Adams Co., 20 Aug 2005 (PHVI-2005-1; BF), and another was at Hooper, Whitman Co., 3 Jun 2007 (2007-1; GS).

Lead-colored or Interior Bushtit (Psaltriparus minimus plumbeus) (1, 1). After adding the Interior Bushtit group (also known as the Lead-colored or Plumbeous Bushtit) to the list of subspecies it reviews in Washington in 2005, the WBRC received one report from the area where this subspecies is suspected to be resident. On 6 Apr 2009, four were observed near Moses Lake, Grant Co. The photos alone were not diagnostic of the subspecies group, but in combination with the description the documentation was sufficient to confirm it in our state (BUSH-2009-1; DSc). The closest location where nesting of this subspecies is known is in east-central Oregon (Marshall et al. 2003).

Blue-gray Gnatcatcher (Polioptila caerulea) (10, 1). One was at Ocean Shores, Grays Harbor Co., on 13 Sep 2008 (BGGN-2008-1; MBr).

Brown Thrasher (Toxostoma rufum) (10, 2). A Brown Thrasher was at Fort Walla Walla Natural Area, Walla Walla, Walla Walla Co., on 12 Jun 2008 (BRTH-2008-1; MD & MLD). Another was at Nisqually NWR, Thurston Co., on 10 Oct 2008 (2008-2; MLe).

Ovenbird (Seiurus aurocapilla) (19, 2). Ovenbirds at Ellenger Farm, Adams Co., on 4 Sep 2008 (OVEN-2008-1; BW) and Leadbetter Point, Pacific Co., 22 Oct 2008 (2008-2; photo: RJM) bring the state total to 19 records. Most of Washington’s Ovenbirds have occurred during May or June, with only five being in the fall.

Black-and-white Warbler (Mniotilta varia) (30, 3). One was at Washtucna, Adams Co., 14 Sep 2008 (BAWW-2008-1; BoS), one at Kent Ponds, King Co., 24 May 2009 (2009-1; photo: GO, OO), and one at Ridgefield, Clark Co., 30 Apr 2010 (2010-2; THi).

Prothonotary Warbler (Protonotaria citrea) (3, 1). A Prothonotary Warbler, either
a first-year bird or an adult female, at Bateman Island, Benton Co., 10 Aug 2007 (PROW-2007-1; ARJ) was Washington’s third.

Tennessee Warbler (*Oreothlypis peregrina*) (23, 6). One was at Washtucna, Adams Co., 15 Sep 2007 (TEWA-2007-2; MD); another was there 8 Sep 2008 (2008-1; DSc, photo: GT; Figure 14); one was at the Elwha River mouth, Clallam Co., 16 Nov 2008 (2008-2; SM, BW); one was at Montlake Fill, Seattle, King Co., 25 Aug 2009 (2009-1; CSi); one was at Theler Wetlands, Belfair, Mason Co., 15–16 Aug 2009 (2009-2; KeB); and one was at Vantage, Kittitas Co., 28 May 2010 (2010-1; SM).

Mourning Warbler (*Geothlypis philadelphia*) (2, 1). The description of Washington’s second Mourning Warbler, at Washtucna, Adams Co., on 25 Aug 2007 (MOWA-2007-1; SM, DSc) specified an even, thin eye ring broken only slightly in front and back of the eye, undertail coverts long in relation to the tail, and bright yellow in much of the throat, distinguishing this bird from the expected MacGillivray’s Warbler (*G. tolmiei*). The extensively yellow throat indicated a hatch-year bird. Oregon has six records, Idaho two records, and California 146 through 2013.

Northern Parula (*Setophaga americana*) (13, 2). A hatch-year female was at Washtucna, Adams Co., on 2 Sep 2009 (NOPA-2009-1; TA, photo: RJM). Another hatch-year female was in the Sooes River valley, Clallam Co., 17 Sep 2009 (2009-2; BT). Six of Washington’s 13 records have been during the fall, six during the summer, and the first, in 1975, was in winter.

Magnolia Warbler (*Setophaga magnolia*) (20, 7). Records of the Magnolia Warbler include one at Biscuit Ridge, Walla Walla Co., 29 May 2005 (MAWA-2005-2; CWr); one at Bowerman Basin, Grays Harbor Co., 8 Sep 2007 (2007-1; MM); one at Nahcotta, Pacific Co., 27 Jun 2008 (2008-1; JGI); one at Washtucna, Adams Co., 10 Sep 2008 (2008-3; photo: TK; Figure 15); another there 21 Sep 2008 (2008-2;
Bay-breasted Warbler (*Setophaga castanea*) (2, 1). Washington’s second Bay-breasted Warbler, the first to be photographed, was a singing male near Chehalis, Lewis Co., 5 Jun–8 Jul 2006 (BBWA-2006-1; RKo, photos: KeB, KT). California has more than 300 records, Oregon 11, and Idaho three.

Blackburnian Warbler (*Setophaga fusca*) (6, 2). A male Blackburnian Warbler was at Confluence State Park, Chelan Co., 19 May 2007 (BLBW-2007-1; DMa, JeP, GR). Another, in its first year, was at Sentinel Bluffs, Grant Co., 29 Aug 2009 (2009-1; SM, CWr).

Blackpoll Warbler (*Setophaga striata*) (27, 6). New records of the Blackpoll Warbler included one at Vancouver Lake, Clark Co., 13 Sep 2007 (BLPW-2007-3; TA); one at Sentinel Bluffs, Grant Co., 2 Sep 2008 (2008-1; BW); one at Washtucna, Adams Co., 3 Sep 2008 (2008-2; photo: RaH); another one there 7 Sep 2008 (2008-3; RaH); one at Lyons Ferry Park, Franklin Co., 8-11 Sep (2008-4; TA, photos: RJM, SM); and a singing male at Sun Lakes State Park, Grant Co., 24 May 2009 (2009-1; photo: DSc). These bring the state total to 27 records, all but three of which have come from eastern Washington, and all but three of which have been in the fall.

Black-throated Blue Warbler (*Setophaga caerulescens*) (9, 2). A female was at Wapato, Yakima Co., 16–17 Oct 2005 (BTBW-2005-1; ASi, ESi, photo: DnG) and another female was at College Place, Walla Walla Co., 8–11 Nov 2007 (2007-1; photo: MD, MLD), bringing the state total to nine records.

Yellow-throated Warbler (*Setophaga dominica*) (2, 1). Washington’s first recorded Yellow-throated Warbler frequented suet feeders and apples in Twisp, Okanogan Co., 8 Dec 2001–23 Jan 2002 (YTWA-2001-1; RMu, photo, video: SM, photo: RuS). A second, later record, from Asotin Co. in 2003 was discussed in the seventh report of the WBRC (Mlodinow and Aanerud 2008). There are eight records for Oregon, four for Idaho, and more than 150 for California.

Red Fox Sparrow (*Passerella iliaca iliaca/zaboria*) (13*, 6). The six records accepted in this period are of one at Harrington, Lincoln Co., 22 Sep 2007 (RFSP-2007-1; photo: TM); one at Yakima, Yakima Co., 16 Dec 2008 (2008-1; ASi, photo: MRo); one at Redmond, King Co., 31 Dec 2008–2 Jan 2009 (2008-2; MHo, JAP, TP, photo: AL); one at Fall City, King Co., 18 Nov 2009 (2009-3; TA); one at Yakima, Yakima Co., 16 Dec 2009 (2009-4; photo: DnG); and one at South Prairie, Pierce Co., 22 Jan 2010 (2010-1; CWr). These bring Washington’s total to 13 records of this subspecies group since it was added to the review list in 2004.

Rose-breasted Grosbeak (*Pheucticus ludovicianus*) (53*, 14). The 14 records accepted were of an adult male at Robinson Gulch, Kittitas Co., 9 Jun 1990 (RBGR-1990-3; NH); an adult male at Quilcene, Jefferson Co., 1 May 2008 (2008-1; BeS, photo: MAS); an adult male at Arlington, Snohomish Co., 17 Jun 2008 (2008-2; photo: DoB); an adult male at Kent, King Co., 5 Jul 2008 (2008-3; photo: DSt); an adult male at Long Beach, Pacific Co., 21 Jun 2008 (2008-4; CWh, photo: SWh); one in basic plumage at Lind Coulee, Grant Co., 20 Sep 2008 (2008-5; SM); another in basic plumage at Gig Harbor, Pierce Co., 10 Nov 2008 (2008-6; photo: CSm); one in basic plumage at Sequim, Clallam Co., 21 Dec 2008 (2008-7; TCu); a first-winter male at Suncrest, Stevens Co., 21 Feb 2009 (2009-1; photo: MWo); an adult male at Elk, Spokane Co., 13 May 2009 (2009-2; photo: MWo); an adult

Indigo Bunting (Passerina cyanea) (28, 9). The nine Indigo Buntings accepted include a female near George, Grant Co., 18 Aug 2007 (INBU-2007-2; GG, BW); an adult male at Point No Point, Kitsap Co., 4 Jun 2008 (2008-1; photo: BW), an adult male at North Auburn, King Co., 6 Jun 2008 (2008-2; photo: KA); an adult male at Coppei Creek, Walla Walla Co., 5–11 Jun (2008-3; photo: RJM); a hatch-year bird at Juanita Bay, King Co., 15 Nov 2008 (2008-4; photo: RJM); an adult male at Kennewick, Benton Co., 1–2 May 2009 (2009-2; TG, RW; photo: SP); an adult male at Three Forks Park, Fall City, King Co., 10 Jun–9 Aug 2009 (2009-3; photos: RJM, GT); an adult male near Carson, Skamania Co., 21 Jun 2009 (2009-4; WC, photo: MV); and a male, most likely in its second year, at Corkindale Creek, Skagit Co., 19 Jun–12 Jul 2009 (2009-5; photo: RJM).

Dickcissel (Spiza americana) (6, 1). A Dickcissel at Westport, Grays Harbor Co., 31 Oct 2008 (DICK-2008-1; photo: BT) was the sixth recorded in Washington.

Common Grackle (Quiscalus quiscula) (18, 2). Adult males were at Toppenish, Yakima Co., 20 Dec 2009 (COGR-2009-1; AS) and Burien, King Co., 25 Apr 2010 (2010-1; photo: JKa). Both birds appeared to be of the subspecies versicolor.

Great-tailed Grackle (Quiscalus mexicanus) (8, 4). Two were 8 km northeast of Wallula, Walla Walla Co., 15 Jul 2007 (GTGR-2007-1; photo: MD, ML); one was at Newhalem, Whatcom Co., 19–23 Jun 2007 (2007-2; RKa; photos: PDB, RJM), one was at Sprague Lake, Lincoln Co., 17 May 2009 (2009-1; photo: GO, OO); and one was at Ridgefield NWR, Clark Co., 2 Jun 2010 (2010-1; JDz). All were males.

Orchard Oriole (Icterus spurius) (6, 3). New Orchard Oriole records were of one at Samish Island, Skagit Co., 6–7 Nov 2007 (OROR-2007-1; HA, photo: LD, MSD), one at the Wa’atch River, Clallam Co., 9 Sep 2009 (2009-2; CW; photo: RJM), and a hatch-year bird at Hoquiam, Grays Harbor Co., 22–27 Oct 2009 (2009-1; photos: RH, GT, IU; Figure 16).

Reports Not Accepted by the Committee—Identification Uncertain

Tufted Duck (Aythya fuligula) (18*, 6). The brief description of a bird at Hoquiam, Grays Harbor Co., on 30 Apr 2010 (TUDU-2010-4) suggested this species but also included aspects inconsistent with the Tufted Duck, including the bill described as “dark brown.”

Smew (Mergellus albellus) (3, 0). A report of two females at Bainbridge Island, Kitsap Co., on 5 Oct 2008 (SMEW-2008-1) failed to eliminate the Pigeon Guillemot (Cepphus columba), among other much more likely species.

Arctic Loon (Gavia arctica) (3, 0). Loons reported from Point No Point, Kitsap Co., on 14 Feb 2008 (ARLO-2008-1) and Ocean Shores, Grays Harbor Co., on 18 Jan 2009 (2009-1), were seen too distantly and described insufficiently to convince the committee they were the Arctic. The Arctic Loon remains one of the more difficult species to document definitively without photographic support.

Mottled Petrel (Pterodroma inexpectata) (8, 3). A report from off Edmonds, Snohomish Co., on 27 Nov 2009 (MOPE-2009-4) coincided with the same day’s report of the same species off Kitsap Co., which the committee accepted. While the
bird may have been the same as the one seen off Kitsap Co. only two hours earlier and 16 km southeast, the details were not sufficient for acceptance.

Streaked Shearwater (Calonecristis leucomelas) (0, 0). While the report of a Streaked Shearwater about 37 km off Westport, Grays Harbor Co., on 23 Aug 2008 (STRS-2008-1) suggested that species, the observer did not see the face, bill, or underwing and was less than certain of the species in part because of the possibility of an aberrant Pink-footed Shearwater (Puffinus creatopus).

Ashy Storm-Petrel (Oceanodroma homochroa) (2, 1). A sighting off Ocean Shores, Grays Harbor Co., on 1 May 2010 (ASSP-2010-1) was too brief to eliminate other species of dark-rumped storm petrels.

California Condor (Gymnogyps californianus) (1, 0). The report from South Prairie, Pierce Co., on 29 Dec 2009 (CACO-2009-1) was insufficiently detailed.

Harris’s Hawk (Parabuteo unicinctus) (0, 0). A report from Race Lagoon, Whidbey Island, Island Co., on 31 Aug 2008 (HASH-2008-1) failed to be accepted, both because some committee members were not convinced the description ruled out other raptors and because Harris’s Hawk is common in falconry, raising the question of wild origin. Harris’s Hawk remains unrecorded in neighboring Idaho or Oregon.

Broad-winged Hawk (Buteo platypterus) (18, 5). A report of one at Ridgefield, Clark Co., on 21 Apr 2009 (BWHA-2009-2) did not eliminate the Red-shouldered Hawk.

Zone-tailed Hawk (Buteo albonotatus) (0, 0). The report of a Zone-tailed Hawk from the bridge of Highway 12 over the Satsop River, Grays Harbor Co., on 18 Dec 2008 (ZTHA-2008-1) failed to consider a dark-morph Rough-legged Hawk (B. lagopus) or Harlan’s Red-tailed Hawk (B. jamaicensis harlani).

Bar-tailed Godwit (Limosa lapponica) (51*, 4). In its previous summaries, the WBRC overlooked a report not accepted from Bridgeport, Douglas Co., 5 Aug 1996 (BTGO-1996-1).

Long-billed Murrelet (Brachyramphus perdix) (7, 0). A report from Luhr Beach, Thurston Co., on 27 Aug 2004 (LBMU-2004-1) was not accepted in a 2006 meeting because of insufficient details.

Horned Puffin (Fratercula corniculata) (26, 6). A possible immature Horned Puffin off Westport, Grays Harbor Co. (HOPU-2008-1) was seen briefly in the distance, and the details reported were insufficient to convince the committee.

Northern Hawk Owl (Surnia ulula) (26, 9). A report from Seattle, King Co., 30 Nov 2007 (NHOW-2007-4) was short on details.

Allen’s Hummingbird (Selasphorus sasin) (1, 0). The description of a supposed adult male Allen’s Hummingbird at Deer Lake, Island Co., on 11 May 2009 (ALHU-2009-1) fit a Rufous Hummingbird (S. rufus) better.

Yellow-bellied Sapsucker (Sphyrapicus varius) (8, 2). A report from Moses Lake, Grant Co., on 12 Sep 2004 (YBSA-2004-1) was considered at two meetings but ultimately not accepted. A report from 16 km west of Eatonville, Pierce Co., on 9 Apr 2008 (2008-1) failed to address the Red-naped Sapsucker (S. nuchalis). A reported second Yellow-bellied Sapsucker with the one accepted at Ginkgo State Park, Kittitas Co., on 14 Apr 2008 was only seen briefly, and no photos or detailed descriptions were possible (2008-2).
Crested Caracara (\textit{Caracara cheriway}) (3, 0). A report of a Crested Caracara from Marymoor Park, Redmond, King Co., on 11 Jul 2009 (CRCA-2009-1) did not persuasively eliminate the Osprey (\textit{Pandion haliaetus}).

Alder Flycatcher (\textit{Empidonax alnorum}) (3, 1). A report of an Alder Flycatcher calling but not singing at Kettle Falls, Ferry Co., 7 Jun 2004 (ALFL-2004-1) was not accepted. A reported Alder Flycatcher near Clarkston, Asotin Co., on 11 Jun 2008 (2008/1) was well described, but the vocalization was heard only briefly and the committee was reluctant to accept the report without a longer interaction.

Eastern Phoebe (\textit{Sayornis phoebe}) (7, 0). In reviewing historical reports, the committee declined to accept the reports of the Eastern Phoebe in Washington published in Bent (1942) (EAPH-0000-1). Three sight reports are mentioned, from Camas, Clark Co., Yakima, Yakima Co., and Pullman, Whitman Co. No specimens were collected, and no dates were reported. These reports probably referred to Say's Phoebe (\textit{S. saya}).

Tropical/Couch's Kingbird (\textit{Tyrannus melancholicus/couchii}) (21, 5). The date of a report from Discovery Park, Seattle, King Co., 9 June 1999 (TRKI/COKI-1999-1) implies the bird was a Western Kingbird (\textit{T. verticalis}).

Scissor-tailed Flycatcher (\textit{Tyrannus forficatus}) (8, 1). Though closely following the Scissor-tailed Flycatcher accepted from the same county on 15 May 2003 (Mlodinow and Aanerud 2008), the report from Silica Road, Grant Co., 17 May 2003 (STFL-2003-2) was insufficiently detailed.

Philadelphia Vireo (\textit{Vireo philadelphicus}) (5, 2). A report from Washtucna, Adams Co., 25 May 2007 (PHVI-2007-2) included a photo and description yet did not rule out a bright Warbling Vireo (\textit{V. gilvus}). Another bird reported from the same locality on 31 May 2008 (2008/1) was well-described but not convincingly enough to rule out alternatives to the Philadelphia Vireo. A 30 Aug 2008 report from Washougal, Clark Co. (2008-2), did not convincingly rule out other vireos.

Wrentit (\textit{Chamaea fasciata}) (0, 0). Written details of a Wrentit reported from the Montlake Fill in Seattle, King Co., 22 Aug 2007 (WREN-2007-1) were inadequate for a species unknown in Washington.

Crested Myna (\textit{Acridotheres cristatellus}) (0, 0). A brief report from Edmonds, Snohomish Co., on 27 Dec 2007 (CRMY-2007-1) did not eliminate other species of mynas, any of which presumably would have been an escapee. An introduced population of the Crested Myna persisted on Vancouver Island from the late 1800s until 2003 (Self 2003). Scattered, undocumented reports of this species in Washington over the years possibly represented birds dispersing from British Columbia, though the WBRC has reviewed no previous reports (Mattocks et al. 1976).

Phainopepla (\textit{Phainopepla nitens}) (1, 0). The report of an adult male from Mill Creek, Snohomish Co., on 31 Jul and 5 Aug 2009 (PHAI-2009-1) was insufficient for acceptance.

McKay's Bunting (\textit{Plectrophenax hyperboreus}) (3, 0). A reported McKay's Bunting along Cameron Lake Road, Okanogan Co., on 17 Feb 2008 (MKBU-2008-1) was tantalizing but was seen too distantly for a pale male Snow Bunting (\textit{P. nivalis}) to be ruled out.

Worm-eating Warbler (\textit{Helmitheros vermivorum}) (0, 0). A report from Tacoma, Pierce Co., on 13 Jul 2005 (WEWA-2005-1) was more likely of another species. Neither the Savannah Sparrow (\textit{Passerculus sandwichensis}) nor wrens were ruled out by the details provided.

Black-and-white Warbler (\textit{Mniotilta varia}) (30, 4). A report from Mercer Island,
King Co., 22 Jun 1992 (BAWW-1992-2) was not accepted by the committee in 1994 but the decision was inadvertently never published. A report from the north side of Stacker Butte, Klickitat Co., 21 May 2010 (2010-1) failed to eliminate the Black-throated Gray Warbler (Setophaga nigrescens) convincingly. A song apparently of a Black-and-white Warbler was heard along Tieton Road, Yakima Co., on 20 Jun 2010 (2010-3). Concerns regarding another species of warbler singing an aberrant song prevented the committee from endorsing this report.

Tennessee Warbler (Oreothlypis peregrina) (23, 6). A report from Sentinel Gap, Grant Co., on 1 Sep 2007 (TEWA-2007-3) raised concerns about the distance to the bird as well as inconsistencies in the described plumage and call note.

Blackpoll Warbler (Setophaga striata) (27, 6). Details of Blackpoll Warblers reported from Spokane, Spokane Co., on 14 Oct 2001 (BLPW-2001-1) and from Vantage, Kittitas Co., on 9 Oct 2005 (2005-4) were inadequate.

Black-throated Blue Warbler (Setophaga caerulescens) (9, 2). The description of a male at Silver Lake, Cowlitz Co., on 9 Apr 2008 (BTBW-2008-1) lacked detail sufficient for acceptance.

Lark Bunting (Calamospiza melanocorys) (11, 0). A report of a male Lark Bunting in alternate plumage from Columbia NWR, Grant Co., on 17 Aug 2008 (LARB-2008-1) did not eliminate other species, and the described plumage seemed unlikely for the season. The description of a female at Ross Lake, Whatcom Co., 8 Jun 2010 (2010-1) was not adequate to establish the identity of the species, and it was unclear whether the bird was definitely in Washington or remained on the Canadian side of the border.

Indigo Bunting (Passerina cyanea) (28, 9). Distant and backlit photos, unaccompanied by a written description filling in the gaps, were not sufficient to rule out a hybrid Lazuli × Indigo Bunting for a bird observed at Long Swamp, Okanogan Co, 13 Jul 2009 (INBU-2009-6).

Dickcissel (Spiza americana) (6, 1). The description of a Dickcissel reported at the Montlake Fill in Seattle, King Co., on 18 Apr 2009 (DICK-2009-1) had several inconsistencies with that identification, including apparent size.

Hoary Redpoll (Acanthis hornemanni) (14, 1). A report from Seattle, King Co., 30 Dec 2001 (HORE-2001-2) was not accepted by the committee in 2002, but the decision was inadvertently never published. A report from Lake Padden, Whatcom Co., 9 Jan 2008 (2008-1) more likely represented a Common Redpoll (A. flammea).

Reports Not Accepted by the Committee—Identification Certain, Origin Unknown

American Black Duck (Anas rubripes) (0, 0). As mentioned in the introduction, in 2011 the WBRC removed this species from the Washington list after concluding that American Black Ducks of wild origin have not been convincingly shown to have occurred in the state. Particularly for recent reports, escapees from captivity are far more likely. The committee continues to evaluate reports, however, first considering the species’ identity, then separately voting on the question of origin. It recognized
these four reports as representing American Black Duck but did not accept them because of uncertain origins: single females at Juanita Bay, Kirkland, King Co., 1 Oct 2007 (ABDU-2007-2) and 1 Aug–18 Oct (likely the same bird returning; 2008-2); one at Stanwood, Snohomish Co., 10 Nov 2007 (2007-1); one at Port Susan Bay, Snohomish Co., 4 May 2008 (2008-1). Subsequently, a Woodinville breeder informed the committee that many free-flying American Black Ducks had escaped his ponds in recent years.

Common Ground-Dove (*Columbina passerina*) (0, 0). While the details of a report near Rochester, Thurston Co., 26 Aug 2008 (COGD-2008-1) seemed to confirm a Common Ground-Dove, the bird appeared tame, so the committee refrained from adding this species to the state list on the basis of this report.

Northern Cardinal (*Cardinalis cardinalis*) (0, 0). Photographs of a female in Vancouver, Clark Co., on 28 Apr 2009 (NOCA-2009-1) left no doubt about the bird’s identity. As with other sightings of Northern Cardinal, the committee continues to wrestle with the question of origin. Sufficient doubt remains over the origin in Washington of any Northern Cardinal, a species regularly kept in captivity, that the committee has thus far not endorsed any reports.

CORRECTIONS

A review of previously published reports, aided to a large extent by Laurie Knittle of Washington Birder (wabirder.com), has uncovered a number of unintentional errors published in previous WBRC reports.

Smew (*Mergellus albellus*). “Alan Grenon” is the correct spelling for one of the observers of Washington’s third recorded Smew (SMEW-1993-1), not “Alan Grinnon” as originally published in the WBRC’s second report (Tweit and Skriletz 1996:27).

Bar-tailed Godwit (*Limosa lapponica*). The 18 Oct 2005 observation at Tulalip Bay, Snohomish Co. (BTGO-2005-6) was reported by Maxine Reid, not M. Bacon as published (Aanerud 2011:40).

Lesser Black-backed Gull (*Larus fuscus*). The second-year bird at Sun Lakes, Grant Co. (LBBG-2004-2) was present from 8 to 14 Oct 2004, not 2005 as originally written (Mlodinow and Aanerud 2008:30).

Black-throated Blue Warbler (*Setophaga caerulescens*). One at Davenport Cemetery, Lincoln Co. 26 Sep 2004 (BTBW-2004-1) was a male, not a female as published by Modinow and Aanerud (2008:36–37).

Painted Bunting (*Passerina ciris*). The report of Washington’s first Painted Bunting, from 10 Feb to 2 Mar 2002 (PABU-2002-1), should have included Rachel Lawson as the initial reporter and photographer (Mlodinow and Aanerud 2006:48–49).
ACKNOWLEDGMENTS

We thank the following people for advice and comments. WBRC committee members: Kevin Aanerud, Tom Aversa, Phil Mattocks, Steve Mlodinow, Dennis Paulson, Doug Schonewald, Bob Sundstrom, Bill Tweit, Brad Waggoner, Charlie Wright. Outside comments, advice, and support from Joseph Buchanan, Alan Contreras, Jon Dunn, Dan Gibson, Steve Heinl, Laurie Knittle, Penny Rose, and Dan Stephens.

In addition, our thanks to the following observers for contributing their records of birds for our consideration: Kevin Aanerud (KAa), Jim Acton (JA), Kathy Andrich (KAa), Howard Armstrong (HA), Tom Aversa (TA), Dimitri Bader (DmB), Donne Bates (DoB), Geert Beckers (GbE), Brian Bell (BB), Vicki Biltz (VB), Michael Bishop (MBi), Gary Bletsch (GBi), Keith Brady (KeB), Marv Breese (MvB), Kirsten Brennan (KIB), Marc Breuninger (MBr), Kat Brooks (KaB), Taylor Brooks (TB), Trudy Cadman (TCa), Wilson Cadly (WC), Robin Cameron (RoC), Keith Carlson (KC), Richard Carlson (RiC), Michael Carmody (MC), Jeff Cohen (JeC), Joe Conforti (JoC), Craig Corder (CCo), Rudy Corder (JuC), Bryan Crawford (BC), Corinne Crawford (CCr), Tim Cullinan (TCu), Lee Dallas (LD), Mary Sue Dallas (MSD), John Danielson (JDn), Jim Danzenbaker (JDz), Paul DeBruyn (PDB), Jacinda Denison (JDe), MerryLynn Denny (MLD), Mike Denny (MD), Tom Derrer (TD), Joe Dlugo (JDl), B. Dee (BD), Buck Domitrovich (BuD), Bill Dowd (BiD), Scott Downes (SD), Dennis Duffy (DD), Carolyn Eagan (CE), Donna Ern (DE), Marie Fernandez (MFd), Eddie Findley (EF), Shawnee Finnegam (SF), Michael Fleming (MFi), Tracy Fleming (TF), Bob Flores (BF), Dave Freriks (DF), George Gerds (GG), Jeff Gilligan (Gji), Victor Glick (VG), Andrea Grad (AG), Denny Granstrand (DnG), Terry Gray (TeG), Tony Greagor (ToG), David Green (DaG), John Gremberg (JG), John Gunningham (JGu), Arden Hagen (AH), Sherry Hagen (SHg), Nita Hamilton (NH), Paul Hansen (PH), Todd Hass (THa), Shawn Hawks (Shf), HawkWatch International (HWI), Carl Haynie (CH), David Henderson (DaH), Donna Henderson (DoH), Rick Hibshman (Rib), Tyler Hicks (THi), Marcia High (MH), Randy Hill (RH), Michael Hobbs (MHo), Rob Hollingshead (RoH), Terry Hunefeld (THu), Eugene Hurn (EH), David Irons (Di), Jonathan Isacoff (JI), Joel Jakabosky (JJ), Austin Ray Johnson (ARJ), Karen Johnson (KJ), Anne Kahle (AKa), Joanne Kaufman (JKa), Ted Keneffick (TK), Gordon Kent (GK), Ken Knittle (KK), Steve Kohl (SK), Anna Kopitov (AKo), Russ Koppendrayer (RKo), Penny Koyama (PK), James Kravol (JKr), Elise Kreiss (EK), David Krueper (DK), Christy Kuhlman (CK), Jan Kummert (JKu), Robert Kuntz (RKu), Bruce LaBar (BLB), Bill LaFramboise (BLF), Nancy LaFramboise (NLF), Greg Lasley (GL), Anne Lawrence (AL), Rachel Lawson (RL), Kyle Leader (KL), Carol Ledford (CLe), Martha Lee (MLE), Terry Little (TL), Susan Littlefield (SL), Chet Lowry (CLO), Mike Lundstrom (MLu), Mike Mack (KM), Tom Mansfield (TM), Mike Marsh (MM), Dick Martin (DMA), Nick Mason (NM), Jean McGregor (JMG), Paul Menzel (PM), Ryan J. Merrill (RMJ), G. Scott Mills (GSM), Steve Mlodinow (SM), Diana Moore (DMo), Randy Moore (RMo), Jim Morris (JMo), Richard Murray (RMu), Jeremy Nance (JN), Vic Nelson (VN), Anna Nousek (AN), Tim O’Brien (TO), Grace Oliver (GO), Ollie Oliver (Oo), Hal Opperman (HO), Jeff Parsons (JeP), Mike Patterson (MPa), Jackie Paul (JaP), Tom Paul (TP), Jan Paulsen (IP), Dennis Paulson (DP), Scott Peterson (SpE), Matthew Pike (MPi), Steve Pink (SPi), Jim Pruske (JPr), Alan D. Rammer (AR), Moira K. Ray (Mra), Maxine Reid (MRe), David Richardson (CR), Carol Riddell (CR), Randy Robinson (RR), Patti Rogers (PRo), Gretchen Rohde (GR), Mike Roper (Mro), Bob Russell (BR), Patricia Rutherford (PRu), Stefan Schlick (SSc), Barb Schonewald (BSc), Doug Schonewald (DSc), Libby Schreiner (LS), Carol Schulz (CSc), Adam Sedgley (AsE), Ryan Shaw (RSh), Bill Shelmardine (BSH), Gina Sheridan (GS), Connie Sidles (CSi), Carol Smith (Csm), Stuart Smith (Ssm), Bob Stallcop (BSo), Ben Stamper (BES), Mary Ann Stamper (MAS), Andy Stepniewski (AsI), Ellen Stepniewski (ES), Dan Streiffert (DSt), Patrick Sullivan (Ps), Ruth Sullivan (Rs), Rob Suryan (RoS), Dave Swain (DSw), Gregg Thompson (GT), Mary Anne Thorbeck (MAT), Shep Thorp (ST), Rick Toochin (RT), Khanh Tran (KT), John Trochet (JTr), John Tubbs (JTu), Bill Tweit (BT), Igor Uhrovic

Accepted 28 June 2015

WFO’S 41ST ANNUAL CONFERENCE — HUMBOLDT COUNTY, CALIFORNIA

28 September–2 October 2016

Please join us for Western Field Ornithologists 41st annual conference, to be held 28 September through 2 October 2016 at the River Lodge Conference Center, on the Eel River in Fortuna, California.

Events will include indoor workshops on Friday and Saturday mornings, science sessions on Friday and Saturday, a no-host reception on Friday evening, our annual banquet on Saturday evening, and field trips Thursday, Friday, Saturday and Sunday.

Fortuna is within 14 miles of several important birding areas, including the Eel River State Wildlife Management Area, the Loleta Bottoms, the Ferndale Bottoms, and Russ Park. Within the southern portion of nearby Humboldt Bay are several more notable sites, including King Salmon, Fields Landing County Park, the Humboldt Bay National Wildlife Refuge’s Hookton Slough Trail and Shorebird Loop Trail and the Mattole Valley Loop. Farther afield, outstanding birding areas include the Arcata Marsh and Wildlife Sanctuary, the Eureka waterfront, Big Lagoon County Park, Woodley Island and Vance Road, Mad River County Park, the Blue Lake riparian area and Mad River Hatchery, and the Horse Mountain area.

We look forward to seeing you in Fortuna!
NOTES

NEST-SITE SELECTION OF THE BLACK-CHINNED HUMMINGBIRD IN SOUTHEAST ARIZONA

HAROLD F. GREENEY, Yanayacu Biological Station & Center for Creative Studies, Cosanga, Napo, Ecuador; c/o Foch 721 y Amazonas, Quito, Ecuador; revmmoss@yahoo.com

CHRIS E. HAMILTON, Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada K9J 7B8

EVELYNG K. ASTUDILLO-SÁNCHEZ, SUSAN M. WETHINGTON, ERIC R. HOUGH, CHRISTINA M. RIPPLINGER, and KRISTA K. SCHMIDT, Hummingbird Monitoring Network, P.O. Box 115, Patagonia, Arizona 85624

The selection of safe breeding sites is an important behavioral component of avian population ecology (Newton 1998), and nest predation is a major ecological force limiting reproductive success and shaping the spatial distributions of breeding birds (Ricklefs 1969, Martin 1995). Avian nesting sites can be examined at multiple spatial scales, from broad landscape levels, to nest and patch characteristics, to microsite features such as overhead concealment and nest orientation (Martin 1993, Paton 1994). Microhabitat features of the vegetation used as nest substrates are especially important for camouflage and protection from inclement weather (Martin 1995, Deeming 2002, Kolbe and Janzen 2002). Numerous studies have linked specific aspects of nest microsites and nesting success in a variety of birds (e.g., Martin and Roper 1988, Liebezeit and George 2002, Aguilar et al. 2008, Powell et al. 2010, Miller 2014). While many studies of avian nesting success focus on predation or brood parasitism (e.g., Li and Martin 1991, Larison et al. 1998, Lima 2009), in some species, particularly species with narrow physiological tolerances like hummingbirds (Calder and Booser 1973, Calder 1994, 2002), nest placement may also be important for maintaining the microclimate around the nest (Deeming 2002).

The Black-chinned Hummingbird (Archilochus alexandri) is a migratory species that nests from southern British Columbia to extreme northern Mexico and southern Texas, wintering from southern Texas to south-central Mexico (Baltosser and Russell 2000). As pointed out by Baltosser (1978), its choice of nesting substrate tends to vary geographically, so detailed studies are needed from multiple areas before we can assess the relative importance of geographic variation in its nest placement. Additionally, though there are many anecdotal accounts of the nesting of the Black-chinned Hummingbird, most studies addressing nest-site selection have focused on habitat structure or species of tree used as nest substrate rather than actual nest placement or microsite characteristics (e.g., Stamp 1978, Brown 1992, Smith et al. 2009). If not, their sample sizes are very small (e.g., Christy 1932).

The success of Black-chinned Hummingbird nests in southeastern Arizona has been linked to their placement in relation to nests of the Cooper’s Hawk (Accipiter cooperii) and Northern Goshawk (A. gentilis) and to the spatial patterns of foraging by the Mexican Jay (Aphelocoma wollweberi), an important predator of eggs (Greeney and Wethington 2009, Greeney et al. 2015). To provide baseline information on nest-microsite selection to explore this trophic cascade further, we describe the microsite and placement of Black-chinned Hummingbird nests on the basis of 412 nests in the Chiricahua Mountains of southeastern Arizona. We made all observations in the vicinity of the Southwestern Research Station (31° 53’ N, 109° 12’ W; elevation 1600 m), located west of Portal, Arizona. We located the nests by searching riparian areas at elevations of 1400–1750 m from April to July during 2007 and 2008. We
NOTES

located 95% of nests by observing the female’s behavior and following her to the nest, circumventing the concealing effect of nest height and foliage density.

We measured 11 variables at each nest. We estimated the height of substrate trees to the nearest 0.5 m with a 7-m pole and used a tape to measure the trunk’s diameter at breast height (DBH). Using a 7-m pole, we also measured nest height to the nearest 10 cm, estimating the height of nests over 7 m by using the pole as a gauge. We visually estimated the distance of the nest from the central portion of the tree and from the outer edge of the foliage at nest height, and estimated the diameter of the supporting branch by visually estimating the relative sizes of each feature in relation to the width of the nest in question, using mean measurements taken from 26 nests collected in the same study area (Greeney unpubl. data). We noted many nests placed near forked limbs, which appeared as a horizontally oriented “Y,” with one arm of the fork overhanging the nest and one supporting it, so we estimated the distance between the nest and the fork, as well as the distance from the nest rim to the overhanging arm of the fork, and then estimated the diameter of this overhead cover. For each nest we also noted if the supporting branch was angled, and whether it was living or dead, and we made note of all nests that were constructed on the visible remains of an old nest. We recorded the orientation of nests in relation to the substrate tree with a hand-held compass.

We used circular statistics to test for non-uniform directionality of nest orientation (Bergin 1991), running Rao’s uniformity test \((U: \text{ Rao 1976, Batschelet 1981})\) in Oriana 2.0 (Kovach, Pentraeth, Wales). In addition to the probability, we present mean vector length \((r)\), which is a unitless measure \((0–1)\) of the dispersion of the data, with a value of 0 being widely dispersed (uniform) and 1 being tightly concentrated.

Of 412 nests, 266 (64.6%) were in alligator juniper \((\text{Juniperus deppeana})\). The remainder were built in Arizona sycamore \((\text{Platanus wrightii}; 17.5\%)\), oaks \((\text{Quercus spp.; 10.9\%})\), one-seeded juniper \((\text{J. monosperma}; 2.2\%)\), spiny hackberry \((\text{Celtis ehrenbergiana}; 2.2\%)\), pines \((1.2\%)\), and Wright’s silktassel \((\text{Garrya wrightii}; 0.7\%)\), as well as one nest \((0.2\%)\) in each of Fremont cottonwood \((\text{Populus fremontii})\), pecan \((\text{Carya illinoinensis})\), and Arizona cypress \((\text{Cupressus arizonica})\). Substrate trees had an estimated mean height of \(11.3 \pm 3.7 \text{ m (n = 399)}\) and a mean DBH of \(37 \pm 25 \text{ cm (n = 362)}\).

Mean estimated nest height was \(5.7 \pm 2.6 \text{ m (n = 411)}\), with 56% of nests in the upper half of the substrate (tree) and 28% in the upper third \((n = 400)\). Mean estimated distance from the nest to the center of the tree was \(2.6 \pm 1.4 \text{ m (n = 408)}\), and mean estimated distance to the end of the supporting branch was \(1.1 \pm 0.6 \text{ m (n = 408)}\); thus 63% of nests were in the outer third of the foliage (as measured at the height of the nest). Nests showed a significant bias toward orientation south–southeast with respect to the substrate tree \((n = 98, U = 156.408, r = 0.627, p < 0.01; \text{Figure 1})\).

Black-chinned Hummingbird nests were more likely to nest on slightly angled branches \((56\%, n = 403)\) as well as on living branches \((57\%, n = 409)\), and branches used had a mean estimated diameter of \(1.6 \pm 0.9 \text{ cm}\). Most nests were also placed close to the fork of a branch oriented so that they were covered by one arm of the “Y” \((65\%, n = 412)\). Where a covering branch was present, nests were built an average of \(6.9 \pm 3.5 \text{ cm below this branch and } 7.4 \pm 5.2 \text{ cm from the forking of the supporting arm, and overhead branches were on average } 2.7 \pm 1.8 \text{ cm in diameter (n = 266).}

At a mean height of almost 6 m above the ground, the Black-chinned Hummingbird nests we studied were at the higher end of the range reported in the literature or from collected nests. While Baltosser (1986), also working in southeastern Arizona, found most nests 5–6 m above the ground, studies in California and northern Arizona suggest a mean height of 2 m (Brown 1992, Baltosser and Russell 2000). Pitelka (1951) described most nests as 2–3 m up in southern California, while studies in New Mexico and Texas reported nests generally below 4 m (Baltosser 1978, Ortego and Sargent in Baltosser and Russell 2000). It should be noted, however, that mean substrate height varies considerably by site (e.g., 2.4 m, Brown 1992, vs. 11.3 m, this study)
NOTES

The Black-chinned Hummingbird’s preference for nesting in riparian areas is well established (Grinnell and Miller 1944, Baltosser 1989, Strong and Bock 1990), but other habitats are also commonly used, including orchards (Grinnell and Miller 1944, Woods 1936, Small 1994) and well-irrigated urban areas (Rosenberg et al. 1987), perhaps suggesting that humidity is an important factor in nest-site selection. While we did not thoroughly search areas outside of riparian zones, no females we followed were attending nests away from riparian zones, and we did not find any nests outside of riparian zones during casual searches or travel between focal areas. Even within southeast Arizona the preferred species of substrate tree varies considerably from study to study: Baltosser (1978, 1989) found sycamores, cypresses, and maples to be preferred nesting substrates, with the population closest to our site (Rucker Canyon) showing a secondary preference for junipers (Baltosser 1978). Elsewhere, Brown (1992) reported the introduced tamarisk (*Tamarix ramosissima*) as the preferred substrate in northern Arizona, as did Smith et al. (2009) working in southwestern New Mexico, where they also noted use of Russian olive (*Elaeagnus angustifolia*) and eastern cottonwood (*Populus deltoides*). California studies have shown a preference for sycamore, with oak and willow also used (Wueste 1902, Pitelka 1951, Baltosser and Russell 2000). Prior authors have remarked on the Black-chinned Hummingbird’s use of the outer portions of substrate trees (Merriam 1896, Unglish 1932, Woods 1936), while others have found a preference for the lower strata of substrate trees (e.g., Ortego and Sargent in Baltosser and Russell 2000).

The population of Black-chinned Hummingbirds we studied showed a clear preference for the upper, outer portions of junipers, choosing slightly angled, living branches, smaller in diameter than the nest and with a branch sheltering it from above. We believe that such details of site selection may be important for successful reproduction, with any geographic variation in substrate species more likely to be explained by which tree species is locally abundant and having a growth form with architectural qualities to provide such sites.

Figure 1. Compass orientation, with respect to the substrate’s trunk, of Black-chinned Hummingbird nests in southeast Arizona (0° = north). The length of a given bar expresses the number of nests oriented in that direction.
NOTES

We suggest the preference for nesting at branch tips, along with the use of thin supports, may be in response to pressures by non-aerial predators such as snakes and squirrels, and that overhead cover is an important microsite characteristic that has been overlooked in prior studies (but see Holland 1916). Simply because of the density of the trees in which we found nests, we suspect that many of our nests that were not categorized as having overhead cover were actually shaded by thin foliage to some degree. Additionally, we speculate that a thick branch directly above the nest may encourage arboreal predators such as squirrels to travel along these upper branches, reducing the chance that they will physically or visually encounter a hummingbird nest hidden below the branch.

We thank Dawn Wilson and the staff of Southwest Research Station for their help and support during our field work. This study was funded by a grant from the U.S. Fish and Wildlife Service to Wethington, agreement number 201815J857, and the Hummingbird Monitoring Network. Mark Mendelsohn, Daniel S. Cooper, Michael C. Long, and Quresh Latif provided valuable revisions to improve the clarity of this manuscript. Greeney’s field work is also supported by John Moore and Matt Kaplan through the Population Biology Foundation, as well as by Field Guides and the Maryland Ornithological Society.

LITERATURE CITED

NOTES

Coast Avifauna 27.
vs. cowbird brood parasites: Impacts of forest structure and nest-site selection.
Li, P. J., and Martin, T. E. 1991. Nest-site selection and nesting success of cavity-
Lieberzeit, J. R., and George, T. L. 2002. Nest predators, nest-site selection, and
nesting success of the Dusky Flycatcher in managed ponderosa pine forest. Condor
104:507–517.
Lima, S. L. 2009. Predators and the breeding bird: Behavioral and reproductive
Martin, T. E. 1995. Avian life history evolution in relation to nest sites, nest predation,
Miller, K. E. 2014. Great Crested Flycatcher (Myiarchus crinitus) nest-site selection
Merriam, F. A. 1896. Notes on some of the birds of southern California. Auk
Pitelka, F. A. 1951. Breeding seasons of hummingbirds near Santa Barbara, Califor-
Powell, L. L., Hodgman, T. P., Glanz, W. E., Osenton, J. D., and Fisher, C. M.
2010. Nest-site selection and nest survival of the Rusty Blackbird: Does timber
management adjacent to wetlands create ecological traps? Condor 112:800–809.
33:1–10.
Zool. 8:1–48.
ingbird nest-site selection and nest survival in response to fuel reduction in a
Condor 80:64–71.
County, California. Condor 34:228.
Wueste, R. C. 1902. A few notes on the nesting of Trochilus alexandri. Condor

Accepted 6 August 2015
COLORADO’S FIRST ACCEPTED RECORD OF THE CAVE SWALLOW

STEVEN G. MLODINOW, 530 Peregrine Circle, Longmont, Colorado 80504; SGMlod@aol.com
TONY LEUKERING, 1 Pindo Palm St. W, Largo, Florida 33770; greatgrayowl@aol.com

Colorado’s first accepted record of a Cave Swallow (Petrochelidon fulva) involved an immature photographed at Prewitt Reservoir, Washington County, on 17 July 2013. The bird occurred amid this species’ substantial range expansion and a complex, rapidly changing pattern of vagrancy in the United States and Canada over the last 50 years. Here we detail the species’ colonization of the U.S. and summarize these patterns of vagrancy.

On 17 July 2013, Mlodinow, Andrew Core, and Sean Walters were walking across extensive mudflats at the western end of Prewitt Reservoir, Washington County. Approximately 400 swallows were feeding over the flats when Mlodinow noted an orange-throated swallow headed toward them. He alerted his companions, and both rapidly located the bird. It circled the observers for about 10 minutes, approaching as closely as 3 meters, often in excellent light. When the bird was farther away, it was easy to relocate among the Cliff Swallows (P. pyrrhonota) by its pale orange throat. We took several photographs identifying the bird as a Cave Swallow. The Colorado Bird Records Committee (CBRC) later accepted this record as the state’s first (Faulkner 2014).

Leukering (2011) summarized five pre-2010 reports of the Cave Swallow from Colorado, including three single-observer sightings not submitted to the CBRC but likely representing correct identifications: Las Animas County, May 2003; Bent County, July 2005; and Pueblo County, September 2006. The two other reports include a bird that may have been a hybrid Cliff Swallow × Cave Swallow and one that was not accepted by the CBRC.

The shape and structure of the Cave Swallow we observed were much like those of a Cliff Swallow. The head sported a small orange patch on the forehead that was considerably darker than that of an adult Cliff Swallow but probably within range of young Cliff Swallows. The size of the forehead patch was consistent with that of an immature of either species. The throat was a medium orange that was distinctly paler than that of any Cliff Swallow present and was unmarrred by dark (or light) markings. This orange went up onto the auriculars and blended into the collar, which transitioned to grayish on the hindneck. The demarcation between collar and back was fairly crisp. The crown was dull dark glossy blue, barely extending down to the eyes and curving sharply upward posterior to the eyes (Figure 1). The back and wings were dull glossy dark blue, without white streaking on the back. Thus both the head and back had already taken on the aspect of an adult. The rump was orange. The tail was dark and square. The white chest and belly blended into the sides, which were orange-buff mixed with dusky. The undertail coverts were washed in orange-buff and had very limited markings, seemingly restricted to a couple narrow dusky smudges on the outermost posterior undertail coverts. The small area of yellow at the gape is consistent with a recent fledgling.

The Colorado Cave Swallow had orange auriculars, inconsistent with any plumage of the Cliff Swallow. The throat of the Colorado bird was plain orange. In contrast, by the time a Cliff Swallow acquires back and crown plumage resembling that of an adult (as in the Colorado bird), the throat should have dark smudging resembling, or starting to resemble, that of an adult. Similarly, the background color of the throat should be a darker orange than that of the Colorado bird. The Colorado bird had a narrow cap that did not extend much behind the eye, unlike the more extensive cap
of a Cliff Swallow. Finally, the more lightly marked undertail coverts of this bird are typical of a Cave Swallow and would be unusual for a Cliff Swallow (Leukering 2011).

Cave Swallows in the United States and Canada consist of two subspecies, *P. f. fulva* from the West Indies and *P. f. pallida* from northern Mexico (Phillips 1986). Though *fulva* was first recorded in the U.S. in Florida in 1890 (Scott 1890), it was not noted breeding there until 1987 (Smith et al. 1988) and has not subsequently expanded its breeding range beyond Dade County (Strickler and West 2011). The first record from the western U.S. was of *pallida* in Texas in 1910 (Bishop 1910), with the first breeding records coming from Kerr County on the Edwards Plateau in 1914 (Thayer 1914) and New Mexico’s Guadalupe Mountains in 1930 (Johnson 1960). Subsequently, the New Mexico population has expanded only slightly (Strickler and West 2011), while the Texas population has expanded greatly (Kosciuch et al. 2006)

As of 1956, the Texas breeding range of the Cave Swallow was still limited to Kerr County (Selander and Baker 1957), but by 1966, the species bred in seven counties, occupying a range of nearly 26,000 km² (Kosciuch et al. 2006). By 1970, the breeding range was ~80,000 km², increasing to ~140,000 km² in 1980 and ~191,000 km² in 1990 (Kosciuch et al. 2006). Much of this range expansion was to the north and west, but in the 1990s, Cave Swallows also spread northeast, with a total range of almost 259,000 km² by 1999 (Kosciuch et al. 2006). This rapid increase in range is likely largely due to Cave Swallows adapting to the use of bridges and culverts (Martin and Martin 1978). The breeding population of *P. f. pallida* now extends from southeastern New Mexico through the Edwards Plateau north to Comanche and Kiowa counties, Oklahoma (first Oklahoma breeding record in 2011; J. Gryzbowski pers. comm.) and east to southwestern Louisiana (first Louisiana breeding record in 1997; Cardiff 1997).

A species with an increasing population or breeding range should produce more vagrants, a correlation demonstrated by Patten and Marantz (1996) and Veit (2000). Vagrancy of Cave Swallows in the United States and Canada nicely parallels the range expansion detailed above, with two records of vagrants in the 1960s, six in the 1970s, 21 in the 1980s, and 36 from 1990 to 1998, the vast majority along the coast of the Gulf of Mexico from eastern Louisiana to Florida and the Atlantic coast from North Carolina to Nova Scotia (McNair and Post 2001). Late fall (principally November) incursions into the Great Lakes and Atlantic coast regions have been frequent since 1999 (Curry and McLaughlin 2000, Brinkley 2011). These events are linked to powerful cold fronts that are preceded by strong southwesterly winds that sweep across Texas (and often northern Mexico) and northeast toward the Great Lakes and Atlantic coast from southern Canada to New Jersey. Such pulses are often followed by records to the south, with some birds found during winter in the southeastern United States (Brinkley and Lehman 2003, Brinkley 2011). These movements can be massive, with 1000+ birds estimated in New York alone during November 2005 (Spahn and Tetlow 2006).

Vagrant Cave Swallows to the west and due north of Texas have been far scarcer. West of Arkansas and Minnesota and east of the Rocky Mountains, the first was noted in late May 1991 in Garden County, Nebraska (Brown and Brown 1992). There were just two additional records of vagrants during the 1990s, both from Nebraska: late June 1995 and early July 1998 (Brogie 1998, Sharpe et al. 2001). Subsequent records from Nebraska are from July 2003 (Silcock 2003) and mid-May 2004 (Silcock 2004), while Oklahoma’s first record was of four in Tillman County in July 2001 (Grzybowski and Fazio 2004). The species was not recorded again in Oklahoma until 2009 and 2010 when groups of 30 or more were found in September in southwestern Oklahoma (V. W. Fazio and J. A. Grzybowski pers. comm.), not far from locations of current breeding. As of December 2014, the Oklahoma Bird Records Committee had not accepted a record of Cave Swallow from northern Oklahoma (J. A. Grzybowski pers. comm.) The first Kansas record of the Cave Swallow came from Barton County during July 2001, with probable nesting noted there in 2009.
In total, Kansas has nine accepted records, six between 14 July and 2 August (Kansas Bird Records Committee 2013). The other three records include a pair building a nest and later found in the company of two juveniles from late May to late July, a single bird in early June, and another in late September. Only one record is from eastern Kansas, of a bird found in July.

West of the Rocky Mountains, the earliest records involved one or more Cave Swallows at a Cliff Swallow colony in Tucson, Arizona, from 1979 through 1987 (Rosenberg and Witzeman 1999), with a pair raising young there in 1983 (Huels 1984). Otherwise, Arizona has six records across the southern part of the state (Rosenberg and Witzeman 1999, Rosenberg et al. 2007, 2009, Arizona Field Ornithologists files), in August (2), October (1), and December (3), with four of them since 2003. Since 1987, California has accumulated ten records, December–August, all from Imperial County in the state’s southeastern corner, and all but four since 2008 (California Bird Records Committee 2007; www.californiabirds.org/cbrc_book/update.pdf). Finally, one truly exceptional record is of a Cave Swallow well photographed at Iona Island, near Vancouver, British Columbia, in November 2012 (Levesque et al. 2015).

Our Colorado observation thus fits the pattern of vagrancy on the Great Plains, where records are concentrated from May to July. This pattern differs substantially from that elsewhere in North America. Vagrancy to the Atlantic coast and Great Lakes occurs mostly in late fall, to a lesser extent in spring. West of the Rocky Mountains, the few records are scattered throughout the year.

We thank Chris Witt and Doug Faulkner, both of whom substantially improved an earlier version of this manuscript. Paul E. Lehman and Ross Silcock reviewed an earlier draft of the manuscript, improving it. We thank Mark Lockwood and Will Russell for help in confirming the Colorado Cave Swallow’s identification. We thank Joseph Grzybowski, J. Van Remsen, and Kurt Radamaker for their assistance in tracking down records.

Figure 1. Cave Swallow at Prewitt Reservoir, Colorado, 17 July 2013. Note the throat unmarred by dusky (or white) markings, the shape of the dark crown (diagnostic of the Cave Swallow), and lightly marked undertail coverts.
LITERATURE CITED

NOTES

Accepted 24 August 2015

Cave Swallow

Drawing by George C. West
I observed Townsend’s Solitaire (Myadestes townsendi) nestlings fed by both their parents and an American Robin (Turdus migratorius) on the same day. On 2 and 3 July 2015 at Leoni Meadows, south of Grizzly Flat, southeast of Placerville, El Dorado Co., California, at about 1250 m elevation, I observed a solitaire nest with five nestlings that appeared to be within a week of fledging. Shaded by tall Ponderosa Pines (Pinus ponderosa), the nest was on the ground, surrounded by pine needles, in a south-facing dirt bank below a parking lot near the busy center of a Christian youth camp (Figure 1; see also this issue’s front cover).

I saw only one robin, identified by plumage as a male, come to the nest at a time and I assume that it was the same bird. Both adult solitaires were often present in the nest area at the same time, though I observed only one at a time at the nest itself. I observed the robin at the nest during the early mornings before human traffic increased in the area. The parents fed the chicks regularly throughout the day and removed the fecal sacs. The robin brought insects held crosswise in the bill so the ends of the insects were showing on both sides. The solitaires brought food in the throat so I did not see what the parents were feeding the nestlings. On 3 July 2015 I photographed the nest, the environment, and each species feeding the nestlings. The photographs of the adult birds at the nest were digiscoped (Figures 2 and 3).
NOTES

Figure 2. American Robin feeding the nestlings.

Photo by Larry Siemens

Figure 3. Townsend’s Solitaire feeding the nestlings.

Photo by Larry Siemens
NOTES

Apparent altruistic behavior in the form of allopertual care has been reported in at least 150 bird species (Riedman 1981). Many reports are of conspecific birds not genetically related to the young being cared for, but there are also many reports of interspecific feeding. Skutch (1999) wrote, “interspecific helping is sporadic and more or less accidental; no species of bird is known to regularly assist any other species in rearing its young. Never the less, so many incidents of this nature continue to be reported from all over the world that, I suspect, every species has occasionally helped every other species of more or less similar size and habits with which it has long been in contact.” Shy (1982) listed 140 cases of avian interspecific feeding, 14 of these in the family Turdidae. The American Robin has been reported feeding the nestlings of the Mourning Dove (Zenaida macroura), Gray Catbird (Dumetella carolinensis), Brown Thrasher (Toxostoma rufum), House Finch (Haemorhous mexicanus) (all Shy 1982), and Eastern Bluebird (Sialia sialis) (McNair and Duyck 1991).

LITERATURE CITED

Accepted 11 August 2015

Townsend’s Solitaire

Sketch by Bryce Robinson
NEW MONTEZUMA QUAIL RECORDS FROM CHIHUAHUA, MEXICO

ISRAEL MORENO-CONTRERAS and ANA GATICa-COLIMA, Laboratorio de Ecología y Biodiversidad Animal (LEBA), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32300, Ciudad Juárez, Chihuahua, México; al103860@alumnos.uacj.mx, agatica@uacj.mx (current address of Moreno-C.: Museo de Zoología “Alfonso L. Herrera,” Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-399, México, D.F., 04510, México)

DIANA VENEGAS, Luis Estavillo 4334, Colonia San Juan Bautista, C.P. 31300, Chihuahua, Chihuahua, México; quetzalita97@hotmail.com

The Montezuma Quail (Cyrtonyx montezumae) occurs widely from central Arizona, southern New Mexico, and western Texas to southern Mexico, inhabiting pine–oak forests, arid montane scrub, and temperate grasslands (AOU 1998). In Mexico, the species occurs as an uncommon to fairly common year-round resident in the interior from Sonora and Coahuila south across the highlands to Oaxaca (Howell and Webb 1995). It is uncommon to fairly common (in suitable habitat) at several localities in and near the Sierra Madre Occidental of western Chihuahua, including minor ranges to the east (Howell and Webb 1995, Navarro and Peterson 2007, BirdLife International and NatureServe 2014; Figure 1), but it may now be rare or extirpated locally in much of its historic range.

We compiled Chihuahua records of the Montezuma Quail from published literature (Leopold and McCabe 1954, Howell and Webb 1995) and ebird.org. To put these records into historical and geographic context we also obtained specimen data from scientific collections cited in the Atlas of Mexican Bird Distributions (Navarro-Sigüenza 1994, Navarro-Sigüenza et al. 2003). We could not evaluate the validity of each of these records ourselves but relied instead on the judgment of those who published the records. Using the layers of potential distributions based on the program Genetic Algorithm for Rule-set Prediction from Navarro and Peterson (2007) and BirdLife International and NatureServe (2014), we generated a map in ArcGIS version 9.3 (Environmental Systems Research Institute, Redlands, CA). The analysis of status and distribution has been corroborated with multiple surveys in western Chihuahua from June 1998 through October 2014. Noteworthy distributional information is deposited at the Unidad de Cartografía Digital, Instituto de Ciencias Biomédicas, Ciudad Juárez, Chihuahua, Mexico.

We found 429 Montezuma Quail records for Mexico in the Atlas of Mexican Bird Distributions; of these, 85 are based on specimens from Chihuahua, from 22 localities, taken from 1884 to 1959. These records define the species’ known distribution (Sierra Madre Occidental and nearby mountains). An exception is based on two birds (Western Foundation of Vertebrate Zoology) collected in north-central Chihuahua near San Pedro (30.77° N, 108.27° W) in May 1947. We doubt the accuracy of the data of a specimen (Delaware Museum of Natural History) supposedly taken about 45 km southeast of Ciudad Juárez at Rancho Blanco, Guadalupe Municipality (31.36° N, 106.20° W), far outside the estimated range, in June 1956.

With respect to recent records, we found at eBird 37 records from 21 localities in Chihuahua, 1994 to 2014. These largely correspond in habitat with the older data (records primarily from oak–pine woodlands, occasionally from grasslands or other drier habitats). Two records, however, are from outside the previously known range in grasslands of Janos Municipality. Our new records (triangles in Figure 1; Table 1) include two localities outside the estimated range. In the Sierra La Escondida, Nuevo Casas Grandes Municipality, Gatica and Omar Torres observed one in an ecotone...
between desert scrub and oak woodland with scattered meadows (*Agave* sp., *Larrea tridentata*, *Opuntia* sp., *Mammillaria* sp., and *Quercus* sp.) on 2 August 2006, and a dog captured another individual on 20 October 2007 (leathers deposited at the Colección Científica de Vertebrados, Universidad Autónoma de Ciudad Juárez [CHI-VER-189-08-06]). In the Sierra El Capulín, Ascensión Municipality, Gatica noted another on 3 August 2012 in an oak forest.

Apparently, all Chihuahua records (older and recent) are of subspecies *C. m. mearnsi*, although there are two records of *C. m. montezumae* from the Sinaloa–Chihuahua border (Navarro-Sigüenza et al. 2003). The majority of records (older and recent) are from the Sierra Madre Occidental in western Chihuahua (municipalities of Casas Grandes, Madera, Temósachic, Urique, and Batopilas, among others; eBird 2015). In eastern Chihuahua, there is only one record from the Sierra Rica, in área de Protección de Flora y Fauna Cañón de Santa Elena near the town of Manuel Benavides (CEC 2014), but it lacks specific details. It is likely the Montezuma Quail is more common there than this single report suggests, given the records in nearby Big Bend National Park, Texas (Brennan 2007). More field work in eastern Chihuahua is needed to clarify status of the species there.

The Montezuma Quail is typically associated with wooded habitats, although occasionally it reaches elevations below the level of woodland in west Texas (Brennan 2007). Elsewhere, a pair was seen in desert dominated by creosote bush (*Larrea*...
tridentata) along Interstate 25 near Lordsburg, Hidalgo County, New Mexico, on 30 July 1992 during a rainy season (Am. Birds 46:1163, 1992). In Nuevo León there is a record from an area of desert scrub on 26 July 2013 (N. Am. Birds 66:737, 2013). It is possible, therefore, that the species disperses to drier habitats (e.g., desert grasslands, desert scrub, and riparian corridors) during the rainy season, which in northwestern Chihuahua is usually from mid-June into October (Comisión Nacional del Agua 2015, smn.cna.gob.mx/), as in the case of the record for Sierra La Escondida, Nuevo Casas Grandes Municipality. Since we expect that these birds are dispersing on foot, however, it is probable that the Montezuma Quail does not stray far from its preferred habitats. Stromberg (1990) observed a similar tendency in southeastern Arizona, where the species prefers north-facing slopes and thus is more likely to be near oak woodlands but occasionally reaches open grasslands 3 km from any tree. Because of its retiring behavior the Montezuma Quail might remain undetected for years even where it is a permanent resident.

In Mexico, the Montezuma Quail is accorded “special protection” (SEMARNAT 2010, www.profepa.gob.mx/). It is severely affected by cattle grazing and forest clearing (Ehrlich et al. 1988, Stromberg 2000), and in Chihuahua livestock populations have grown in recent years (Carreón-Hernández 2014), resulting in alarming habitat loss. The maintenance of grass cover is critical to this species because of its defensive behavior of hiding from predators. Hernández (2004) reported that when the primary defense mechanism—camouflage and crouching—are jeopardized, Montezuma Quail appear to be susceptible to predation by raptors and canids as well as to mortality from vehicular collisions and inclement weather (Brennan 2007). According to Brennan (2007), development of a conservation and management strategy for the Montezuma Quail will require further study of the species’ life history, detection and monitoring of populations, basic research on population dynamics, and identifying potential habitat throughout the range.

We thank S. O. Williams III and M. Stromberg for their helpful comments. We acknowledge all those who have taken the time through the years to report their Chihuahua observations via eBird. The manuscript was improved through comments by A. Navarro. We are grateful especially to the several biological collections that have granted access to data contained in the Atlas of Mexican Bird Distributions. This is contribution number 4 of “New Distributional Information on the Avifauna of Chihuahua.”

Table 1—New Records of the Montezuma Quail in Western Chihuahua, Mexico

<table>
<thead>
<tr>
<th>Locality</th>
<th>Geographic coordinates</th>
<th>Date</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Cerro El Diablo</td>
<td>29° 17.0’ N, 108° 12.4’ W</td>
<td>November 1999</td>
<td>Venegas</td>
</tr>
<tr>
<td>3. Madera</td>
<td>29° 17.6’ N, 108° 08.4’ W</td>
<td>10 August 2002</td>
<td>Venegas</td>
</tr>
<tr>
<td>4. Sierra La Escondida</td>
<td>30° 31.1’ N, 107° 45.8’ W</td>
<td>2 August 2006,</td>
<td>Gatica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 October 2007</td>
<td></td>
</tr>
<tr>
<td>5. El Oso</td>
<td>27° 19.2’ N, 108° 02.1’ W</td>
<td>17 March 2007</td>
<td>Venegas</td>
</tr>
<tr>
<td>6. Sierra El Capulin</td>
<td>30° 52.2’ N, 107° 45.4’ W</td>
<td>2 August 2012</td>
<td>Gatica</td>
</tr>
<tr>
<td>7. Teseachic</td>
<td>28° 53.7’ N, 107° 27.3’ W</td>
<td>2 August 2014</td>
<td>Venegas</td>
</tr>
<tr>
<td>8. Cumbres de Majalca</td>
<td>28° 48.0’ N, 106° 29.8’ W</td>
<td>18 October 2014</td>
<td>Venegas</td>
</tr>
</tbody>
</table>

*a*Numbered as in Figure 1.

*b*Outside previously estimated range.
NOTES

LITERATURE CITED

Accepted 4 June 2015
ECCENTRIC PREFORMATIVE MOLT IN THE SPOTTED TOWHEE

STEPHEN M. FETTIG, Migratory Bird Program, U.S. Fish and Wildlife Service, 2800 Cottage Way, Sacramento, California 95825; stephen_fettig@fws.gov
CHARLES D. HATHCOCK, Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545; hathcock@lanl.gov

Examination of wing-feather molt often provides information essential for aging birds in the hand (Mulvihill 1993, Pyle 1997b, 2008). Correctly aging birds is important for understanding the causal relationships between age-class survival rates and population changes (DeSante et al. 2005). For example, correctly aging birds facilitates understanding of climate effects on reproduction better than merely monitoring population numbers because reproduction varies widely with annual weather patterns (DeSante and O’Grady 2000). Age-class information can also provide a clear measure of habitat quality without confounding effects such as population sources and sinks (Van Horne 1983) or misleading habitat-quality information based on relative abundance or population size (Pulliam 1988). Changes in bird populations often lag changes in the survival rate of an age class, while environmental changes often affect one age class immediately or after a short lag (Temple and Wiens 1989).

Greenlaw (1996) reported that the preformative molt of the Spotted Towhee (Pipilo maculatus) consists of the replacement of body feathers, tail feathers, and secondary coverts while the remiges and primary coverts of the juvenile plumage are retained. In addition, Byers et al. (1997), writing about the Rufous-sided Towhee before its split into the Eastern Towhee (P. erythrophthalmus) and Spotted Towhee, reported the preformative molt also includes some or all of the rectrices. Pyle (1997b) corroborated earlier reports that the preformative molt includes all median and greater coverts, with the outermost greater covert occasionally retained, and the number of tail feathers replaced ranging from 0 to all 12.

An eccentric molt is one that starts not at primary 1 (p1) but among the middle primaries, most commonly from p3 to p7, and proceeds distally (Pyle 1997b). Such eccentric molts commonly include the secondaries, beginning typically at a point from s2 to s5 and proceeding proximally. In some cases, eccentric replacement can be arrested before completion, but most often it proceeds through the outermost primary and s6 (Pyle 1997b).

In 2010, Los Alamos National Laboratory began operating a constant-effort bird-banding station in fall migration with the objective of tracking the age classes and populations of birds using the site. This station is located in Los Alamos County, New Mexico, within the Pajarito Wetlands complex in Pajarito Canyon, 3.7 km west of New Mexico State Route 4, and is operated one day per week for 10 weeks each year from the second week of August to the middle of October. The dominant plants of these 3.4 ha of wetlands comprise Narrowleaf Cottonwood (Populus angustifolia), Narrowleaf Willow (Salix exigua), and Broadleaf Cattail (Typha latifolia); those of the adjacent uplands Ponderosa Pine (Pinus ponderosa), Pinyon Pine (P. edulis) and One-seed Juniper (Juniperus monosperma).

On 2 October 2014, we captured, banded, and released a male Spotted Towhee showing evidence of an incomplete eccentric preformative molt, which we had never previously observed. An incompletely pneumatized skull implied the bird was in its year of hatching. Primaries 7–9 on the right wing were darker than the other primaries and had been replaced, while primaries 1-6 were distinctly brown and were retained juvenile feathers. Primary coverts 8–9 on the right wing are blacker than the inner primary coverts and had been replaced (Figure 1). Primaries 7–8 on the left wing were darker than the other primaries and had been replaced, while primaries 1–6 and 9 were distinctly brown in comparison and were retained juvenile feathers.
Primary covert 8 (second from the outermost) on the left wing was blacker than the other primary coverts and had been replaced (Figure 2). Secondaries 4–6 on both the right and left wings were replaced whereas secondaries 1–3 had been retained from the juvenile plumage. The secondary coverts, tertials, and alulae were all replaced. Rectrices were all retained.

Since loss and regrowth of the outer primaries and inner secondaries in the observed nearly symmetrical pattern is unlikely due to a loss of feathers in a brush with a predator or to other injury, we interpreted the nearly symmetrical pattern observed as an example of eccentric molt partially replacing the juvenile plumage.

In the passerines, the preformative molt is typically partial with only the head and body feathers being replaced (Pyle 1997b). The eccentric pattern of replacement of the outer primaries and inner secondaries in this molt is relatively uncommon, at least in the United States. Pyle (1997a) reported molt data on 288 species of passerines, in 46 of which some or all individuals replace the primaries and secondaries in the eccentric pattern during the preformative molt. He called for more observations, especially in live birds.

Pyle (1998) discussed hypotheses for the adaptive value of eccentric molts with respect to exposure to bright sunlight, abrasive vegetation, and distance of migration. Willoughby (1991) suggested an eccentric primary molt may be of adaptive value to first-cycle birds exposed to abrasive vegetation, as in the case of the Verdin (Auriparus flaviceps), Yellow-breasted Chat (Icteria virens), Passerina buntings, and several wrens, thrashers, and sparrows. On the basis of variations within the tyrannid flycatchers, Pyle (1998) suggested that species migrating short distances are likely to change fewer remiges in the preformative molt that do those migrating longer...
NOTES

distances. Since the Spotted Towhee often inhabits dry, abrasive habitats on or near the ground and migrates a relatively short distance, if at all, it seems reasonable to expect that an eccentric primary molt should occasionally be found in this species.

Johnson et al. (2013) reported finding eccentric molt patterns in 3 of 27 Eastern Towhees in formative plumage examined in Louisiana. Similarly, at the Pajarito Wetlands, we observed an eccentric molt pattern in 1 of 30 Spotted Towhees in formative plumage (Table 1). We know of no previous report of a Spotted Towhee having undergone an eccentric preformative molt.

This research was funded by the Environmental Protection Program through Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under contract DE-AC52-06NA25396 with the U.S. Department of Energy. We express our sincere thanks to Bruce Panowski, Lyndi Hubbell, David Keller, Brent Thompson, Kelsee Hurshman, Audrey Smith, Maria Musgrave, Emily Phillips, and Kelly Hutchins for their assistance. We especially thank Peter Pyle and Dan Small for their helpful comments and suggestions on an earlier draft of this paper.

LITERATURE CITED

NOTES

Table 1 Numbers of the Spotted Towhee Captured at the Pajarito Wetlands, Los Alamos County, New Mexico

<table>
<thead>
<tr>
<th>Year</th>
<th>Hatching-year birds</th>
<th>Older birds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>2013</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

*Over 10 weeks from the second week of August to the middle of October, 1 day per week. Recaptures excluded.

Accepted 25 September 2015
BOOK REVIEWS

With the possible exception of hummingbirds, no avian group is more popular than owls. Perhaps for this reason, the number of owl books that have appeared in recent decades is mind boggling. Some are quite good; far too many are unexceptional. The best have been produced by owl specialists who are excellent researchers but not necessarily great writers. Thus I had high expectations when I learned that Scott Weidensaul had written a new owl book. Not only is he an experienced owl researcher, he’s a talented nonfiction writer. His nearly 30 books include *The Ghost with Trembling Wings: Science, Wishful Thinking and the Search for Lost Species* (2002, North Point Press), *Of a Feather: A Brief History of American Birding* (2007, Harcourt), and *Living on the Wind: Across the Hemisphere with Migratory Birds* (1999, North Point Press). The last was a finalist for the Pulitzer Prize and is my favorite among his titles.

Weidensaul begins *Owls of North America and the Caribbean* with an 18-page introductory chapter that includes a how-to guide to using the book, a brief treatment of owl ecology and topography, and a detailed explanation of which topics are covered in the species accounts (see below). His geographic scope is Canada, the continental United States, Bermuda, Mexico, and the West Indies, within which 39 owl species breed according to the 7th edition of the *AOU Check-list* and its supplements through 2014. Weidensaul notes that two Old World taxa have strayed to Alaska, the Oriental Scops-Owl (*Otus sunia*) and the Northern Boobook (*Ninox japonica*), but wisely does not include species accounts for these vagrants. A very useful addition to the book is a link to a downloadable album of 86 vocalizations of the 39 species and an annotated list that briefly describes each vocalization (e.g., territorial song, alarm call, food-begging call) and gives the location where the sound was recorded. The vocalizations were obtained from the Macaulay Library of the Cornell Lab of Ornithology and range from one to six per species. The introductory chapter concludes with an interesting discussion of owl taxa that went extinct in all or parts of the West Indies since humans came on the scene. Following the species accounts are the acknowledgments, a brief glossary, a general bibliography, and an index that allows one to find every place where a species is mentioned in the text.

Nearly 90% of the book is devoted to the species accounts, which summarize the birds’ size (body length, wingspan, and body mass), longevity, systematics and taxonomy (including subspecies), etymology, distribution (including a multicolored range map), plumage characters, vocalizations, habitat, breeding biology, behavior, and conservation status, and end with a list of references. Each account provides interesting tidbits about ecology, the latest thoughts on classification and nomenclature, and brief summaries of pertinent journal articles, many of them recent. Just as important, we learn what is not known about the basic biology of many owls, which turns out to be quite a bit. The accounts also include color photographs, which range in number from one for a couple of the poorly known pygmy-owls (*Glaucidium sanchezi* and *G. griseiceps*) to 19 for the Snowy Owl (*Bubo scandiacus*). Without exception the photographs are excellent, and the captions that accompany them are informative.

Weidensaul writes in an engaging style, and the book is well designed and nearly free of typographic errors. A few things I expected to find but didn’t are minor issues but perhaps worth noting. For example, left unstated is the fact that the hoot of a male Flammulated Owl (*Psiloscops flammeolus*) is similar to that of a male Long-eared Owl (*Asio otus*), which can lead to misidentifications of both species during nocturnal surveys. Also not mentioned is the astounding case of a female Burrowing
Owl (*Athene cunicularia*) that was banded at a nest with eggs in Arizona in April 2003 and recaptured at a nest with young 1860 km away in Saskatchewan three months later (G. L. Holroyd et al., Wilson J. Ornithol. 123:378–381, 2011), thus documenting double brooding, serial polyandry, and long-range dispersal during the breeding season in one fell swoop. Last, in the Northern Saw-whet Owl (*Aegolius acadicus*) account one gets the impression that the species breeds almost exclusively in coniferous forests. Yet some of the highest densities of nesting birds have been documented in riparian willows and tree farms of poplars surrounded by shrubsteppe desert in Idaho and Oregon, respectively. I noticed only one mistake and one typo, both of them quite trivial. In the bibliography my name was left off the paper that describes a Flammulated Owl nest in a hollow below ground (K. M. Smucker and J. S. Marks, J. Raptor Res. 47:421–422, 2013). That this anecdote was mentioned at all, however, more than makes up for the omission. Similarly, the typo is likely to be noticed only by someone with my first name: it’s Jeffrey pine, not Jeffery pine (p. 306). I point these out not as nit-picky criticisms but as examples of how hard one has to work to find any fault with a book such as this one, which has no weaknesses. In summary, my expectations for *Owls of North America and the Caribbean* were met, and then some. It’s a wonderful book that will be a valuable contribution to the burgeoning literature on owls. Anyone with more than a passing interest in nocturnal raptors will enjoy it immensely.

Jeffrey S. Marks

Seawatching, as authors Ken Behrens and Cameron Cox define it, is the “challenging act of identifying waterbirds in flight.” The birds are in motion. They are frequently distant and typical field marks may not be useful. More often than not there are no landmarks to orient the observer. And the best conditions for seawatching are often harrowing, when storms blow flocks and normally pelagic species close to shore. But seawatching can also be mind-blowing. Imagine 2000 Sabine’s Gulls flying through your field of view, or over 1,000,000 Short-tailed Shearwaters streaming past, or the moment a Great-winged Petrel chances by a tourist-choked promontory in southern California. If you do not have the physical or financial strength to regularly join pelagic excursions, your best bet for encountering ocean-going species is from shore with a spotting scope. Digesting even a small portion of the wealth of information provided in the *Peterson Reference Guide to Seawatching* will doubtlessly enhance your time searching the water, from land or boat.

Seawatching, the book, is focused on eastern waterbirds, 111 species in total from 13 families, treating waterfowl, loons, grebes, shearwaters and petrels, storm-petrels, the Magnificent Frigatebird, boobies and the Northern Gannet, cormorants, the Anhinga, pelicans, skuas and jaegers, alcids, and gulls, terns, and the Black Skimmer. While the book covers only those species that occur with regularity in the eastern U.S. and Canada, the overlap with the West is significant, as nearly 70% of the species treated occur with regularity in the Pacific Ocean. For example, the Surf, Black, and White-winged scoters are treated, as are the Common, Pacific, and Red-throated loons, and the three jaeger species. However, the alcids and tubenoses covered are only those regularly recorded in the east and do not include western species (with the exception of the Manx Shearwater and Wilson’s Storm-Petrel). While the occurrence in the west of many of the species treated in *Seawatching* is enough to justify
its inclusion in many western birders’ libraries, a full volume dedicated to western waterbirds would be nice. Unfortunately, this is not in the works.

The purpose of Seawatching is two-fold: to teach waterbird identification by techniques beyond simple field marks (e.g., by observing flight style and species association) and to inspire more birders to take up seawatching. The book begins with a 20-page introduction that touches on migration and conservation and includes a two-page spread on bird topography. Most of the introduction is dedicated to laying out and defining the authors’ set of identification techniques, including relative size, structure, flight style and flock structure, overall coloration, and associations (e.g., Northern Pintails are typically in large monospecific flocks) in order to prepare the reader for the species-identification section of the book. If a lot of the authors’ philosophy on waterbird identification sounds similar to hawk watching, it is because Behrens and Cox have also spent a good deal of time doing just that and draw comparisons to Hawks in Flight.

The bulk of the book (over 500 pp.) is filled with species accounts arranged in a taxonomy suggested by Howell et al. (2009) in Birding that “emphasizes utility and stability over precise taxonomic relationships”; one that would help beginners without hampering advanced birders. Each group begins with a one- or two-page introduction on the family, including an overview of the biology, taxonomy, range, and molt similarities of the species within each family, and briefly mentions additional species not covered in the text (e.g. they do not treat the Ancient Murrelet because of its rarity on the east coast). The introduction to the dabbling ducks contains a valuable seven-step process for identifying flocks even at distance. Each species then receives a two- to five-page treatment, with the more common and confusing pairs/groups receiving more discussion (for example, scoters combine for 21 pages). Within each account, a brief summary of the species is provided, leading into a discussion of size, structure, flight style, flocking behavior, appearance (including, where relevant, differences in plumages by season, age, and sex), and, perhaps most helpful, similar species. Also included is a map showing migration routes and seasonal ranges, although this is limited to the eastern U.S. and Canada. But what really catches the eye is the photos in each account.

Pick this book up if for no other reason than the sheer volume of photos (900+!). It is easy to get lost just turning the pages. The authors provided most of the photos, but nearly 100 photographers are credited. The intent is to show what birds look like under field conditions, but a book of strictly distant flocks and silhouettes would not be as attractive as the mix of full-frame, medium-distance, and silhouette shots Seawatching actually contains. Some of the photos are full-page, jaw-dropping crushes (first-cycle Bonaparte’s Gull, p. 441). Some are wonderful compositions (a Razorbill flying past a lighthouse, p. 268; King Eiders flying through snow, pp. 166–167). Some capture chance encounters (a Brown Booby catching a flying fish, p. 344; Black Terns exchanging food, p. 515). But the real value lies in the hundreds of photos of mixed flocks (especially of ducks), where the authors point out the keys to identification and occasionally quiz the reader. There are nearly 40 such quizzes, involving finding and identifying certain species within a mixed flock or aging/sexing individuals (“What ages are the Little Gulls?”). The answers, with often lengthy explanations, are in an appendix. While the quality of the majority of the photos is good, a few choices for full-page reproduction should have been left at a half page or smaller, as they are not fully in focus or appear overcropped and pixelated (e.g., Surf Scoter, p. 175; Manx Shearwater, p. 305; Magnificent Frigatebird, p. 329; Wilson’s Storm-Petrel, p. 321).

Though discussing similar species at length, the authors manage to keep the writing fresh. The Harlequin Duck tends to “pop its head up and down” like “an anxious turtle.” The Great Skua is a “stovepipe with wings.” Long-tailed Jaegers are “playful,” but they “haunt the migratory footsteps of Arctic Terns.” Parasitic Jaegers “will mark
BOOK REVIEWS

a victim from a distance … and pummel it.” If the photos do not carry you out over the breaking waves, the language will.

The book closes with a glossary, an extensive and up-to-date bibliography, and an appendix entitled “Where to Watch,” which describes nearly 47 popular watch sites from South Padre Island, Texas, to Whitefish Point, Michigan, to Cape Spear, Newfoundland. Each site description includes a summary of the location, timing of migration, and species occurrences but is really relevant only to travelers to the east coast. Who knew that people “seawatched” along the Mississippi River?

While not specifically focused on western birds, the overlap in coverage is good, and the techniques in Seawatching are usable in any location where waterbirds are in flight. Whether you are a seasoned veteran with a salt-encrusted tripod at Point Pinos or a beginner curious about the group of people staring out at the open ocean in La Jolla (with no whales in sight), this book hopes to “capture some of the simple joy of being outside … and looking at birds” and will be a book you return to time and again.

Justyn Stahl

THANKS TO WESTERN BIRDS’ REVIEWERS AND ASSOCIATE EDITORS

Peer review is a critical step in the publication of a scientific journal. I thank the following people for their generosity in taking the time to provide this essential service sustaining the scientific quality of Western Birds for volume 46: George F. Barrowclough, Peter Bloom, Russell Bradley, M. Ralph Browning, Bruce E. Beyers, G. Vernon Byrd, David A. Cimprich*, Alan Contreras, Jon L. Dunn*, Kimball L. Garrett, T. Luke George, James J. Giocomo, Mélanie F. Guigueno, Ralph J. Gutiérrez, Les Gyug, Lauren B. Harter, Steven C. Heini*, Steve N. G. Howell, David J. T. Hussell, Juan Diego Ibáñez-Alamo, Todd Katzner, David J. Krueper, Jeffrey L. Lincer, Mark W. Lockwood, Michael C. Long, Mark B. Mendelsohn, Joel E. Pagel, Peter Pyle*, Kurt Radamaker, Leslie Robb, Michael A. Schroeder, Steve Shunk, Dan Small, Mark R. Stromberg, Bridget J. Stutchbury, David Vander Pluym, Greg Wann, Sarto O. Williams III, and Christopher C. Witt. Asterisks designate reviewers who reviewed more than one paper.

I must thank also our associate editors, Kenneth P. Able, Daniel S. Cooper, Doug Faulkner, Thomas Gardali, Daniel D. Gibson, Robert E. Gill, Paul E. Lehman, Ronald R. LeValley, and Dan Reinking, plus featured-photo editor John Sterling, who also serve as reviewers of the manuscripts whose review they coordinate. Western Birds is not possible without their dedication. Doug Faulkner has stepped down after nine years of valuable service, as has Paul Lehman after five. Thank you, Doug and Paul, for all your work on behalf of Western Birds and WFO. I’m very happy to welcome as new associate editors Matthew J. Baumann of New Mexico and Daniel R. Rutherfurd of Alaska—I look forward to working with you and benefiting from your expertise. And I thank Dan Gibson, Ginger Johnson, Peter LaTourette, and Tim Brittain for continuing in their roles as vital players in our team producing Western Birds.

Philip Unitt
FEATURING PHOTO

HYBRIDIZATION BETWEEN THE DUSKY GROUSE AND SHARP-TAILED GROUSE

RYAN P. O’DONNELL, U.S. Geological Survey, Southwest Biological Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001; Ryan.ODonnell@aggiemail.usu.edu

Hybridization between the Dusky Grouse (*Dendragapus obscurus*) and Sharp-tailed Grouse (*Tympanuchus phasianellus*) has been rarely documented. The only published record from the wild is of one collected at Osoyoos, British Columbia, in 1906 (Brooks 1907, Lincoln 1950). There is one record of this hybridization between captive birds (McCarthy 2006).

On 7 April 2013, Stephanie Cobbold and I found a suspected hybrid of this pairing at Hardware Ranch Wildlife Management Area, Cache County, Utah. The bird was running through the sagebrush, with its tail held high, showing bright white undertail coverts. The tail was the most obvious indication of hybrid parentage: the rectrices were similar to those of a Dusky Grouse, with black vanes tipped with gray; the undertail coverts approached the pure white of Sharp-tailed Grouse, but some of them had the distinct banding of a Dusky Grouse. The broad gray tips to the rectrices indicate the Dusky Grouse parent was of the nominate southern subspecies *D. o. obscurus*, resident in Utah, as the northern subspecies lack extensive gray tips to the rectrices.

The pattern of the tail on the bird we observed closely matched that described by Brooks (1907:168), although he specified the outer rectrices as having “diminishing tips of grayish white” and the undertail coverts as “almost immaculate.” Brooks’ bird was found in the range of one of the northern subspecies of the Dusky Grouse, *D. o. richardsonii*, which has a smaller and less distinct band of gray at the end of the rectrices. The bird featured on this issue’s back cover had an overall yellowish tone similar to that of a Sharp-tailed Grouse. The flanks were intermediate between the two parental species (unlike the bird described by Brooks, which he said looked like a Sharp-tailed Grouse below), the feathers having white tips but light mottled sandy bases, whereas the Dusky Grouse has gray bases. Body feathers hid most of the wing, but the tertials seemed closer to the white and sandy brown patterning of a Sharp-tailed Grouse. The outer vanes of the primaries were more heavily marked than in a Dusky Grouse but lacked the distinct banding or spotted pattern of a Sharp-tailed Grouse. The nape and upper back resembled those of a Dusky Grouse more than they did a Sharp-tailed Grouse, being mostly slaty gray. A small area of yellow skin, found in both species, was visible over the eye and was also mentioned in Brooks’ description. The bill appeared intermediate in structure. The facial pattern was overall closer to that of a Sharp-tailed Grouse, with yellowish-brown auriculares bordered by indistinct white stripes. Although several of these features, such as white undertail coverts and more extensive white in the scapulars, could be explained instead by partial leucism in a pure Dusky Grouse, each is consistent also with hybrid Sharp-tailed Grouse parentage, and other traits support Sharp-tailed Grouse parentage to the exclusion of leucism, including the overall yellowish tone to the plumage and the bill structure.

Because this bird was not captured, we have no detail about its size, but the hybrid reported by Brooks was intermediate in size between the parent species. Shortly after I took this photograph, the bird flushed, and flew off through the sagebrush. I am not aware of any attempts to relocate it.

A male Dusky Grouse has been seen displaying among a lek of Sharp-tailed Grouse about 40 km north of where I photographed this bird (Adam Brewerton and Frank Howe, Utah Division of Wildlife Resources, pers. comm.). That male Dusky Grouse attempted to copulate with a Sharp-tailed Grouse while the Sharp-tailed Grouse was
Caught in a trap. It seems likely that the bird featured on this issue’s back cover was the product of a similar pairing, a male Dusky Grouse with a female Sharp-tailed Grouse, rather than the converse. Sharp-tailed Grouse mate in leks and Dusky Grouse do not, so a male Dusky at a lek might be able to copulate with a visiting female Sharp-tailed Grouse. It seems less likely that a female Dusky Grouse would be attracted to a Sharp-tailed Grouse lek.

Although hybridization within genera is more common than between genera, it is perhaps not that remarkable that these species would hybridize, given that *Dendragapus* and *Tympanuchus* are each other’s closest relatives (Gutiérrez et al. 2000, Drovetski 2002). The ranges of these two species overlap broadly from northern Utah and Colorado to Yukon and the Northwest Territories. Given the close relationship and extent of overlap of their ranges, it is perhaps surprising that there have not been more reports of this hybrid combination in the over 100 years since Brooks (1907) first described one. These species are generally segregated by habitat use, as the Sharp-tailed prefers open grassy sites for leks and shrubby areas for nesting and the Dusky is typically found in forests of conifers or mixed aspens and conifers, but Dusky Grouse do display at the edge of and in open areas, often near the top of a hill and in sagebrush. The scarcity of documented hybridization between these species could also be due to a failure to report such hybrids when found.

I thank Adam Brewerton, Jack Connelly, Scott Gardner, Frank Howe, Mike Schroeder, Timothy Taylor, and Mike Wolfe for sharing their thoughts on this bird, Paul Higgins for providing reference photos, and Michael Guttery and Andy Kleinhesselink for reviewing drafts of the manuscript.

LITERATURE CITED

acadicus, Aegolius acadicus, 129
Acanthis flammea, 25, 44, 163, 291–298
 homenanni, 163, 225, 228, 318, 321
Accentor, Siberian, 146
Accipiter cooperii, 199
gentilis, 109
striatus, 109, 199
Acridotheres cristatellus, 320
Acrocephalus schoenobaenus, 141
Actitis hypoleucos, 112
macularius, 112, 201
aculeata, Sitta carolinensis, 278–290
adastus, Empidonax traillii, 133
Aechmophorus occidentalis, 104, 196
Aegolius acadicus, 129
funereus, 128
Aeronautes saxatalis, 202–203
Aethia cristatella, 121
psittacula, 39, 120–121, 310–311
pusilla, 121
pygmaea, 121
Agelaius phoeniceus, 159, 211
Aimophila ruficeps, 209
Aix sponsa, 99, 194
alascensis, Buteo jamaicensis, 109–110
 Calcarius lapponicus, 42, 149
 Certhia americana, 138
 Lagopus lapogus, 103
 Troglydotes pacificus, 138
Alauda arvensis, 135
alba, Lagopus lapogus, 102
Albatross, Black-footed, 104
 Laysan, 104
 Salvini’s, 104
 Short-tailed, 104, 302–303
albertaensis, Larus californicus, 123
albidus, Accipiter gentilis, 109
aleuticus, Ptychoramphus aleuticus, 120
alexandri, Lagopus lapogus, 102–103
aliae, Catharus minimus, 143
Alle alle, 119
alle, Alle alle, 119
americana, Bucephala clangula, 35, 101
 Fulica americana, 110
americanus, Mergus merganser, 102
Ammodramus savannarum, 210
amoenus, Regulus satrapa, 139
Amphispiza bilineata, 210
Anas acuta, 34, 99, 195
 americana, 33, 99, 195
clypeata, 34, 99, 195
creca, 34, 100, 195
cyanoptera, 99, 195
diazi, 195
discors, 33, 99, 195
falcata, 99
formosa, 100, 301
fulvigula, 218
penelope, 33, 99
platyrynchos, 33, 99, 195
querquedula, 99, 218
rubipes, 11, 99, 321–322
strepera, 33, 99, 195
zonorhyncha, 99
anatum, Falco peregrinus, 132
annectens, Passerella iliaca, 154
Anser albifrons, 32, 97
erythropus, 97
fabalis, 97
serrirostris, 97
anthonyi, Butorides virescens, 108
Anthus cervinus, 148–149
gustavi, 147
hodgsoni, 147
rubescens, 42, 149, 208, 263
spragueii, 22
trivialis, 147
Antrostomus arizonae, 217
vociferus, 129, 217
Apus apus, 130
pacificus, 130
Aquila chrysaetos, 76–80, 110, 201
Archilochus alexandri, 203, 326–330
colubris, 130, 222
articola, Calidris alpina, 116
Eremophila alpestris, 136
arctolegus, Agelaius phoeniceus, 159
Ardea alba, 107, 198
cinerea, 107
herodias, 107, 198
Ardeola bacchus, 108
Arenaria interpres, 37, 114
melanocephala, 114
arizonae, Spizella passerina, 153
arra, Uria lomvia, 119
artemisiae, Molothrus ater, 159
Artemisiospiza nevadensis, 210
Asio flammeus, 40, 128, 202
otus, 68–70, 128
Astudillo-Sánchez, Evelyng K., see Greeney, H. F.
Athene cunicularia, 202
atkhenensis, Lagopus muta, 103
atra, Fulica atra, 110
atricapillus, Accipiter gentilis, 109
auduboni, Setophaga coronata, 152
Auklet, Cassin's, 120
Crested, 121
Least, 121
Parakeet, 39, 120–121, 310–311
Rhinoceros, 121
Whiskered, 121
Auriparus flaviceps, 206
aurocapilla, Seiurus aurocapilla, 150
Avocet, American, 111, 201
Aythya affinis, 34, 100, 195
american, 100, 195
collaris, 34, 100, 195
ferina, 100
fuligula, 100, 218–219, 301, 318
marila, 34, 100
valisineria, 100, 195
badia, Prunella montanella, 146
baileyae, Poecile gambeli, 137
banksi, Setophaga petechia, 152
barrovianus, Larus hyperboreus, 40, 125
Bartels, Matt, see Merrill, R. J.
Bartramia longicauda, 113
baueri, Limosa lapponica, 114
Bean-Goose, Taiga, 97
Tundra, 97
bendirei, Loxia curvirostra, 163
Benedict, Lauryn, see Meyer, A.
beringiae, Limosa fedoa, 114
bewickii, Cygnus columbianus, 98, 280
Bittern, American, 107
Yellow, 107
Blackbird, Brewer's, 159, 211
Red-winged, 159, 211
Rusty, 159
Yellow-headed, 159, 211
Bluebird, Eastern, 207
Mountain, 143, 207, 273–275
Western, 207
Bluetail, Red-flanked, 142
Bluethroat, 142
blythi, Sylvia curruca, 140
Bobolink, 158–159
bochaicensis, Luscinia cyane, 142
Bombycilla cedrorum, 149, 208
garrulus, 149
Bonasa umbellus, 102, 219
Boobook, Northern, 129
Booby, Brown, 106, 308
borealis, Cypseloides niger, 129
Lanius excubitor, 134
Somateria mollissima, 101
Botaurus lentiginosus, 107
Botello, Alejandro, see Moreno-Contreras, I.
Brachyramphus brevirostris, 120
marmoratus, 120
perdix, 120, 319
brachyrhynchos, Larus canus, 39, 123
Braile, Anthony J., and McHugh, Yvonne E., Possible tool use by a Williamson's Sapsucker, 89–91
Brambling, 159–160
Brant, 33, 97
Branta bernicla, 33, 97
canadensis, 98, 194
hutchinsii, 33, 97–98, 194, 217
Braun, Clait E., and Williams, Sartor O. III. History and status of the White-tailed Ptarmigan in New Mexico, 233–243
brewsteri, Empidonax traillii, 133
Sula leucogaster, 106
Brooks, Tayler, see Mlodinow, S. G.
brooksi, Coccothraustes vespertinus, 164
brunneonucha, Leucosticte arctoa, 160–161
Bubo scandiacus, 128
virginianus, 127–128, 202, 271–272
Bubulcus ibis, 107–108, 198
Bucephala albeola, 35, 101, 195
clangula, 35, 101
islandica, 101
Bufflehead, 35, 101, 195
Bullfinch, Eurasian, 162
Bunting, Gray, 156
Indigo, 158, 317, 321
Lark, 210, 321
Lazuli, 158, 211
Little, 156
McKay's, 150, 320
Painted, 24, 211, 322
Pallas's, 156–157
Pine, 156
Reed, 157
Rustic, 156
INDEX

Snow, 150
Yellow-breasted, 156
Yellow-browed, 156
Yellow-throated, 156
Bushit, 315

Buteo albonotatus, 14, 199–200, 220, 319
jamaicensis, 109–110, 200
lagopus, 36, 110
lineatus, 309
platypterus, 14, 309, 319
regalis, 200–201
swainsoni, 109, 199

Buteogallus anthracinus, 14, 199, 228–229

Butorides virescens, 108, 198
calendula, Regulus calendula, 139
Calidris acuminata, 115
alba, 37, 116
alpina, 37, 116
bairdii, 116
canutus, 115
falcinellus, 115
ferruginea, 115, 220
fuscicollis, 118
himantopus, 16, 115
maritima, 116
mauri, 38, 118, 201
melanotos, 118, 201
minuta, 116, 118
minutilla, 37, 118, 201
ptilocnemis, 37, 116
pugnax, 115, 310
pusilla, 118
pygmea, 115–116
ruficollis, 116, 310
subminuta, 115
subruficollis, 118, 310
temminckii, 115
tenuitostris, 115
virgata, 115

Callipepla gambeli, 196
squamata, 196
Calonectris leucomenas, 319
calurus, Buteo jamaicensis, 109
Calypte anna, 130
costae, 130, 222, 314
campicola, Geothlypis trichas, 151
Campylorhynchus brunneicapillus, 207
canadensis, Aquila chrysaetos, 110
Falcipennis canadensis, 102
Grus canadensis, 36, 110
canorus, Cuculus canorus, 127
Canvashack, 100, 195
caparoch, Surnia ulula, 128
Cappello, Caroline D., see McNeil, S. E.
Caprimulgus indicus, 129
Caracara, Crested, 18, 224, 320
Caracara cheriway, 18, 224, 320
Cardellina canadensis, 153
pusilla, 42, 153, 209
rubrifrons, 225
Cardinal, Northern, 210, 322
Cardinalis cardinalis, 210, 322
sinuatus, 211, 225
carlottae, Pinicola enucleator, 162
carolinensis, Anas crecca, 34, 100
Pandion haliaetus, 108
Sitta carolinensis, 278–290
carolinus, Euphagus carolius, 159

Carpodacus erythrinus, 162
Carter, Harry R., Parker, Michael W.,
Koepke, Josh S., and Whitworth,
Darrell L., Breeding of the Ashy
Storm-Petrel in central Mendocino
County, California, 49–65
cassinii, Haemorhous cassinii, 162–163
Pyrrhula pyrrhula, 162
Vireo cassini, 134
Catbird, Gray, 146
Cathartes aura, 108, 198
Catharus fuscescens, 143
guttatus, 42, 143, 207
minimus, 143
ustulatus, 143, 207

Catherpes mexicanus, 206
caudacutus, Hirundapus caudacutus,
129
caurina, Melospiza melodia, 154
caurinus, Limnodromus griseus, 38,
118

Turdus migratorius, 146
caurus, Tympanuchus phasianellus,
103
celata, Oreothlypis celata, 150
INDEX

centralasie, Bombycilla garrulus, 149
Centrocercus minimus, 217
Cepphus columba, 39, 120
grylle, 120
Cerorhina monocerata, 121
Certhia americana, 138, 206
Chaetura pelagica, 129
vauxi, 129
Chamaee fasciata, 320
Charadrius alexandrinus, 112
dubius, 112
hiaticula, 112
mongolus, 111
montanus, 15, 322
morinellus, 112, 309
semipalmatus, 36, 112
vociferus, 112, 201
Chat, Yellow-breasted, 209
Chen caerulescens, 97, 194, 301
canagica, 32, 97, 228, 301
rossii, 97, 194
Chickadee, Black-capped, 137
Boreal, 137–138
Chesnut-backed, 137
Gray-headed, 138
Mountain, 137
Chiffchaff, Common, 140
chilcatensis, Passerella iliaca, 154
Chlidonias leucopterus, 126
niger, 126
Chloris sinica, 164
chloropus, Gallinula chloropus, 110
Chondestes grammacus, 153, 210
Chordeiles acutipennis, 129, 202
minor, 129, 202
Chroicocephalus philadelphia, 122
ridibundus, 122, 220, 311
cinclus, Phalacrocorax auritus, 36, 106
Cinclus mexicanus, 139
cinnamomea, Tringa solitaria, 113
Circus cyaneus, 36, 109, 199
cismontanus, Junco hyemalis, 156
Cistothorus palustris, 139, 206–207
Clangula hyemalis, 101
Coccothraustes coccothraustes, 164
vespertinus, 164
Coccycz americanus, 127, 244–255
Colaptes auratus, 131–132, 203
Colibri thalassinus, 222
Collared-Dove, Eurasian, 126, 202, 222, 312, 322
Colón, Melanie R., Holden, Ronnisha S., Morrison, Michael L.,
coloratus, Calcarius lapponicus, 149
Columba livia, 126, 202
columba, Cepphus columba, 39, 120
columbarius, Falco columbarius, 40, 132
columbianus, Cygnus columbianus, 33, 98
Poecile hudsonicus, 138
Columbina inca, 202, 222
passerina, 222, 322
Condor, California, 228, 319
confinis, Poecetes gramineus, 153
Contopus cooperi, 132, 204
pertinax, 314
sordidulus, 132, 204
cooperi, Contopus cooperi, 132
Coot, American, 110, 201
Eurasian, 110
Coragyps atratus, 219
Cormorant, Brand'ts, 106
Double-crested, 36, 106, 198
Neotropic, 12, 196–197
Pelagic, 36, 106–107
Red-faced, 36, 106
cornutus, Podiceps auritus, 104
coromandus, Bubulcus ibis, 108
Corvus brachyrhynchos, 135, 205
caurinus, 135
corax, 41, 135
cryptoleucus, 205
couesi, Calidris ptilocnemis, 37, 116
Cowbird, Bronzed, 212, 225
Brown-headed, 159, 212
Crane, Common, 14, 110–111
Sandhill, 36, 110
crecca, Anas crecca, 34, 100
Creeper, Brown, 138, 206
cristatus, Lanius cristatus, 134
Crossbill, Red, 163, 212
White-winged, 163
Crow, American, 135, 205
Northwestern, 135
Cuckoo, Common, 127
Oriental, 127
Yellow-billed, 127, 244–255
Cuculus canorus, 127
optatus, 127
Curlew, Bristle-thighed, 114
Eskimo, 113
Far Eastern, 114
INDEX

Little, 113
Long-billed, 114, 201
curonicus, Charadrius dubius, 112
curtatus, Pipilo maculatus, 153
cyaneus, Circus cyaneus, 109
Cyanocitta cristata, 20
stelleri, 135, 205
Cygnus buccinator, 11, 98
 columbianus, 33, 98, 301
cygnus, 98–99
Cynanthus latirostris, 222–223
Cygnus buccinator, 11, 98
columbianus, 33, 98, 301
cygnus, 98–99

Eagle, Bald, 36, 108
Golden, 76–80, 110, 201
Steller’s Sea-, 108–109
White-tailed, 108

Dove, Common Ground-, 222, 322
Egret, Cattle, 107–108, 198
Chinese, 107
Great, 107, 198
Intermediate, 107
Little, 107
Snowy, 198

Egretta eulophotes, 107
garzetta, 107
thula, 198
tricolor, 107

Eider, Common, 101
King, 35, 101, 302
Spectacled, 100
Steller’s, 100

Elanus leucurus, 14, 199
elegans, Emberiza elegans, 156
elgasi, Anser albirostris, 97

Emberiza aureola, 156
chrysophrys, 156
elegans, 156
leucocephalus, 156
pallasi, 156–157
pusilla, 156
rustica, 156
schoeniclus, 157
variabilis, 156

Empidonax alnorum, 133, 314, 320
difficilis, 133
flavirostris, 132–133, 224, 314
fulvifrons, 224
hammondii, 133, 204
minus, 18, 133, 204
oberholseri, 133, 204
ocidentalis, 204
traillii, 133, 204
virescens, 224
wrightii, 204
INDEX

Empidonomus varius, 314
Eremophila alpestris, 135–136
ericyptae, Melospiza georgiana, 155
erythrogaster, Hirundo rustica,
 136–137
euborius, Catharus guttatus, 143
Eudocimus albus, 13
eunomus, Turdus naumanni, 144–145
Euphagus carolinus, 159
cyanocephalus, 159, 211
evermanni, Lagopus muta, 103
exilipes, Acanthis hornemanni, 163

Falcipennis canadensis, 102
Falco columbarius, 40, 132, 203
 mexicanus, 203–204
 peregrinus, 40, 132, 203
 rusticus, 18, 40, 132
 sparverius, 132, 203
 subbuteo, 132
tinnunculus, 132
Falcon, Peregrine, 40, 132, 203
 Prairie, 203–204
fannini, Ardea herodias, 107
fasciatus, Picoides dorsalis, 131
Faulkner, Douglas W., Colorado Bird
 Records Committee Report:
 1986–2013, 216–232
Feenstra, Jon, Book review: Facing
 Extinction, 86–87
Fenneman, Jamie, see Levesque, P. G.
Fettig, Stephen M., and Hathcock,
 Charles D., Eccentric preformative
 molt in the Spotted Towhee,
 343–346
Ficedula albicilla, 142
 narcissina, 142
Fieldfare, 145
Finch, Asian Rosy-, 160–161
 Black Rosy-, 218
 Cassin’s, 66–68, 162–163
 Gray-crowned Rosy-, 43, 161, 218
 House, 162, 212
 Purple, 25, 162
flammea, Acanthis flammea, 44, 163
flammeus, Asio flammeus, 40, 128
flammula, Pinicola enucleator,
 161–162
flava, Eremophila alpestris, 135–136
Flicker, Northern, 131–132, 203
Flycatcher, Acadian, 224
 Alder, 133, 314, 320
 Ash-throated, 133, 204
 Asian Brown, 141
Brown-crested, 224
Buff-breasted, 224
Cordilleran, 204
Dark-sided, 141
Dusky, 133, 204
Dusky-capped, 20
Gray, 204
Gray-streaked, 141
Great Crested, 20, 133
Hammond’s, 133, 204
Least, 18, 133, 204
Narcissus, 142
Olive-sided, 132, 204
Pacific-slope, 133
Scissor-tailed, 20, 134, 315, 320
Spotted, 141
Sulphur-bellied, 224
Taiga, 142
Variegated, 314
Vermilion, 204
Willow, 133, 204
Yellow-bellied, 132–133, 224, 314
Fratercula cirrhata, 39, 121–122
 corniculata, 39, 121, 311, 319
Fregata magnificens, 106
 sp., 308
Frigatebird, Magnificent, 106
frigatebird (sp.), 308
Fringilla montifringilla, 159–160
 frontalis, Haemorhous mexicanus, 162
Fulica americana, 110, 201
 atra, 110
Fulmar, Northern, 35, 105
Fulmarus glacialis, 35, 105
 fulva, Branta canadensis, 98
furcata, Oceanodroma furcata, 106
fuscatus, Phylloscopus fuscatus, 140
Gadwall, 33, 99, 195
Gallinago delicata, 38, 118, 201
 gallinago, 118
 solitaria, 118–119
 stenura, 118
 gallinago, Gallinago gallinago, 118
Gallinula chloropus, 110
 galeata, 201
Gallinule, Common, 201
gambelli, Zonotrichia leucophrys, 43,
 155
 gambelli, Anser albifrons, 97
Garganey, 99, 218
garzetta, Egretta garzetta, 107
Gatica-Colima, Ana, see Moreno-
 Contreras, I.
INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavia adamsii</td>
<td>104</td>
</tr>
<tr>
<td>arctica</td>
<td>103–104, 219, 318</td>
</tr>
<tr>
<td>immer</td>
<td>35, 104</td>
</tr>
<tr>
<td>pacifica</td>
<td>104</td>
</tr>
<tr>
<td>stellata</td>
<td>11, 103</td>
</tr>
<tr>
<td>Geococcyx californianus</td>
<td>202</td>
</tr>
<tr>
<td>Geothlypis philadelphia</td>
<td>151, 316</td>
</tr>
<tr>
<td>tolmiei</td>
<td>151, 208</td>
</tr>
<tr>
<td>trichas</td>
<td>151, 208</td>
</tr>
<tr>
<td>Gibson, Daniel D., and Withrow, Jack J., Inventory of the species and subspecies of Alaska birds, second edition</td>
<td>94–185</td>
</tr>
<tr>
<td>glacialis, Picoides pubescens</td>
<td>131</td>
</tr>
<tr>
<td>Glareola maldivarum</td>
<td>119</td>
</tr>
<tr>
<td>Glaucidium gnoma</td>
<td>128</td>
</tr>
<tr>
<td>glaucoides, Larus glaucoides</td>
<td>123</td>
</tr>
<tr>
<td>Gnatcatcher, Black-tailed</td>
<td>207</td>
</tr>
<tr>
<td>Godwit, Bar-tailed</td>
<td>71–75, 114, 310, 319, 322</td>
</tr>
<tr>
<td>Black-tailed</td>
<td>114</td>
</tr>
<tr>
<td>Hudsonian</td>
<td>16, 114, 309–310, 319 Marbled, 114</td>
</tr>
<tr>
<td>Goldeneye, Barrow’s</td>
<td>101</td>
</tr>
<tr>
<td>Common</td>
<td>35, 101</td>
</tr>
<tr>
<td>Golden-Plover, American</td>
<td>15, 111</td>
</tr>
<tr>
<td>European</td>
<td>111</td>
</tr>
<tr>
<td>Pacific</td>
<td>36, 111</td>
</tr>
<tr>
<td>Goldfinch, American</td>
<td>163, 212</td>
</tr>
<tr>
<td>Lawrence’s</td>
<td>228</td>
</tr>
<tr>
<td>Lesser</td>
<td>212</td>
</tr>
<tr>
<td>Gómez de Silva, H., see Moreno-Contreras, I.</td>
<td></td>
</tr>
<tr>
<td>Goose, Cackling</td>
<td>33, 97–98, 194, 217 Canada, 98, 194</td>
</tr>
<tr>
<td>Emperor</td>
<td>32, 97, 228, 301</td>
</tr>
<tr>
<td>Greater White-fronted</td>
<td>32, 97</td>
</tr>
<tr>
<td>Lesser White-fronted</td>
<td>97</td>
</tr>
<tr>
<td>Ross’s, 97, 194</td>
<td>Snow, 97, 194, 301 Taiga Bean-, 97 Tundra Bean-, 97</td>
</tr>
<tr>
<td>Goshawk, Northern</td>
<td>109</td>
</tr>
<tr>
<td>gracilis, Melospiza lincolnia</td>
<td>155</td>
</tr>
<tr>
<td>Grackle, Common</td>
<td>24, 159, 318 Great-tailed, 211, 318</td>
</tr>
<tr>
<td>Grasshopper-Warbler, Middendorff’s</td>
<td>141</td>
</tr>
<tr>
<td>Grebe, Eared</td>
<td>104, 196 Horned, 104 Pied-billed, 104, 196 Red-necked, 104</td>
</tr>
<tr>
<td>Western</td>
<td>104, 196 grebnitskii, Carpodacus erythrinus, 162</td>
</tr>
<tr>
<td>Greenfinch, Oriental</td>
<td>164</td>
</tr>
<tr>
<td>Greenshank, Common</td>
<td>113</td>
</tr>
<tr>
<td>grinnelli, Glaucidium gnoma</td>
<td>128</td>
</tr>
<tr>
<td>Regulus calendula</td>
<td>139</td>
</tr>
<tr>
<td>griseonucha, Leucosticte tephrocotis</td>
<td>43, 161</td>
</tr>
</tbody>
</table>
INDEX

Sabine’s, 122
Slaty-backed, 16, 125, 220, 311
Western, 123, 220
guttatus, Catharus *guttatus*, 42, 143
gutturalis, Hirundo *rustica*, 137
Gymnogyps *californianus*, 228, 319
Gyrfalcon, 18, 40, 132

Haematopus *bachmani*, 36, 111

ostrealegus, 111

Haemorhous *cassinii*, 66–68, 162–163

mexicanus, 162, 212

purpureus, 25, 162

Hajdukovich, Nicholas R., DeCicco, Lucas H., and Tomkovich, Pavel S., Western North American records of Eurasian Bar-tailed Godwits, 71–75

Halloaetes albicilla, 108

leucocephalus, 36, 108

pelagicus, 108–109

Hamilton, Chris E., see Greeney, H. F.

harlani, Buteo *jamaicensis*, 109

Harrier, Northern, 36, 109, 199

Hathcock, Charles, D., see Fettig, S. M.

Hawfinch, 164

Hawk, Broad-winged, 14, 309, 319
Commmon Black, 14, 199, 228–229
Cooper’s, 199
Ferruginous, 200–201
Harris’s, 199, 220, 319
Red-shouldered, 309
Red-tailed, 109–110, 200
Rough-legged, 36, 110
Sharp-shinned, 109, 199
Swainson’s, 109, 199
Zone-tailed, 14, 199–200, 220, 319

helleri, Troglydytes pacificus, 138

Helmitheros vermivorum, 320

Heron, Black-crowned Night-, 108, 198
Chinese Pond-, 108

Gray, 107

Great Blue, 107, 198

Green, 108, 198

Tricolored, 107

Yellow-crowned Night-, 13

hesperis, Corvus *brachyrhynchos*, 135

heuglini, Larus *fuscus*, 125

Himantopus *himantopus*, 111

mexicanus, 201

himantopus, Himantopus *himantopus*, 111

Hirundapus caudacutus, 129

Hirundo *rustica*, 136–137, 206

Histrionicus histrionicus, 11, 35, 101

hoaictli, Nycticorax *nycticorax*, 108

Hobby, Eurasian, 132

holboellii, Podiceps grisegena, 104

Holden, Ronnisha S., see Colón, M. R.

Hoopoe, Eurasian, 130

hooveri, Setophaga *coronata*, 42, 152

hornemannii, Acanthis *hornemannii*, 163

Hough, Eric R., see Greeney, H. F.

House-Martin, Common, 137

hudsonicus, Numenius *phaeopus*, 37, 114

Poecile hudsonicus, 137–138

hudsonius, Circus *cyaneus*, 36, 109

Hummingbird, Allen’s, 17, 319

Anna’s, 130
Black-chinned, 203, 326–330
Broad-billed, 222–223
Broad-tailed, 203
Costa’s, 130, 222, 314
Ruby-throated, 130, 222
Rufous, 130, 203
White-eared, 223

Hydrocoloeus minutus, 122

Hydroprogne caspia, 125–126

hyemalis, Junco *hyemalis*, 155

Hylocharis *leucotis*, 223

Hylocichla mustelina, 143

Ibis, Glossy, 219

White, 13

White-faced, 198, 308–309

ibis, Bubulcus *ibis*, 107

Icteria virens, 209

Icterus bullockii, 159, 212
cucullatus, 227
galbula, 218, 321
parisorum, 212
pustulatus, 227
spurius, 159, 318

Ictinia mississippiensis, 199
iliaca/zaboria, Passerella *iliaca*, 317
iliacus, Turdus *iliacus*, 145
incanus, Catharus *ustulatus*, 143
inornata, Tringa *semipalmata*, 113

uria aalge, 38, 119

insignis, Melospiza *melodia*, 154
insularis, Passerella *iliaca*, 43, 154
interfusa, Passerina *caerulea*, 158
intermedia, Mesophoyx *intermedia*, 107

interpres, Arenaria *interpres*, 37, 114

interstinctus, Falco *tinnunculus*, 132
INDEX

isleibi, Falcipennis canadensis, 102
Ixobrychus sinensis, 107
Ixoreus naevius, 42, 146

Jaeger, Long-tailed, 16, 38, 119
Parasitic, 16, 38, 119
Pomarine, 119
japonica, Gallinago solitaria, 118–119
Ninox japonica, 129
japonicus, Anthus rubescens, 149
Coccothraustes coccothraustes, 164
Otus sunia, 127
Jay, Blue, 20
Gray, 135
Steller’s, 135, 205
jotaka, Caprimulgus indicus, 129
jouyi, Ardea cinerea, 107
Junco, Dark-eyed, 155–156, 210
Junco hyemalis, 155–156, 210
Jynx torquilla, 130

kairurka, Cepphus columba, 120
kamtschaticus, Corvus corax, 41, 135
Dendrocopos major, 131
kamtschatkensis, Buteo lagopus, 110
Pinicola enucleator, 162
kamtschatschensis, Larus canus, 123
kawarahiba, Chloris sinica, 164
kenaiensis, Melospiza melodia, 154
Kennedy, Jeremiah, see Levesque, P. G.
kennicotti, Megasops kennicotti, 127
Kestrel, American, 132, 203
Eurasian, 132
Killdeer, 112, 201
Kingbird, Cassin’s, 204
Eastern, 134
Thick-billed, 224
Tropical, 133, 314
Tropical/Couch’s, 314–315, 320
Western, 133–134, 204
Kingfisher, Belted, 130, 203
Kinglet, Golden-crowned, 139
Ruby-crowned, 139, 207
Kiskadee, Great, 224
kiskensis, Troglydtes pacificus, 138
Kite, Mississippi, 199
White-tailed, 14, 199
Kittiwake, Black-legged, 16, 39, 122
Red-legged, 16, 39, 122
Knot, Great, 115
Red, 115
Koepke, Josh S., see Carter, H. R.
kumlieni, Larus glaucoides, 123
lagophonus, Bubo virginianus, 127–128
lagopodium, Delichon urbicum, 137
Lagopus lagopus, 102–103
leucura, 103, 233–243
muta, 103
laingi, Accipiter gentilis, 109
Lanius cristatus, 134
excubitor, 134
ludovicianus, 204
Lapwing, Northern, 111
Lark, Horned, 135–136
Sky, 135
Larus argentatus, 39, 123
californicus, 123
canus, 16, 39, 123
crassirostris, 122–123, 311
delawarensis, 123, 202
dominicanus, 220–221
fuscus, 125, 311, 322
glaucenscens, 39, 125
glaucoides, 123, 125, 220, 311
heermannii, 123
hyperboreus, 16, 40, 125
marinus, 125
occidentalis, 123, 220
schistisagus, 16, 125, 220, 311
lathami, Poecile cinctus, 138
latifascia, Emberiza rustica, 156
leucocephalos, Emberiza
leucocephalos, 156
leucopareia, Branta hutchinsii, 33, 97–98
Leucophaeus atricilla, 122, 311
pipixcan, 122
leucophrys, Zonotrichia leucophrys, 155
leucoptera, Loxia leucoptera, 163
leucomagala, Oceanodroma leucomagala, 106
Leucosticte arctoa, 160–161
atrata, 218
tephrocotis, 43, 161, 218
leucura, Pinicola enucleator, 161
Leukering, Tony, see Mlodinow, S. G.
Levesque, Paul G., Fenneman, Jamie, and Kennedy, Jeremiah, First occurrence of the Cave Swallow in British Columbia, 264–266
lilfordi, Grus grus, 110–111
limicola, Rallus limicola, 110
Limnodromus griseus, 38, 118
scolopaceus, 118, 201
Limosa fedoa, 114
INDEX

haemastica, 16, 114, 309–310, 319
lapponica, 71–75, 114, 310, 319, 322
limosa, 114
lincolni, Melospiza lincolni, 155
littoralis, Leucosticte tephrocotis, 161
Locustella lanceolata, 141
ochotensis, 141
longicauda, Toxostoma rufum, 146
longipennis, Sterna hirundo, 126
Locustella lanceolata, 141
ochotensis, 141
longicauda, Toxostoma rufum, 146
longipennis, Sterna hirundo, 126
Longspur, Chestnut-collared, 315
Lapland, 42, 149
Smith’s, 150, 225
Loon, Arctic, 103–104, 219, 318
Common, 35, 104
Pacific, 104
Red-throated, 11, 103
Yellow-billed, 104
Lophodytes cucullatus, 102, 195
Lovich, Jeffrey E., Golden Eagle mortality at a wind-energy facility near Palm Springs, California, 76–80
Loxia curvirostra, 163, 212
leucoptera, 163
lugens, Motacilla alba, 147
Luscinia calliope, 142
cyane, 142
sibilans, 142
svecica, 142
lutescens, Oreothlypis celata, 150–151
luteus, Colaptes auratus, 131–132
Lymnocryptes minimus, 118
magnus, Aegolius funereus, 128
Magpie, Black-billed, 41, 135
Mallard, 33, 99, 195
mandti, Cepphus grylle, 120
marginella, Zenaida macroura, 127
marila, Aythya marila, 100
Marks, Jeffrey S., Book Review: Owls of North America and the Caribbean, 347–348
Martin, Common House-, 137
Purple, 136
Mathewson, Heather A., see Long, A. M., see Colón, M. R.
maxima, Melospiza melodia, 154
McFarland, Tiffany M., see Colón, M. R.
McHugh, Yvonne E., see Brake, A. J.
McNeil, Shannon E., Tracy, Diane, and Cappello, Caroline D., Loop migration by a western Yellow-billed Cuckoo wintering in the Gran Chaco, 244–255
Meadowlark, Eastern, 211
Western, 159, 211
mearnsi, Zenaida asiatica, 126
Megaceryle alcyon, 130, 203
Megascops kennicottii, 127
Melanerpes formicivorus, 81–82, 223
uropygialis, 18
Melanitta americana, 35, 101
 fusca, 35, 101
perspicillata, 35, 101
melanocephalus, Puecticus melanocephalus, 158
melanuroides, Limosa limosa, 114
meligerus, Troglydytes pacificus, 138
Melospiza georgiana, 24, 155, 210
lincolni, 155, 210
melodia, 43, 154–155, 210
Melozone fusca, 209
Merganser, Common, 102, 195
Hooded, 102, 195
Red-breasted, 35, 102
merganser, Mergus merganser, 102
Mergellus albellus, 101–102, 318, 322
Mergus merganser, 102, 195
serrator, 35, 102
meridionalis, Cathartes aura, 108
Merlin, 40, 132, 203
merrilli, Melospiza melodia, 154–155
meruloides, Ixoreus naevius, 42, 146
Mesophoyx intermedia, 107
Meyer, Aran, Warning, Nathaniel, and Benedict, Lauryn, Direct removal of fecal sacs by Rock Wrens, 267–270
Meyers, Martin, Nevada Bird Records Committee Report for 2013, 8–27
middendorffii, Anser fabalis, 97
migratorius, Turdus migratorius, 146
Mimus polyglottos, 146, 207
minima, Branta hutchinsii, 98
minor, Chordeiles minor, 129
INDEX

Loxia curvirostra, 163
Mlodinow, Steven G., and Leukering, T., Colorado’s first accepted record of the Cave Swallow, 331–335; and Leukering, Tony, Brooks, Taylor, and Moore, Nick, Apparent hybrid Downy Woodpecker × Hairy Woodpecker in Colorado, 2–7

Mniotilta varia, 150, 208, 315, 320–321
Mockingbird, Northern, 146, 207 modesta, Ardea alba, 107
Molothrus aeneus, 212, 225 ater, 159, 212
monilis, Patagioenas fasciata, 126
montanus, Junco hyemalis, 155–156
Moore, Nick, see Mlodinow, S. G.
Mooren, Common, 110
Moreno-Contreras, Israel, Gómez de Silva, Héctor, Torres-Vivanco, Adrián, Villalpando-Navarrete, Nohemi, and Botello, Alejandro, Avifauna of Juárez Municipality, Chihuahua, Mexico, 190–215; and Gatica-Colima, Ana, and Venegas, Diana, New Montezuma Quail records from Chihuahua, Mexico, 339–342
morinella, Arenaria interpres, 114
Morrison, Michael L., see Long, A. L., see Colón, M. R.
Motacilla alba, 147 cinerea, 147 tschutschensis, 146–147
Murre, Common, 38, 119
Thick-billed, 119, 310
Murrelet, Ancient, 120 Kittlitz’s, 120 Long-billed, 120, 319 Marbled, 120 Scripp’s, 310 Scripp’s/Craveri’s, 310 Scripp’s/Guadalupe, 310 Xantus’s, 310
Musciapa dauurica, 141 griseisticta, 141 sibirica, 141 striata, 141
Myadestes townsendi, 143, 336–338
Myiarchus cinerascens, 133, 204 crinitus, 20, 133 tuberculifer, 20 tyrannulus, 224
Myiodynastes luteiventris, 224
Myna, Crested, 320
naevius, Ixoreus naevius, 146
nanus, Catharus guttatus, 143 narcissina, Ficedula narcissina, 142 neartica, Aythya marila, 34, 100 nebulosa, Strix nebulosa, 128
Needletail, White-throated, 129
neglecta, Surnella neglecta, 159 nelsoni, Lagopus muta, 103 Picoides pubescens, 131 Sitta carolinensis, 278–290 neumanni, Muscicapa striata, 141 Nighthawk, Common, 129, 202 Lesser, 129, 202
Night-Heron, Black-crowned, 108, 198
Yellow-crowned, 13
Nightjar, Gray, 129 nigricans, Branta bernicla, 33, 97 Ninox japonica, 129 nivalis, Plectrophenax nivalis, 150 nubilosus, Onychoprion fuscatus, 125 Nucifraga columbiana, 135 Numenius americanus, 114, 201 borealis, 113 madagascariensis, 114 minutus, 113 phaeopus, 37, 114 tahitienesis, 114 Nutcracker, Clark’s, 135 Nuthatch, Pygmy, 273–275
INDEX

oenanthe, Oenanthe oenanthe, 142
olivaceus, Regulus satrapa, 139
Vireo olivaceus, 135
Onychoprion aleuticus, 40, 125
fuscatus, 125, 221
Oporornis agilis, 22
oregatus, Junco hyemalis, 155
Oreoscoptes montanus, 207
Oreothlypis celata, 150–151, 208
luciae, 208
peregrina, 150, 316, 321
ruficapilla, 151, 208
virginiae, 208
orientalis, Streptopelia orientalis, 126
Oriole, Baltimore, 218, 321
Bullock’s, 159, 212
Hooded, 225
Orchard, 159, 318
Scott’s, 212
Streak-backed, 225
ornata, Emberiza aureola, 156
osculans, Haematopus ostralegus, 111
Osprey, 108, 198–199
Otus sunia, 127
Ovenbird, 150, 315
Owl, Barn, 202
Barred, 17, 128
Boreal, 128
Burrowing, 202
Great Gray, 128
Great Horned, 127–128, 202, 271–272
Long-eared, 68–70, 128
Northern Hawk, 128, 313–314, 319, 322
Northern Pygmy-, 128
Northern Saw-whet, 129
Oriental Scops-, 127
Short-eared, 40, 128, 202
Snowy, 128
Western Screech-, 127
Oxyura jamaicensis, 102, 195
Oystercatcher, Black, 36, 111
Eurasian, 111
pacific., Calidris alpina 37, 116
pacificus, Anthus rubescens, 42, 149
Apus pacificus, 130
Perisoreus canadensis, 135
Troglydytes pacificus, 139
Pagophila eburnea, 122, 311
pallescens, Stercorarius longicaudus, 38, 119
pallidiceps, Bombycilla garrulus, 149
pallidissimus, Larus hyperboreus, 125
palmarum, Setophaga palmarum, 152
Pandion haliaetus, 108, 198–199
Pandolfini, Edward R., and Pieplow, Nathan D., Comparison of vocalizations of four U.S. subspecies of the White-breasted Nuthatch, 278–290; see Zamek, S.
Parabuteo unicinctus, 199, 220, 319
Parker, Michael W., see Carter, H. R.
Parkesia motacilla, 22
noveboracensis, 150, 208
Parula, Northern, 316
Tropical, 225
parvipes, Branta canadensis, 98
Passer domesticus, 164, 212
Passerellus sandwichensis, 42, 153, 210
Passerella iliaca, 43, 153–154, 317
Passerina amaena, 158, 211
caela, 158, 211
ciris, 24, 211, 322
cyanea, 158, 317, 321
Patagioenas fasciata, 126
pealei, Falco peregrinus, 40, 132
pekinensis, Alauda arvensis, 135
Apus apus, 130
Pelecanus erythrorhynchos, 107, 198
occidentalis, 13, 107
Pelican, American White, 107, 198
Brown, 13, 107
peninsularis, Lagopus leucura, 103
Perisoreus canadensis, 135
perobscursus, Accipiter striatus, 109
Petrel, Ashy Storm-, 49–65, 308, 319
Cook’s, 105
Fork-tailed Storm-, 106
Hawaiian, 307–308
Leach’s Storm-, 106
Mottled, 105, 307, 318–319
Murphy’s, 307
Providence, 105, 303–306
Petrochelidon fulva, 206, 224, 264–266, 331–335
pyrrhonota, 41, 136, 206
Peucaea cassinii, 209–210
Pewee, Greater, 314
Western Wood-, 132, 204
Phainopepla, 208, 320
Phainopepla nitens, 208, 320
Phalaropus auritus, 35, 106, 198
brasilianus, 12, 196–197
pelagicus, 35, 106–107
penicillatus, 106
INDEX

urile, 35, 106
Phalaenoptilus nuttallii, 202
Phalarope, Red, 38, 119
Red-necked, 38, 119
Wilson’s, 119, 201
Phalaropus fulicarius, 38, 119
lobatus, 38, 119
tricolor, 119, 201
Phaeacicus ludovicianus, 158, 211
melanocephalus, 158, 201
Phoebastria albatrus, 104, 302–303
immutabilis, 104
nigripes, 104
Pheobe, Black, 133, 204, 314
Eastern, 133, 204, 320
Say’s, 133, 204
Phoenicurus phoenicurus, 142
phoenicurus, Phoenicurus
phoenicurus, 142
Phylloscopus borealis, 140
collybita, 140
examinandus, 140
fuscatus, 140
inornatus, 140
proregulus, 140
sibilatrix, 140
trochilus, 140
Pica hudsonia, 41, 135
Picoides arcticus, 131
dorsalis, 131
pubescens, 2–7, 131, 203
scalari, 203
villosus, 2–7, 131
Piewlow, Nathan D., see Pandolfino, E. R.
Pigeon, Band-tailed, 126
Rock, 126, 202
pileolata, Cardellina pusilla, 42, 153
Pinicola enucleator, 161–162
Pintail, Northern, 34, 99, 195
pinus, Spinus pinus, 163
Pipilo chlorurus, 209
erythrophthalmus, 217–218
maculatus, 153, 209, 343–346
Pipit, American, 42, 149, 208, 263
Olive-backed, 147
Pechora, 147
Red-throated, 148–149
Sprague’s, 22
Tree, 147
Piranga ludovicianana, 158, 210
olivacea, 158
rubra, 210
Pitangus sulphuratus, 224
platyrhynchos, Anas platyrhynchos,
33, 99
Plectrophenax hyperboreus, 150, 320
nivalis, 150
Plegadis chihi, 198, 308–309
falcinellus, 219
Plover, American Golden-, 15, 111
Black-bellied, 111
Common Ringed, 112
European Golden-, 111
Lesser Sand-, 111
Little Ringed, 112
Mountain, 15, 322
Pacific Golden-, 36, 111
Semipalmated, 36, 112
Snowy, 112
plumbea, Oceanodroma furcata, 106
plumbeus, Psaltriparus minimus, 315
Pluvialis apricaria, 111
dominica, 15, 111
fulva, 36, 111
squatarola, 111
Pochard, Common, 100
Podiceps auritus, 104
grisegena, 104
nigricolis, 104, 196
podiceps, Podilymbus podiceps, 104
Podilymbus podiceps, 104, 196
Poecile atricapillus, 137
cinctus, 138
gambeli, 137
hudsonicus, 137–138
rufescens, 137
polaris, Emberiza pallasi, 156–157
Polioptila caerulea, 207, 315
melanura, 207
pollicaris, Rissa tridactyla, 39, 122
polyglottos, Mimus polyglottos, 146
Polyctinta stelleri, 100
Pond-Heron, Chinese, 108
Poecetes gramineus, 153, 210
Poorwill, Common, 202
Porzana carolina, 110, 201
Pratincole, Oriental, 119
principalis, Corvus corax, 135
Progne subis, 136
Protonotaria citrea, 315–316
Prunella montanella, 146
Psaltriparus minimus, 315
Ptarmigan, Rock, 103
White-tailed, 103, 233–243
Willow, 102–103
Pterodroma cookii, 105
inexpectata, 105, 307, 318–319
sandwichensis, 307–308
solandri, 105, 303–306
ultima, 307
ptilocnemis, Calidris ptilocnemis, 116
Potyroramphus aleuticus, 120
Puffin, Horned, 39, 121, 311, 319
 Tufted, 39, 121–122
Puffinus bulleri, 105
carneipes, 105
creatopus, 105
gravis, 105, 308
griseus, 35, 105
puffinus, 105, 308
tenuirostris, 105
pugetensis, Zonotrichia leucophrys, 155
purpureus, Haemorhous purpureus, 162
pygmaea, Aethia pygmaea, 121
Pygmy-Owl, Northern, 128
Pyrocephalus rubinus, 204
pyrrhonota, Petrochelidon pyrrhonota, 41, 136
Pyrrhula pyrrhula, 162
pyrrhulina, Emberiza schoeniclus, 157
Pyrhuloxia, 211, 225
Quail, Gambel’s, 196
 Montezuma, 339–342
 Scaled, 196
quarta, Calidris ptilocnemis, 116
Quiscalus mexicanus, 211, 318
 quiscula, 24, 159, 318
Rail, Virginia, 110
Rallus limicola, 110
Raven, Chihuahuan, 205
 Common, 41, 135
real, Loxia curvirostra, 163
Recurvirostra americana, 111, 201
Redhead, 100, 195
Redpoll, Common, 25, 44, 163, 291–298
 Hoary, 163, 225, 228, 318, 321
Redshank, Spotted, 15, 113
Redstart, American, 151, 208
 Common, 142
Redwing, 145
Regulus calendula, 139, 207
 satrapa, 139
Rhodostethia rosea, 122
richardsoni, Aegolius funereus, 128
rigwuyi, Oreocephalus ruficapilla, 151
Ringgenberg, Brandi, and Winker,
K., Indications that the Common Redpoll is double brooded in Alaska, 291–298
Riparia riparia, 41, 136, 206
riparia, Riparia riparia, 41, 136
Ripplinger, Christina M., see Greeney, H. F.
Rissa brevirostris, 16, 39, 122
tridactyla, 16, 39, 122
Roadrunner, Greater, 202
Robin, American, 146, 207, 336–338
 Rufous-backed, 20
 Rufous-tailed, 142
 Siberian Blue, 142
Robinson, Dianne H., see Long, A. M.
 robusta, Motacilla cinerea, 147
 rodgersit, Fulmarus glacialis, 35, 105
 Rosefinch, Common, 162
 roselaeli, Calidris canutus, 115
 Rosy-Finch, Asian, 160–161
 Black, 218
 Gray-crowned, 43, 161, 218
 ruber, Sphyrapicus ruber, 131
 rubida, Oxyura jamaicensis, 102
 rubiginosa, Setophaga petechia, 42, 152
Rubythroat, Siberian, 142
rufescens, Poecile rufescens, 137
Ruff, 115, 310
ruficollis, Eretta tricolor, 107
rufina, Melospiza melodia, 154
rustica, Hirundo rustica, 136
Rynchops niger, 222
Sage-Grouse, Gunnison, 217
salicicola, Catharus fusescens, 143
Salpinctes obsoletus, 206, 267–270
sanaka, Melospiza melodia, 43, 154
sanctijohannis, Buteo lagopus, 36, 110
Sanderling, 37, 116
Sandpiper, Baird’s, 116
 Broad-billed, 115
 Buff-breasted, 118, 310
 Common, 112
 Curlew, 115, 220
 Green, 112
 Least, 37, 118, 201
 Marsh, 113
 Pectoral, 118, 201
 Purple, 116
 Rock, 37, 116
 Semipalmated, 118
 Sharp-tailed, 115

INDEX
INDEX

Solitary, 112–113, 201
Spoon-billed, 115–116
Spotted, 112, 201
Stilt, 16, 115
Terek, 112
Upland, 113
Western, 38, 118, 201
White-rumped, 118
Wood, 113
Sand-Plover, Lesser, 111
Sapsucker, Red-breasted, 131
Red-naped, 203
Williamson’s, 89–91, 203
Yellow-bellied, 18, 130–131, 203, 314, 319
saturata, Upupa epops, 130
saturatus, Bubo virginianus, 127
Contopus sordidulus, 132
Saxicola torquatus, 142
Sayornis nigricans, 133, 204, 314
phoebe, 133, 204, 320
saya, 133, 204
Scaup, Greater, 34, 100
Lesser, 34, 100, 195
Schmidt, Krista K., see Greeney, H. F.
Schneider, Ken R., Hypermelanistic
American Pipit returns to winter in central California, 263
Scops-Owl, Oriental, 127
Scoter, Black, 35, 101
Suri, 35, 101
White-winged, 35, 101
Screech-Owl, Western, 127
Sea-Eagle, Steller’s, 108–109
Seiurus aurocapilla, 150, 315
Selasphorus platycercus, 203
rufus, 130, 203
sasin, 17, 319
semiater, Sayornis nigricans, 133
semidiensis, Troglodotes pacificus, 41, 138
septentrionalis, Picoides villosus, 131
septentrionalium, Anas cyanoptera, 99
serripennis, Stelgidopteryx
serripennis, 136
serrirostris, Anser serrirostris, 97
Setophaga americana, 316
auduboni, 209
caerulescens, 152, 317, 321, 322
castanea, 24, 317
chrysoparia, 261–262
citrina, 208
coronata, 42, 152, 209
discoolor, 24, 152
dominica, 317
fusca, 317
graciae, 209
magnolia, 151, 316–317
nigrescens, 209
palmarum, 152
pensylvanica, 152, 317
petechia, 42, 152, 208–209
pinus, 24, 209
pitiayumi, 225
rutilcilla, 151, 208
striata, 152, 317, 321
tigrina, 151
townsendi, 152, 209
virens, 152
Shearwater, Buller’s, 105
Flesh-footed, 105
Great, 105, 308
Manx, 105, 308
Pink-footed, 105
Short-tailed, 105
Sooty, 35, 105
Streaked, 319
Shedd, Jackson D., Acorn Woodpecker predation on the Western Fence Lizard in northern California, 81–82
Shoveler, Northern, 34, 99, 195
Shrike, Brown, 134
Loggerhead, 204
Northern, 134
Sialia currucoides, 143, 207, 273–275
mexicana, 207
sialis, 207
sibilans, Luscinia sibilans, 142
sibirica, Calidris falcinellus, 115
Musciapa sibirica, 141
sibiricus, Lanius excubitor, 134
Siemens, Larry, Two thrush species feed the same nestlings, 336–338
simillima, Motacilla tschutschensis, 147
sinuosa, Passerella iliaca, 154
Siskin, Eurasian, 163
Pine, 163, 212
sitkensis, Dendragapus fuliginosus, 103
Picoides villosus, 131
INDEX

Sitta canadensis, 138, 206
carolinensis, 206, 278–290
pygmaea, 273–275
Skimmer, Black, 222
Skua, South Polar, 119
Smew, 101–102, 318, 322
smithsonianus, Larus argentatus, 39, 123
Snipe, Common, 118
Jack, 118
Pin-tailed, 118
Solitary, 118–119
Wilson’s, 38, 118, 201
Solitaire, Townsend’s, 143, 336–338
solitaria, Tringa solitaria, 112
solitarius, Vireo solitarius, 134
Somateria fischeri, 100
mollissima, 101
spectabilis, 35, 101, 302
Sora, 110, 201
Sparrow, American Tree, 153
Black-chinned, 210, 225
Black-throated, 210
Brewer’s, 153, 210
Cassin’s, 209–210
Chipping, 153, 210
Clay-colored, 24, 153, 210
Fox, 43, 153–154, 317
Golden-crowned, 43, 155
Grasshopper, 210
Harris’s, 155
House, 164, 212
Lark, 153, 210
Lincoln’s, 155, 210
Rufous-crowned, 209
Sagebrush, 210
Savannah, 42, 153, 210
Song, 43, 154–155, 210
Swamp, 24, 155, 210
Vesper, 153, 210
White-crowned, 43, 155, 210
White-throated, 155
sparverius, Falco sparverius, 132
Sphyrapicus nuchalis, 203
rubra, 131
thyroideus, 89–91, 203
varius, 18, 130–131, 203, 314, 319
Spinus lawrencei, 228
pinius, 163, 212
psaltria, 212
spinus, 163
tristis, 163, 212
Spiza americana, 24, 158, 211, 318, 321
Spizella arborea, 153
atrogularis, 210, 225
breweri, 153, 210
pallida, 24, 153, 210
passerina, 153, 210
sponsa, Anser albifrons, 32, 97
spurius, Icterus spurius, 159
Starling, European, 146, 207–208
stegmanni, Charadrius mongolus, 111
stejnegeri, Anthus gustavi, 147
Melanitta fusca, 101
Saxicola torquatus, 142
Stelgidopteryx serripennis, 136, 205–206
stelleri, Cyanocitta stelleri, 135
Stercorarius longicaudus, 16, 38, 119
maccormicki, 119
parasiticus, 16, 38, 119
pomarinus, 119
Sterna hirundo, 126
paradisaea, 40, 126
Sternula antillarum, 17, 311–312
Stilt, Black-necked, 201
Black-winged, 111
Stint, Little, 116–118
Long-toed, 115
Red-necked, 116, 310
Temminck’s, 115
Stonechat, 142
Storm-Petrel, Ashy, 49–65, 308, 319
Fork-tailed, 106
Leach’s, 106
Streptopelia decaocto, 126, 202
222, 312, 322
orientalis, 126
strigatus, Chondestes grammacus, 153
Strix nebulosa, 128
varia, 17, 128
Sturnella magna, 211
neglecta, 159, 211
Sturnus vulgaris, 146, 207–208
subbuteo, Falco subbuteo, 132
subis, Progne subis, 136
suckleyi, Falco columbarius, 132
Sula leucogaster, 106, 308
INDEX

Surfbird, 115
surinamensis, Chlidonias niger, 126
Surnia ulula, 128, 313–314, 319, 322
svecica, Luscinia svecica, 142
swainsoni, Vireo gilvus, 134
Swallow, Bank, 41, 136, 206
 Barn, 136–137, 206
 Cave, 206, 224, 264–266, 331–335
 Cliff, 41, 136, 206
 Northern Rough-winged, 136, 205–206
 Tree, 136, 205
 Violet-green, 41, 136, 205
Swan, Trumpeter, 11, 98
 Tundra, 33, 98, 301
 Whooper, 98–99
Swift, Black, 129
 Chimney, 129
 Common, 130
 Fork-tailed, 130
 Vaux’s, 129
 White-throated, 202–203
Sylvia curruca, 140
Synthliboramphus antiquus, 120
 hypoleucus, 310
 scrippsi, 310
 scrippsi/craveri, 310
 scrippsi/hypoleucus, 310
 tabida, Grus canadensis, 110
Tachycineta bicolor, 136, 205
 thalassina, 41, 136, 205
Tanager, Scarlet, 158
 Summer, 210
 Western, 158, 210
Tarsoniger cyanurus, 142
Tattler, Gray-tailed, 113
 Wandering, 37, 113
taverneri, Branta hutchinsii, 98
 Spizella breweri, 153
Teal, Baikal, 100, 301
 Blue-winged, 33, 99, 195
 Cinnamon, 99, 195
 Green-winged, 34, 100, 195
tenuissima, Sitta carolinensis, 278–290
tephrocositis, Leucosticte tephrocositis, 161
Tern, Aleutian, 40, 125
 Arctic, 40, 126
 Black, 126
 Caspian, 125–126
 Common, 126
 Least, 17, 311–312
 Royal, 221
Sandwich, 221–222
Sooty, 125, 221
 White-winged, 126
texensis, Chordeiles acutipennis, 129
Thalassarche salvini, 104
Thalasseus maximus, 221
 sandvicensis, 221–222
thalassina, Tachycineta thalassina, 41, 136
thayeri, Larus glaucoides, 123, 125
Thrasher, Brown, 21, 146, 315
 Crissal, 207
 Curve-billed, 21, 207
 Sage, 207
Thrush, Dusky, 144–145
 Eyebrowed, 144
 Gray-cheeked, 143
 Hermit, 42, 143, 207
 Swainson’s, 143, 207
 Varied, 42, 146
 Wood, 143
Thryomanes bewickii, 207
tolmiei, Geothlypis tolmiei, 151
Tomkovich, Pavel S., see Hajdukovich, N. R.
torquilla, Jynx torquilla, 130
Torres-Vivanco, Adrián, see Moreno-Contreras, I.
Towhee, Canyon, 209
 Eastern, 217–218
 Green-tailed, 209
 Spotted, 153, 209, 343–346
townsendi, Lagopus muta, 103
 Myadestes townsendi, 143
 Passerella iliaca, 43, 154
 Plectrophenax nivalis, 150
Toxostoma crissale, 207
curvirostre, 21, 207
 rufum, 21, 146, 315
Tracy, Diane, see McNeil, S. E.
Tringa brevipes, 113
 erythropus, 15, 113
 flavipes, 113, 201
 glareola, 113
 incana, 37, 113
 melanoleuca, 37, 113, 201
 nebularia, 113
 ochropus, 112
 semipalmata, 113
 solitaria, 112–113, 201
 stagnatilis, 113
 tristis, Phylloscopus collybita, 140
 trivialis, Anthus trivialis, 147
 Troglodytes aedon, 206
INDEX

pacificus, 41, 138–139, 224–225
tschukschorum, Calidris ptilocnemis, 116
tschukschensis, Motacilla
tschukschensis, 146–147
tundrae, Charadrius hiaticula, 112
tundrius, Falco peregrinus, 132
Turdus iliacus, 145
migratorius, 146, 207, 336–338
naumanni, 144–145
obscurs, 144
pilars, 145
rufopalliatius, 20
turneri, Poecile atricapillus, 137
Turnstone, Black, 114
Ruddy, 37, 114
Turtle-Dove, Oriental, 126
Tymanuchus phasianellus, 103
× Dendragapus obscurus, 351–352
Tyrrannus crassirostris, 224
forficatus, 20, 134, 315, 320
melancholicus, 133, 314
melancholicus/couchii, 314–315, 320
tyrannus, 134
verticalis, 133–134, 204
vociferans, 204
Tyto alba, 202
umbelloides, Bonasa umbellus, 102
umbrina, Leucosticte tephrocotis, 161
unalaschcensis, Passerella iliaca, 43, 153
unicolor, Cinclus mexicanus, 139
Upupa epops, 130
Uria aalge, 38, 119
lomvia, 119, 310
ustulatus, Catharus ustulatus, 143
Vander Pluym, David, Book review:
Field Guide to Birds of the
Northern California Coast, 83–86
Vanellus vanellus, 111
varia, Strix varia, 128
variegatus, Numenius phaeopus, 114
vauxi, Chaetura vauxi, 129
Veery, 143
vegae, Larus argentatus, 123
veliei, Contopus sordidulus, 132
velox, Accipiter striatus, 109
Venegas, Diana, see Moreno-Contreras, l.
Verdin, 206
versicolor, Quiscalus quiscula, 159
Villalpando-Navarrete, Nohemi, see
Moreno-Contreras, l.
vinifer, Haemorhous cassinii, 66–68
Violetear, Green, 222
virens, Setophaga virens, 152
Vireo, Bell’s, 204, 315
Black-capped, 256–260
Blue-headed, 134, 205, 217, 315, 320
Cassin’s, 134, 205, 217
Philadelphia, 134–135, 315, 320
Plumbeous, 205
Red-eyed, 135
Warbling, 134, 205
Vireo atricapilla, 256–260
bellii, 204, 315
cassinii, 134, 205, 217
gilvus, 134, 205
olivaceus, 135
philadelphicus, 134–135, 315, 320
plumbeus, 205
solitarius, 134, 205, 217, 315, 320
viridigularis, Gavia arctica, 103–104
v-nigrum, Somateria mollissima, 101
vociferus, Charadrius vociferus, 112
vulgaris, Sturnus vulgaris, 146
Vulture, Black, 219
Turkey, 108, 198
Wagtail, Eastern Yellow, 146–147
Gray, 147
White, 147
Warbler, Arctic, 140
Audubon’s, 209
Bay-breasted, 24, 317
Black-and-white, 150, 208, 315, 320–321
Blackburnian, 317
Blackpoll, 152, 317, 321
Black-throated Blue, 152, 317, 321, 322
Black-throated Gray, 209
Black-throated Green, 152
Canada, 153
Cape May, 151
Chestnut-sided, 152, 317
Connecticut, 22
Dusky, 140
Golden-cheeked, 261–262
Grace’s, 209
Hooded, 208
Kamchatka Leaf, 140
Lanceolated, 141
Lucy’s, 208
Montezuma Quail

Photo by © Peter LaTourrette of Los Altos, California:
Montezuma Quail (Cyrtonyx montezumae)
Davis Mountains State Park, Jeff Davis County, Texas, 18 April 2005.
In this issue of Western Birds, Israel Moreno-Contreras, Ana Gatica-Colima, and Diana
Venegas (pp. 339–342) outline the distribution of the secretive Montezuma Quail in
the Mexican state of Chihuahua, which remains poorly explored ornithologically.
The Montezuma Quail is not only widespread in the Sierra Madre Occidental of western Chi-
uahua, it occurs in some isolated outlying ranges to the east, the Sierra El Capulín
and the Sierra La Escondida. In eastern Chihuahua, there is only a single unspecific
report from the Sierra Rica, in the Área de Protección de Flora y Fauna Cañón de Santa
Elena, calling for better exploration of that area, which lies just west across the Rio Grande
from Big Bend National Park where the Montezuma Quail is resident.