Western Specialty: Allen’s Hummingbird

Photo by © Richard A. Erickson of Laguna Beach, California:
Allen’s Hummingbird (Selasphorus sasin)
Real del Mar, 10 km south of the international border along the coast of Baja California, Mexico, 19 February 2015. This photo of an adult female feeding a fledgling represents the first confirmation of Allen’s Hummingbird nesting in Mexico and documents the continuing spread of Selasphorus sasin sedentarius. Formerly confined to the Channel Islands off southern California, this subspecies was discovered nesting on the Palos Verdes Peninsula, Los Angeles County, in 1966 and over the following 50 years has spread nearly throughout the urbanized areas of the coastal slope of southern California and now into Mexico, as reported in this issue of Western Birds (pp. 161–166) by Richard A. Erickson.
Volume 47, Number 2, 2016

Tenth Report of the Washington Bird Records Committee
(2010–2013) Steven G. Mlodinow and Matt Bartels86

Nevada Bird Records Committee Report for 2014
Martin Meyers ...120

Factors Influencing Nontarget Bird Occupancy of Restored Wetlands in California’s Central Valley Sharon N. Kahara,
Walter G. Duffy, Ryan DiGaudio, and Rosemary Records138

Breeding of the Short-eared Owl in New Mexico
Raymond A. Meyer, Deeanne T. Meliopoulos,
Grant M. Beauprez, and Sartor O. Williams III151

Allen’s Hummingbird Nests in Mexico: Expansion of Selasphorus sasin sedentarius into Baja California Richard A. Erickson161

NOTES

First Record of the Common Sandpiper for the Hawaiian Islands
Thane K. Pratt, Reginald E. David, and Eben H. Paxton167

A Kleptoparasitic Chase by Brown Pelicans on a Western Gull
David Vander Pluym ...170

Book Reviews Lauren B. Harter and John Yerger173

Featured Photo: First Record of the Gray Hawk in California
Eric B. Culbertson ...177

Front cover photo by © Gregg Thompson of Shoreline, Washington:
Washington’s second Wilson’s Plover (Charadrius wilsonia), at Grays
land Beach State Park, Grays Harbor Co., 2 October–4 November
2012 (photo 9 October). It followed the first, at Bennington Lake, Walla
Walla Co., by less than one month. Together, these birds represent the
northernmost records of Wilson’s Plover in the Pacific states; the species
occurs regularly north only to Baja California.

Back cover: “Featured Photos” by © Eric B. Culbertson of Carpinteria,
California, and John Sterling of Woodland, California: (upper) Juvenile
Gray Hawk (Buteo plagiatus) at Carpinteria, California, 25 November
2012–16 March 2013, representing the first well-supported record of
the species in California. The bird returned, in adult plumage, for
two successive winters, 5 December 2013–22 March 2014 and 29
November 2014–2 February 2015 (lower). The Gray Hawk’s range in
the U.S. has been expanding gradually since the 1960s.

Western Birds solicits papers that are both useful to and understandable by amateur
field ornithologists and also contribute significantly to scientific literature. Particularly
desired are reports of studies done in or bearing on North America west of the 100th
meridian, including Alaska and Hawaii, northwestern Mexico, and the northeastern
Pacific Ocean.

Send manuscripts to Daniel D. Gibson, P. O. Box 155, Ester, AK 99725; avesalaska@
gmail.com. For matters of style consult the Suggestions to Contributors to Western
ABSTRACT: Since its ninth report (Merrill and Bartels 2015) the Washington Bird Records Committee has reviewed 352 reports representing 97 species and seven subspecies. A total of 280 reports were endorsed, an acceptance rate of 80%. Ten species were added to the Washington state list: the Lesser Sand-Plover (Charadrius mongolus), Wilson's Plover (C. wilsonia), Wood Sandpiper (Tringa glareola), Scripps's Murrelet (Synthliboramphus scrippsi), Guadalupe Murrelet (S. hypoleucus), Wood Sandpiper (Tringa glareola), Eastern Wood-Pewee (Contopus virens), McCown's Longspur (Rhynchophanes mccownii), Canada Warbler (Cardellina canadensis), Eastern Meadowlark (Sturnella magna), and Lawrence’s Goldfinch (Spinus lawrencei); as well as four subspecies: the Vega Herring Gull (Larus argentatus vegae), Eastern Nashville Warbler (Oreothlypis ruficapilla ruficapilla), Thick-billed Fox Sparrow (Passerella iliaca megarhyncha group), and Eastern Purple Finch (Haemorhous purpureus purpureus). The Washington state list now stands at 507 species.

This 10th report of the Washington Bird Records Committee (WBRC) is the result of evaluation of 352 records of 97 species and 7 subspecies from February 2011 through October 2013. Most records were from 2010 into 2013, though 42 were from earlier years; 15 reports had been reviewed by the committee previously but were revisited in light of recent taxonomic changes. Of the 352 reports, 280 were accepted, resulting in an acceptance rate of 80%. Six reports, four of the Barnacle Goose (Branta leucopsis) and two of the Northern Cardinal (Cardinalis cardinalis), were not accepted because of concerns regarding origin, the remaining 66 because of insufficient documentation. Among the accepted records were those of eight species new for Washington: the Lesser Sand-Plover (Charadrius mongolus), Wilson’s Plover (C. wilsonia), Wood Sandpiper (Tringa glareola), Eastern Wood-Pewee (Contopus virens), McCown’s Longspur (Rhynchophanes mccownii), Canada Warbler (Cardellina canadensis), Eastern Meadowlark (Sturnella magna), and Lawrence’s Goldfinch (Spinus lawrencei). Furthermore, the split of Xantus’s Murrelet resulted in its being replaced by both Scripps’s Murrelet (Synthliboramphus
scrippsi) and the Guadalupe Murrelet (S. hypoleucus). Additionally, the WBRC accepted first records of four subspecies new to Washington: the Vega Herring Gull (Larus argentatus vegae), Eastern Nashville Warbler (Oreothlypis ruficapilla ruficapilla), Thick-billed Fox Sparrow (Passerella iliaca megarynchus group), and Eastern Purple Finch (Haemorhous purpureus purpureus). The Washington state list now stands at 507 species.

The following species were removed from the list of review species: Tufted Duck (Aythya fuligula) (30 records), Broad-winged Hawk (Buteo platypterus) (24 records), Horned Puffin (Fratercula corniculata) (75 records), Lesser Black-backed Gull (Larus fuscus) (25 records), Northern Hawk Owl (Surnia ulula) (30 records), Black Phoebe (Sayornis nigricans) (21 records), and Tropical Kingbird (Tyrannus melancholicus) (19 records). In addition, review of reports of the Interior or Lead-colored Bushtit (Psaltriparus minimus plumbeus) (three sightings reviewed) is discontinued.

PROCEDURES

The WBRC’s procedures are consistent with those detailed in the introduction to its first report (Tweit and Paulson 1994), expanded on in the introduction to the sixth report (Mlodinow and Aanerud 2006), and repeated most recently in the ninth report (Merrill and Bartels 2015).

Species accounts begin with English and scientific names, followed by the total number of records for Washington and the number of records accepted in this report in parentheses. An asterisk following the total number of records indicates that the species has been reviewed for a restricted period of time, so the number does not represent the total number of reports for the state. Each entry includes the following information: location and county of observation, date span, and (for accepted records) initials of the observer(s). To aid with record-keeping and future reference, each report includes a unique file number consisting of the species’ four-letter code, year of the sighting, and entry number, determined by the order received by the committee. For the sake of brevity, in the species accounts below, the four-letter code is omitted from file numbers after the first mentioned report. The initials of the observers who submitted only written descriptions are by convention listed first, followed by those who submitted photographic, video, or audio documentation. The discoverer of the bird is listed only if that person contributed evidence for committee review. Additional details including information such as the number of birds present, sex, age and/or plumage notes are included when possible but do not reflect a formal decision by the committee. For reports not accepted, observers are not listed but the committee vote is included (“votes to accept”–“votes not to accept”–“abstentions”).

COMMITTEE MEMBERS

The WBRC is a committee of the Washington Ornithological Society. Committee members during the period covered by this report were Kevin Aanerud (until 2013), Shawneen Finnegan (from 2012), Ryan Merrill, Steve Mlodinow, Dennis Paulson (until 2012), Ryan Shaw (from 2013), Bill Tweit, Brad Waggoner, and Charlie Wright. Shawneen Finnegan joined the com-
mittee in 2012, replacing Dennis Paulson. Ryan Shaw joined the commit-
tee in 2013, replacing Kevin Aanerud. At the same time, Brad Waggoner
replaced Kevin Aanerud as committee chair. Matt Bartels (nonvoting) was
the secretary throughout the period.

THE RECORDS

Reports Accepted by the Committee

Emperor Goose (*Chen canagica*) (10*, 2). A first-winter bird was at Ocean Shores,
Grays Harbor Co., 25 Nov 2011–7 Jan 2012 (EMGO-2011-1; photos: CRi, RSu,
GTh, BW). Two more Emperor Geese were near Dungeness Spit, Clallam Co., 31
Dec 2011–30 Apr 2012 (2011-3; SCh, photo: DL). Since the Emperor Goose was
added to the review list in 1999, all 10 occurrences have been in western Washington.
Between 1982 and 1999, there were 29 published sightings, also all from western
Washington (Wahl et al. 2005), suggesting a real decline in occurrence. The reason for
this decline is unclear, as breeding populations in Alaska slowly increased from 1985
through 2005 (Pacific Flyway Council 2006), following a precipitous decline of over

Bewick’s Tundra Swan (*Cygnus columbianus bewickii*) (15*, 3). One was at Fir
I., Skagit Co., 28 Dec 2010 (BESW-2010-1; SM), an adult was at Juanita Bay Park,
Kirkland, King Co., 8–16 Nov 2012 (2012-1; photos: BBe, QM, RJM, JMi, DSn,
GTh, MT), and an adult was at Ridgefield National Wildlife Refuge (NWR), Clark Co.,
5 Dec 2012 (2012-2; photo: AHi).

Of the 15 records accepted since the WBRC began reviewing this subspecies in
2003, all but one are from western Washington. The source population in the Old
World was severely depressed by hunting from the 1950s to the 1970s but rebounded
vigorously during the 1980s and 1990s (Syroechkovski 2002), with range expansion
eastward in the Russian Far East during the 2000s (Rees 2006). For a summary of
Bewick’s Swan occurrence in North America see Mlodinow and Schwitters (2010).

Falcated Duck (*Anas falcata*) (4, 1). The male at Samish I., Skagit Co., 27 Feb
2005 (FADU-2005-1: DnP) may have been the same individual at that locality during
February and March 2002 (Mlodinow and Aanerud 2006). All four sightings have
been in late winter (January to March) and in western Washington.

Notably, this species is somewhat regular on the Aleutian and Pribilof islands but
remains unrecorded in mainland Alaska, and there are only approximately seven
records from North America’s Pacific coast, from Vancouver I. to California (Howell
et al. 2014).

Garganey (*Anas querquedula*) (3, 1). The committee was finally able to review
Washington’s earliest report of this species, of an adult male 6 km west of Mt. Vernon,
WFB-1119)—the first specimen of the Garganey for North America. Washington’s
two previously accepted records are from western Washington, April–May 1991
(Tweit and Paulson 1994), and eastern Washington, December 1994 (Aanerud and
Mattocks 1997). Howell et al. (2014) outlined ~175 North American records, 45%
from Alaska and 20% from Pacific Coast states and provinces. A sharp decline since
the late 1990s parallels significant declines reported from eastern Asia (Delany and
Scott 2006).

Tufted Duck (*Aythya fuligula*) (30*, 12). Accepted during this period were records
of one at Hoquiam, Grays Harbor Co., 22 Jan 2011 (TUDU-2011-1; photo: RSb);
an adult male at Rocky Ford Creek, Grant Co., 17 Apr 2011 (2011-2; photo: JMR
fide HJ); another male at Bradley Lake, Pierce Co., 18 Nov–3 Dec 2011 (2011-3;
photos: GTh, CW); an adult male at Stevenson, Skamania Co., 11 Dec 2011 (2011-4;
WC); another adult male at Marine Park, Vancouver, Clark Co., 31 Dec 2011–14 Jan 2012 (2011-5; DI, photos: SF, RaH, RJM); an adult male at Lacamas Park, Camas, Clark Co., 2–4 Feb 2012 (2012-1; photos: ToM, LT); a male at the Montlake Fill, Seattle, King Co., 3–12 Feb and 13 Apr 2012 (2012-2; photos: LHu, ToM); an adult male at Priest Rapids Dam, Yakima and Grant counties, 24 Nov 2012–18 May 2013 (2012-3; MiH, ASt, EIS, photo: DG); an adult male at Marine Park in Vancouver, Clark Co., 11–12 Dec 2012 (2012-5; photo: RA); another adult male seen variously at Round, Lacamas, and Fallen Leaf lakes in Clark Co., 9 Jan–13 Mar 2013 (2013-1; photos: HH, GO, OO, LT, JWi); an adult male along Iverson Road, Walla Walla Co., 5 Mar 2013 (2013-2; WT); and a first-winter male at Woodland Bottoms, Cowlitz Co., 13–26 Apr 2013 (2013-3; NnB, photos: JL, BW). With 30 Washington records since review began in 1999, the WBRC removed the Tufted Duck from its review list in 2013.

Common Eider (Somateria mollissima) (3, 1). A first-year male of subspecies S. m. v-nigrum was at Westport, Grays Harbor Co., 19–30 Oct 2012 (COEI-2012-1; BT, photos: RBj, TBj, EBj, MCh, MDy, MDL, RG, DG, SHg, KH, ZH, GO, OO, RSu, GTh, LT, MWn).

As of 2013, the Common Eider had been recorded 10 times along the North American Pacific coast south of Alaska, seven representing S. m. v-nigrum, which breeds in Alaska and easternmost Russia, two of birds not identified to subspecies, and the last (from California in 2011) of S. m. dresseri, the Atlantic subspecies, which breeds from Labrador to Maine (Able et al. 2014).

Short-tailed Albatross (Phoebastria albatrus) (15, 6). All of these records are of immature birds: one off Westport (46.88° N, 124.89° W), Grays Harbor Co., 31 Jul 2010 (STAL-2010-1; BT, photo: RSh); one off Cape Flattery, Clallam Co., 29 Aug 2010 (2010-2; photo: MDr); one off Westport (47.01° N, 124.82° W), Grays Harbor Co., 25 Jun 2011 (2011-1; BSh, photo: RSh); one off Clallam Co., 31 Jan 2012 (2012-1; MDr); one off Willapa Bay, Pacific Co., 4 May 2012 (2012-2; photo: KLa); and one over Grays Canyon, Grays Harbor Co., 4 May 2012 (2013-1; photos: CE, RJM). Thirteen of Washington’s records, all of immature birds, are within the last 20 years.

After volcanic eruptions on Torishima, site of the last nesting colony, in 1933 and 1941, the Short-tailed Albatross was thought extinct, until 25 were found there in 1954. The population has rebounded dramatically, reaching 2200–2500 individuals as of 2009 (Brazil 2009).

Murphy’s Petrel (Pterodroma ultima) (7, 1). One was 42–64 km off Westport, Grays Harbor Co., 21 May 2011 (MUPE-2011-1; GSM). Far more records are to be expected in coming years, given the large numbers detected by birders newly exploiting the repositioning voyages of cruise ships, which typically travel farther offshore than traditional single-day pelagic trips. For instance, during such cruises in April/May 2012, seven Murphy’s Petrels were seen in Oregon waters and one in Washington waters (not reviewed by the committee) (Irons et al. 2013a). As of 1995, Oregon had only four records of seven birds, Washington two records of 25 (Mlodinow and O’Brien 1996).

Mottled Petrel (Pterodroma inexpectata) (17, 9). One was found dead (specimen not preserved) by the Coastal Observation and Seabird Survey Team (COASST; a citizen-science project coordinated by the University of Washington) at Ocean Shores, Grays Harbor Co., 28 Feb 2006 (MOPE-2006-1; photo COASST, fide CW); another was seen 56 km off Westport, Grays Harbor Co. (46.85° N, 124.9° W), 21 May 2011 (2011-1; GSM). Seven additional reports come from a seabird survey sponsored by the National Oceanic and Atmospheric Administration (NOAA) in March 2012, including four over Nitinat Canyon, Clallam Co., 3 Mar 2012, 72 km, 74 km, 76 km, and 80 km offshore (respectively, 2012-4; RJM, GSM; 2012-1; GSM, photo: RJM; 2012-2; RJM, GSM; 2012-3; RJM, GSM) and three off Cape Disappointment, Pacific Co.,
5 Mar 2012, 43, 48, and 54 km offshore (respectively, 2012-5; GSM, photo: RJM; 2012-6; RJM, GSM; 2012-7; RJM, GSM). Most records of the Mottled Petrel from Washington and Oregon are from mid-February to mid-May, with a smaller peak from mid-November to mid-December.

Great Shearwater (*Puffinus gravis*) (5, 2). A subadult was off Westport, Grays Harbor Co., 24 Aug 2013 (GRSH-2013-1; photos: LPa, RSh), and an adult was in the same area the following day, 25 Aug 2013 (2013-2; BT, photo: JPu). All five of Washington’s records are for August or September.

Through 2015, California has 15 records of the Great Shearwater, 12 of them from August through October (Tietz and McCaskie 2016), Oregon has two records, from August and September (Nehls 2014), and Alaska has one record, also from August (Pearce 2002). Notably, only one of the northeastern Pacific Ocean records of the Great Shearwater precedes 1991, suggesting a change in status. Supporting this conclusion is that all of Washington’s Great Shearwaters have been seen on pelagic birding trips off Westport since 2002, even though these trips have taken place at roughly the same frequency since 1971. This species spends the austral summer at least as far south as the tip of Tierra del Fuego, and it is conceivable that some have wandered west into the Pacific and then migrated northward in the “wrong” ocean.

Wedge-tailed Shearwater (*Puffinus pacificus*) (2, 1). One of the light morph was found dead on the beach at Ocean City, Grays Harbor Co., 18 Jan 2011 (WTSH-2011-1; photo: KLi, fide CW and JaD, specimen not preserved). Washington’s first Wedge-tailed Shearwater was also found dead on Ocean City’s beach, 10 Sep 1999 (Aanerud 2002, Univ. of Wash. Burke Mus. 63735).

Through 2013, there were 13 records of the Wedge-tailed Shearwater from North America north of Mexico, seven in fall, three in spring, one in summer, and two in winter (Howell et al. 2014). This species’ range includes much of the tropical Pacific and Indian oceans, with the nearest breeding populations off western Mexico, on the Galápagos Islands, and in Hawaii (AOU 1998). The proportion of the dark and light morphs varies from population to population, as does the molt schedule (Howell 2012). On the basis of such factors, Howell et al. (2014) suggested that the bird at Grays Harbor in January 2011 likely arose from the Hawaiian or Japanese breeding populations.

Frigatebird species (*Fregata* sp.) (3, 1). A frigatebird, not seen well enough to be identified to species, was observed in West Richland, Benton Co., 3 Nov 2007 (FRIG-2007-1; MCt). Though the Magnificent Frigatebird (*F. magnificens*) is the frigatebird most likely in North America, there are four North American records of the Lesser (*F. ariel*) from across the contiguous United States, July–September, and three records of the Great Frigatebird (*F. minor*), from California and Oklahoma during March, October, and November (Howell et al. 2014). Of note, the frigatebird at West Richland occurred in November, whereas most vagrant Magnificent Frigatebirds in western North America have occurred from late June to late September (Mlodinow 1998b).

Brown Booby (*Sula leucogaster*) (8, 3). In late March 2011, an adult female landed on a crab boat off Westport, Grays Harbor Co., came in to Westport Harbor on the boat, and was given to the Woodland Park Zoo in Seattle, from which it later escaped (BRBO-2011-1; AMe, CaH, HR, photos: CRo, DaO). An adult female was off West Point, Discovery Park, Seattle, King Co., 18 Nov 2012 (2012-1; GO, OO). A first-year bird was observed on the pelagic trip off Westport, Grays Harbor Co., 13 Jul 2013 (2013-1; photo: MCh).

These records bring the state total to eight, seven since 2002, and four since 2010. Washington records are scattered through the year, in January, March, May, August, October, and November. Notably, Brown Booby numbers along the Pacific coast of Baja California and California have been increasing since the 1990s, with breeding on Los Coronados Islands off northernmost Mexico since 2005 (Whitworth et al. 2007).
Snowy Egret (Egretta thula) (34, 2). One was at Ridgefield NWR, Clark Co., 14–15 Aug 2011 (SNEG-2011-1; photos LT, RWm), another at Columbia NWR, Grant Co., 6–15 Jun 2013 (2013-1; photos: MCh, JL).

Twenty of Washington’s records were from 1993 through 2006, so it is surprising that the 2011 record was the first in five years. The reason for this fluctuation is unclear. Twenty-eight of the 34 records are from late April through mid-August.

Little Blue Heron (Egretta caerulea) (4, 1). An adult was at Wells Reservoir, Douglas Co., 26 Aug 2010 (LBHE-2010-1; BeP). The three prior records are widely scattered across Washington, from Whatcom, Island, and Kittitas counties in June and October.

Red-shouldered Hawk (Buteo lineatus) (43*, 2). The WBRC reviewed two reports submitted before the 2008 decision to remove this species from the review list. One Red-shouldered Hawk was along West Valley Highway, Kent, King Co., 14 Jul 2007 (RSHA-2007-1; photo: KAn); and an adult was at Cinebar, Lewis Co., 1 Oct 2007 (2007-3; photo: CCL). All Washington birds identifiable to subspecies have been B. l. elegans.

Broad-winged Hawk (Buteo platypterus) (24*, 6). Six records: an adult at Wastucna, Adams Co., 10 Sep 2010 (BWHA-2010-1; photo: SM); a juvenile at cascade Pass, Skagit Co., 28 Sep 2011 (2011-2; photo: RJM); a juvenile near Bald Mountain, State Route 410, Yakima Co., 7 Aug 2011 (2011-3; photo: LM); an adult above the Peone Wetlands, Spokane Co., 29 Sep 2011 (2011-5; TL); and a dark-morph juvenile at Corkindale, Skagit Co., 26 Sep 2012 (2012-3; photo: RJM). The only spring record for this period was of an adult in Johnsonville, Kitsap Co., 1 May 2013 (2013-1; BW, Dwa). Considering not only the 24 accepted records but the large number of unreviewed reports from hawk-observation sites, the committee removed the Broad-winged Hawk from the review list in 2013.

The species’ peak occurrence in Washington is during mid and late September, though there are also spring records, most scattered from early May into early June, and fall records into October.

Lesser Sand-Plover (Charadrius mongolus) (3, 3). Washington’s first was found at Ocean Shores, Grays Harbor Co., 26 Aug 2010 (LSAP-2010-1; BT, JPa, DbP, RJM, GTh; Figure 1); it appeared to be an adult female in alternate plumage (D. Paulson, in litt. 2015). An adult male in alternate plumage showing some signs of prebasic molt was at Oyhtu Game Range, Ocean Shores, Grays Harbor Co., 29–30 Aug 2012 (2012-1; photos: MA, FL, KLa, MWn, D. Paulson in litt.) The third bird, in its first fall, was at the same location 1–2 Sep 2013 (2013-1; photos: MCh, MDt, MDy, MLD, DG, DnP, NS, KT; Figure 2).

This species is a regular migrant on Bering Sea islands during spring and fall but is very rare in mainland Alaska (Howell et al. 2014), though there are breeding records from at least four locations there (AOU 1998). North American records south of Alaska come mainly from Pacific coast states and provinces, with about 20 records from late June to mid-October (Howell et al. 2014). North American records, even those from the east coast, appear to be the mongolus subspecies group (Howell et al. 2014).

Wilson’s Plover (Charadrius wilsonia) (2, 2). Washington’s first was a first-fall immature at Bennington Lake, Walla Walla Co., 26 Aug–4 Sep 2012 (WIPL-2012-1; photos: MDy, MLD, IH, RSh, LU; Figure 3). Then one month later a second individual, also in its first fall, arrived on the other side of the state at Grayland Beach State Park, Grays Harbor Co., 2 Oct–4 Nov 2012 (2012-2; photos: MA, RBj, MCh, SF, RG, DG, JG, ToM, RJM, MKP, DSn, KSI, ASI, RSu, GTh; this issue’s front cover).

These records are the most northerly in western North America. There is one record from Oregon, in September 1998 (Nehls 2014), whereas nearly all of the 26 California records through 2015 are from April to June, with only one record (in October) after July (Hamilton et al. 2007, Tietz and McCaskie 2016).

Mountain Plover (Charadrius montanus) (5, 1). One was at Connor Creek, Grays
Figure 1. Washington’s first Lesser Sand-Plover (LSAP-2010-1) at Ocean Shores, Grays Harbor Co., 26 Aug 2010, apparently an adult female from the uniformly basic wing coverts, dark primary tips, indistinct mask, and restricted pale rufous to the breast.

Photo by Gregg Thompson

Figure 2. Washington’s third Lesser Sand Plover (LSAP-2013-1), a juvenile at Ocean Shores 1–2 Sep 2013 (photo 2 Sep), at the same location and on a date similar to the first.

Photo by Netta Smith
Figure 3. Wilson’s Plover was not expected in Washington, certainly not in the southeastern portion of the state. Yet this first-fall bird (WIPL-2012-1) visited Bennington Lake, Walla Walla Co., from 26 Aug to 4 Sep 2012 (photo 26 Aug).

Photo by Merry Lynn Denny

Figure 4. Washington’s sixth White-rumped Sandpiper (WRSA-2012-1) was a bird in alternate plumage at Reardan, Lincoln Co., 29–31 May 2012 (photo 31 May).

Photo by Tom Munson
TENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

Harbor Co., 9 Jan 2011 (MOPL-2011-1; photo: CSu fide SPE, CRi). Three of the four previous Washington records are from November to February, as are all 11 of Oregon’s records (Nehls 2014). With one exception, all records from Oregon and Washington have been coastal or from the Willamette Valley. The only exception, one from eastern Washington in May (Annerud and Mattocks 1997), is also the only record in spring.

Wood Sandpiper (Tringa glareola) (1, 1). Washington’s first Wood Sandpiper was an adult on the Samish Flats, Skagit Co., 5–6 Aug 2011 (WOSA-2011-1; MBa, GB, DFi, photos: RJM, SWa). This species is not rare as a migrant on the Aleutians but scarcer on the Pribilofs and St. Lawrence I. It is casual in mainland Alaska (Howell et al. 2014). The bird at Samish Flats represents the eighth record from western North America away from Alaska, with other records stretching from northern British Columbia and Yukon Territory to Cabo San Lucas. All are from fall, except a May record from California and another of a bird that overwintered two consecutive years in Baja California Sur (Howell et al. 2014).

Curlew Sandpiper (Calidris ferruginea) (11, 1). An adult in alternate plumage at Ocean City, Grays Harbor Co., 20 May 2012 was Washington’s third in spring (CUSA-2012-1; photo: CW). Oregon has 17 records, all but one during southbound migration, the exception of a bird in mid-December (Nehls 2014). California averages about one per year, more than 75% during southbound migration (Hamilton et al. 2007, Tietz and McCaskie, 2016).

Red-necked Stint (Calidris ruficollis) (5, 1). An adult in alternate plumage was at Bottle Beach, Grays Harbor Co., 21–22 Jul 2013 (RNST-2013-1; photo: CzH). Dates of Washington’s five records, all of adults, fall between 21 June and 31 July. Oregon has 12 records, nine of adults from late June to late August and three of juveniles from mid-September to early October (Nehls 2014). Given the difficulties of identification, it seems likely that many juveniles pass unrecognized.

White-rumped Sandpiper (Calidris fuscicollis) (7, 3). Three records: a bird in alternate plumage at Reardan, Lincoln Co., 29–31 May 2012 (WRSA-2012-1; photos: JI, TMu; Figure 4); an adult in nonbreeding plumage at Ocean Shores, Grays Harbor Co., 26 Jul 2012 (2012-3; photo, video: DAM); and another adult in nonbreeding plumage, treated as a separate individual, at the same location on 1 Aug 2012 (2012-2; photo: CW).

Washington’s four records of presumed northbound White-rumped Sandpipers are from eastern Washington, while three of presumed southbound migrants are from western Washington. This species’ usual fall migration route is from the Arctic to Hudson Bay, then southeast to the Atlantic coast, followed by an overwater passage to South America (Parmelee 1992). Fall records farther west, even from the core of the spring route (e.g., Kansas), are exceptional (Thompson et al. 2011).

Thick-billed Murre (Uria lomvia) (20, 3). Three records of birds in basic plumage: West Point, Discovery Park, Seattle, King Co., 4 Jan 2011 (TBMU-2011-1; KAa); Edmonds, Snohomish Co., 6 Dec 2012 (2012-1; SPi); inside Ediz Hook, Port Angeles, Clallam Co., 30 Dec 2012–2 Mar 2013 (2012-2; photos: BBo, MvB, CzH, RJM, DSn). Thirteen of Washington’s 20 records are from 2002 onward, likely because of the increased numbers and awareness of observers. Prior records are from December and January, excepting one in September, one in October, two in February, and one in March.

Long-billed Murrelet (Brachyramphus perdix) (9, 2). An adult in alternate plumage was off Point of Arches, Clallam Co., 24 Jul 2012 (LBMU-2012-1; photo: RJM). The committee also reviewed a specimen record (Thompson et al. 2003) of an adult female molting into basic plumage found 19 km east of Pomeroy, Garfield Co., 14 Aug 2001 (2001-1; photos of specimen: RD, DnP, Connor Mus., Wash. State Univ., Pullman 01-37). This record, more than 500 km inland, is the first for Washington away from salt water. Interior and eastern North American records of this species are
surprisingly numerous, constituting 22 of the 36 records through 1996 (Mlodinow 1997). Of Washington’s records of the Long-billed Murrelet, five are in July/August, three in November/December and one is in March.

Scripp’s Murrelet (Synthliboramphus scrippsi) (13, 6). Accepted in this period were reports of one in Westport Marina, Grays Harbor Co., 9 Oct 2011 (SCMU-2011-2; Kbn, RyW, photo: PD) and five from pelagic trips out of Westport, Grays Harbor Co.: two together early on 29 Jun 2013 (2013-2; BLB, GSM, BT, photos: JiH, RSh), four others found together later that day (2013-3; BLB, GSM, RSh, BT), one on 30 Jun 2012 (2012-1; photo: RSh), one on 22 Sep 2012 (2012-2; photo: RSh), and two on 22 Aug 2013 (2013-5; BT).

After the American Ornithologists’ Union reclassified the Guadalupe and Scripp’s Murrelets as species (Chesser et al. 2012), the WBRC reviewed all past records of Xantus’s Murrelet. Three of these were published by Merrill and Bartels (2015). Six previous records were of birds described clearly enough to be accepted as Scripp’s Murrelets: SCMU-1941-1, previously published as XAMU-1941-1 by Aanerud and Mattocks (1997); SCMU-1999-1 and 2000-1, previously XAMU-1999-1 and 2000-1 in Anuerud (2002); SCMU-2001-1 and 2002-1, previously XAMU-2001-1 and 2002-1 in Mlodinow and Anuerud (2006); SCMU-2003-2, previously XAMU/CRMU-2003-2 in Mlodinow and Anuerud (2008).

Guadalupe Murrelet (Synthliboramphus hypoleucus) (1, 0). GUMU-2003-1, previously accepted as XAMU-2003-1 and described by Mlodinow and Anuerud (2008), is currently the only reviewed record from Washington, though unsubmitted sightings from researchers working well past the continental shelf (Michael Force in litt.) suggest that this species may be a regular visitor to Washington’s waters.

Scripp’s/Guadalupe Murrelet (Synthliboramphus scrippsi/hypoleucus) (4, 1). On two birds seen off Westport on 4 Aug 2013, white underwings were observed, eliminating Craveri’s Murrelet, but further distinctions were not visible and this record was accepted as a Scripp’s/Guadalupe Murrelet (SCMU/GUMU-2013-4; GSM). Previously accepted as Xantus’s Murrelets were SCMU/GUMU-1987-1, XAMU-1987-1 in Aanerud and Mattocks (2000), and SCMU/GUMU-2006-1, XAMU-2006-1 in Anuerud (2011).

Scripp’s/Craveri’s Murrelet (Synthliboramphus scrippsi/craveri) (5, 1). Two off Westport on 29 Jun 2013 showed dark extending below the eye, ruling out the Guadalupe Murrelet, but no additional field marks were noted, so this record was thus accepted as a Scripp’s/Craveri’s (Murrelet (SCMU/CRMU-2013-1; BLB). Previously accepted as Xantus’s/Craveri’s Murrelets were SCMU/CRMU-2004-1, XAMU/CRMU-2004-1 in Mlodinow and Anuerud (2008), and SCMU/CRMU-2006-2, and 2006-3, XAMU/CRMU-2006-2 and 2006-3 in Anuerud (2011).

Thus Washington now has 13 records of Scripp’s (five supported by photos, one with specimen), one of the Guadalupe (photographed), and 13 as some combination of Scripp’s, Guadalupe and/or Craveri’s (all of them sight records).

Horned Puffin (Fratercula corniculata) (75*, 49). The astoundingly large number of records the committee accepted during this period was due mostly to efforts of COASST, which now accounts for more than half of the Horned Puffins known from Washington, an indication of how valuable this project has been at improving our understanding of the state’s offshore birds. The following 40 records, 19 in 2007, one in 2011, and 20 in 2012, are of Horned Puffins found dead along the shore (no specimens preserved).
Pacific County (8 records): An adult at Long Beach, 143rd North, 15 Jan 2007 (HOPU-2007-06; photo: RP, G Po); adults at Cranberry Road South, 24 Jan 2007 (2007-08; photo: SSi, LS); 25 Mar 2007 (2 birds, 2007-13 and 2007-14; both photos: SSi, LS); 23 Apr 2007 (2 birds, 2007-23 and 2007-24; both photos: SSi, LS); a first-year bird at North Head Lighthouse north, 23 Feb 2012 (2012-12; photo: CHz, THe); and an adult at North Head Lighthouse south, 24 Feb 2012 (2012-13; photo: CHz, THe).

Grays Harbor County (20 records): Adults at South Taurus Beach, 16 Jan 2007 (2007-07; photo: DSE, DHE), 20 Apr 2007 (2007-21; photo: DSE, DHE), and 19 Feb 2012 (2012-11; photo: DSE, DHE); an adult at Raft River, 14 Mar 2007 (2007-11; photo: KMC); an adult at Westhaven Beach, 31 Mar 2007 (2007-15; photo: MKR, MyR); five adults at Cranberry Road North, 14 Apr 2007 (2007-16-20, all photos: SSi, LS); an adult at South Butter Clam Beach, 14 Nov 2011 (2011-03; photo: McP, BaP); an adult at Ocean Park North, 20 Jan 2012 (2012-04; photo: JE); an adult at Ocean Park South, 15 Feb 2012 (2012-10; photo: JWa, PW); an adult at Twin Harbors State Park, 26 Feb 2012 (2012-14; photo: SV, EBr); one at Roosevelt Beach, 27 Feb 2012 (2012-05; photo: JRo); adults at South Chance, Ocean Shores, 3 Mar 2012 (2 birds, 2012-16 and 2012-17; both photos: NL, CS); adults at Grayland Beach North, 7 Mar 2012 (2 birds, 2012-19 and 2012-20; both photos: LL, BJD); an adult at Bonge South, 11 Mar 2012 (2012-21; photo: AD, JLD).

Clallam County (11 records): Adults at Sooes Beach South, 28 Jan 2007 (2007-09; photo: IS, EFS), 30 Jan 2012 (2012-08; photo: IS, EFS), and 3 Feb 2012 (2012-09; photo: PP, SPa); adults at Shi Shi Beach, 28 Feb 2007 (2007-10; photo: SN, CB) and 29 Feb 2012 (2012-15; photo: SN, CB); an adult at Wedding Rocks, 22 Apr 2007 (2007-22; photo: JaB, JO); adults at Sooes Beach North, 1 Jan 2012 (2012-03; photo: MCa, KIC) and 3 Mar 2012 (2012-2; photo: MCa, KIC fide BBo); two adults at Third Beach, 29 Jan 2012 (2012-06 and 2012-7; both photos: SkE, ShO); and an adult at Sand Point North, 4 Mar 2012 (2012-18; photo: AMa, EMP).

In addition, nine birds were observed while still alive: one at Cape Alava, Clallam Co., 2 Jul 2007 (2007-5; GSM); one at Libbey Beach, Island Co., 1 Oct 2010 (2010-2; ASE); one at Green Point, Anacortes, Skagit Co., 9 Oct 2010 (2010-3; GB); an adult in alternate plumage 3 km east of Pillar Point, Clallam Co., 14 Jul 2011 (2011-1; photo: CCI); one adult mostly in alternate plumage off Westport, Grays Harbor Co., 23 Jul 2011 (2011-2; photo: RSh); a first-year bird at Grayland Beach State Park, Pacific Co., 3 Mar 2012 (2012-1; photos: PC, CLe); an adult in basic plumage at Ediz Hook, Port Angeles, Clallam Co., 3 Mar 2013 (2013-01; FMH, photo: DYS); an adult in alternate plumage at Shipwreck Point, Clallam Co., 28 Feb 2013 (2013-2; SN); and an adult in alternate plumage off Shark Reef, Lopez I., San Juan Co., 12–15 Jul 2013 (2013-3; photos: KJ, BS).

With 75 records for Washington, 58 of them in the past decade, it is clear that the Horned Puffin is regular in small numbers offshore throughout the year, especially in the late winter and early spring. In 2013, the committee removed the Horned Puffin from the review list.

Red-legged Kittiwake (Rissa brevirostris) (9, 2). An adult was found dead (specimen not preserved) by COASST at Hobuck Beach, Clallam Co., 19 Dec 2006 (RLKI-2006-1; photo: COASST, fide CW). Another adult was observed about 69 km west of Cape Alava, Clallam Co., 3 Mar 2012 (2012-1; GSM, photo: RJM). Seven of Washington’s nine records of this species are from December to March and two are from June to August. This species breeds on the Pribilof, Aleutian, and Commander islands (AOU 1983) and is exceptional at any season south of its winter range in the Gulf of Alaska and at the ice edge in the south Bering Sea (Kessel and Gibson 1978, Everett et al. 1989). A few wander far, however, with records as far south as Orange Co., California (McCaskie and San Miguel 1999), and Las Vegas, Nevada (Alcorn 1988).
Black-headed Gull (*Chroicocephalus ridibundus*) (18, 2). An adult in alternate plumage at Point No Point, Kitsap Co., 18 Apr 2011, was Washington’s first in April (BHGU-2011-1; VN). Another adult, in basic plumage, was off Cypress I., Skagit Co., 27 Oct 2012 (2012-1; GB). Nine of Washington’s 18 records are from late August to early November; four more are in December. Twelve of the 18 records are of adults between 1986 and 1998; although the locations were scattered, one or two individuals may have accounted for many or most of these records. No similar peak is evident from California records (Hamilton et al. 2007).

Ross’s Gull (*Rhodostethia rosea*) (2, 1). Washington’s second Ross’s Gull, an adult in basic plumage, visited Palmer Lake, Okanogan Co., 15–22 Dec 2011 (ROGU-2011-1; MSc, photos: JeH, ToM, RJM, GO, OO, RSh, GTh; Figure 5). The first fed along the Columbia River near McNary Dam, Benton Co., 27 Nov–1 Dec 1994 (Aanerud and Mattocks 1997). Records of this charismatic arctic gull are scattered even farther south, the southernmost at the Salton Sea, California (McCaskie 2007).

Black-tailed Gull (*Larus crassirostris*) (7, 2). An adult in basic plumage was in Tacoma, Pierce Co., 15 Sep–8 Oct 2011 (BTGU-2011-2; BLB, BT, photo: GTh). The first found offshore of Washington was 26 km west of Long Beach, Pacific Co. (46.374° N, 124.406° W), on a NOAA research cruise, 5 Mar 2012 (2012-1; photo: RJM). All of Washington’s seven records, scattered from early March to late October, have been since 2004, and two are for east of the Cascades. This species has occurred across the breadth of North America, with most records since 1990, possibly due to increased observer awareness or climate change via melting of polar ice (Howell et al. 2014). Though most records are from Alaska south to the northern United States (e.g., Washington, the Great Lakes, New York, New England), some have come from as far south as Belize (Howell and Webb 1995), Mexico (Garrett and Molina 1998), and Brownsville, Texas (Lockwood 1999).

Vega Herring Gull (*Larus argentatus vegae*) (2*, 2). One first-cycle bird was at Gene Coulon Park, Renton, King Co., 28 Dec 2006 (HERG-2006-1; photos: CaC, CW); an adult was at Banks Lake, Electric City, Grant Co., 14 Jan 2012 (2012-1; BLB, BT, CW, photo: RSh). Identification criteria were based largely on those of Howell and Dunn (2007). First-cycle Vega Herring Gulls show a white base of the tail more extensive than in the American Herring Gull (*L. a. smithsonianus*) along with crisply

Figure 5. Appearing quizzical is Washington’s second Ross’s Gull, an adult (ROGU-2011-1) that enlivened Palmer Lake, Okanogan Co., 15–22 Dec 2011 (photo 21 Dec). The state’s first was just over 17 years earlier.

Photo by Tom Mansfield
patterned coverts. Adults are best distinguished by their darker mantle and darker iris. We know of no previous reports of this Asian subspecies from Washington.

Iceland Gull (Larus glaucoides) (19, 5). An adult was at the Asotin Co. landfill and on the Snake River near Clarkston, Asotin Co., 6–7 Mar 2011 (ICGU-2011-1; TO, photos: KeC, TG); a second-cycle bird was on the Long Beach Peninsula, Pacific Co., 3 Dec 2012 (2012-2; photo: RJM); a first-cycle bird was in LaPush, Clallam Co., 28 Jan 2013 (2013-1; photos: NkB, RJM); and Clarkston, Asotin Co., again had an adult from 15 Feb to 12 Mar 2013 (2013-2; photos: MvB, KeC, KD, TG) and a first-cycle bird from 22 Feb to 12 Mar 2013 (2013-3; photos: MvB, KeC, MCl). Eleven of Washington’s 19 records are from 2004 onward, likely because of increased observer knowledge and effort. Records currently extend from 5 November to 16 April. The WBRC uses largely the criteria of Howell and Dunn (2007) for distinguishing the Iceland Gull from Thayer’s Gull.

Lesser Black-backed Gull (Larus fuscus) (25*, 7). Six adults in basic plumage were found in eastern Washington: one at Burbank, Walla Walla Co., 30–31 Jan 2010 (LBBG-2010-4; photo: MDy, MLD); one along the Snake River, Asotin Co., 3 Dec 2010 (2010-3; photo: ToM); one at the Asotin Co. landfill, Asotin Co., 25 Jan 2011 (2011-1; photo: Ji); one on the Snake River, Asotin Co., 23 Oct 2011 (2011-2; photo: TG); one at Banks Lake, Electric City, Grant Co., 8 Jan 2012 (2012-1; DSd); and one at Nelson Is., Leslie Groves Park, Richland, Benton Co., 6–7 and 23 Jan 2012 (2012-2; photo: JAb, KAb). The second record from western Washington was of an adult in alternate plumage near Midway Beach, Pacific and Grays Harbor counties, 19–20 Aug 2010 (2010-2; photos: MDy, MLD, RJM). With the species established as a regular winter visitor to Washington, in 2012 the committee removed the Lesser Black-backed Gull from the review list.

Slaty-backed Gull (Larus schistisagus) (17, 2). An adult was at Gog-Le-Hi-Te in Tacoma, Pierce Co., 8 Oct–23 Dec 2012 (SBGU-2012-1; photos: RBj, MCh, HDG, ZH, Czh, Ji, OO, SR, DSn, MWn). One adult was in Everett, Snohomish Co., 31 Dec 2012 (2012-2; photo: GTh). All of Washington’s 17 records are from or near marine habitats, mostly from December to March. Since many of the records are of adults, at only a few locations, possibly a few individual gulls account for multiple records.

Least Tern (Sternula antillarum) (6, 1). The first Least Tern for eastern Washington was an alternate-plumaged adult at the north end of the Potholes Wildlife Area, Grant Co., 14–16 Jun 2012 (LETE-2012-1; MY). Five of Washington’s records are from early May to mid-July, the remaining record from late August. This pattern is similar to that of Oregon, which has 10 records (Nehls 2014).

White-winged Dove (Zenaida asiatica) (10, 1). An adult was in Ferndale, Whatcom Co., 2 May 2013 (WWDO-2013-1; EG). Nine of Washington’s 10 records are from 1997 onward, eight from west of the Cascades. Since the 1970s this species’ breeding range has expanded north from Arizona, New Mexico, and Texas and currently includes Colorado and Kansas (Rabe and Sanders 2010, Thompson et al. 2011). Concurrently, vagrancy through much of North America has increased (Schwertner et al. 2002).

Yellow-billed Cuckoo (Coccyzus americanus) (11*, 1). One was singing at Little Pend Oreille NWR, Stevens Co., 21 Jul 2012 (YBCU-2012-1; MMu). Although Washington had six records of this species in the 1990s, this bird is the only one yet recorded in the 21st century. The Yellow-billed Cuckoo once bred in the Pacific Northwest, including areas along the Fraser River in British Columbia, the Puget Trough and the Columbia River in Washington, and the Willamette Valley of Oregon. It has been extirpated from British Columbia since the 1920s (Campbell et al. 1990), Washington since the 1930s (Wahl et al. 2005), and Oregon since the 1920s (Marshall et al. 2003). The population collapse in western North America is thought to be due mainly to habitat loss and pesticide use (Laymon and Halterman 1987).

Northern Hawk Owl (Surnia ulula) (30*, 4). Three recently fledged young at the
Pasayten Wildlife Area, Okanogan Co., 25 Jul 2011, provided the second confirmed record of the Northern Hawk Owl breeding in Washington (NHOW-2011-1; photo: ASr, ElS). The first was at an undisclosed location in Okanogan Co. in 2007 (Merrill and Bartels 2015). Other recent records of the species are of one along Union Valley Road, Chelan Co., 29 Dec 2011–14 Jan 2012 (2011-2; BT, photos: MSp, BSG); one at West Plains, Spokane Co., 7–8 Jan 2012 (2012-1; videos: MiB, PM, photos: Jf, PM); and one at Wauconda Pass, Okanogan Co., 29 Jan–26 Feb 2012 (2012-2; photos: Jf, ToM). With 30 records, and breeding confirmed, the WBRC removed the Northern Hawk Owl from its review list in 2012.

Jewett et al. (1953) listed 12 records for Washington between 1897 and 1926, but the state’s next record was not until 1982 (Aanerud and Mattocks 1997). The remaining 27 records the WBRC has endorsed all accrued from 1992 through 2012. The Northern Hawk Owl is well known for southward irruptions during winter and temporary southward extensions of its breeding range due to population and prey fluctuations (Duncan and Duncan 2014), but the species’ 20-year-long increase in Washington seems to represent a less transitory change, especially given recent breeding records, and may represent a return to the status of the early 20th century. Nevertheless, fluctuations in neither the range nor population have been noted in the Okanagan Valley (Cannings et al. 1987) or in British Columbia as a whole (Campbell et al. 1990).

Costa’s Hummingbird (Calypte costae) (11, 2). Adult males were in Lyle, Klickitat Co., 1 Dec 2010 (COHU-2010-1; photo: PE and 21 Apr–21 Jun 2013 (2013-1; photos: IH, ToM, GO, OO, JRa, BW). All but one of Washington’s 11 records of Costa’s Hummingbird have been since 1998. Oregon experienced a similar surge in records, starting there in the late 1970s, leading to the species’ removal from the Oregon review list in 2000 (Nehls 2014).

Yellow-bellied Sapsucker (Sphyrapicus varius) (11, 3). A female was at Omak Creek, Okanogan Co., 3 Jun 2012 (YBSA-2012-1; RSh, CW); an immature female was at the Clear Creek wetland south of Darrington, Snohomish Co., 31 Mar–15 Apr 2013 (2013-1; photos: SAs, GA, MCh, HH, ToM, RJM; videos: HH, RJM); and an adult female was in Granger, Yakima Co., 4 Apr 2013 (2013-2; photo: EHe).

The June date is of particular interest, as migration in Minnesota, the nearest state within the species’ breeding range at the same latitude as Washington, occurs primarily from late March through early May, with nesting commencing in May (Janssen 1987). There are two summer records of apparent Yellow-bellied × Red-naped Sapsuckers in Washington, one of a specimen collected in Okanogan Co. (Mlodinow et al. 2006), the other from Pend Oreille Co. (Irons et al. 2013b).

Eastern Wood-Pewee (Contopus virens) (1, 1). Washington’s first Eastern Wood-Pewee was an adult singing at a chestnut farm near Lind Coulee, Grant Co., 21–31 Aug 2013, returning 30 Jul–17 Aug 2014 and 30 Jul–19 Aug 2015 (EAWP-2013-1; in 2013, audio: MBa, photos: DG, MaH, GO, OO; videos: GO, OO, MY; in 2014: MBa, photo: MCh, videos: SR, MY; in 2015: audio: MBa, photo, video: MY; Figure 6). Oregon has two records, both of singing birds, one in May and one in August (Nehls 2014), but this species has not been detected in Idaho (www.idahobirds.net/ibrc/reviewspecies.html).

Black Phoebe (Sayornis nigricans) (21*, 6). The Black Phoebe continued its range expansion into Washington with individuals found at Fir I., Skagit Co., 29 Aug 2010 (BLPH-2010-2; GB); Woodland Bottoms, Cowlitz Co., 17–30 Oct 2010 (2010-3; SF, photo: ToM); Ridgefield NWR, Clark Co. from 22 Oct until at least 6 Dec 2010 (2010-5; RaH, photos: BSu, LT); Little Puget I., Wahkiakum Co., 31 Dec 2010 (2010-4; photo: RaH); Vancouver, Clark Co., 8 Jan 2011 (2011-2; photo: LT); and Ridgefield NWR, Clark Co., 17 Jan 2011 (2011-1; photo: CHi). With 21 records and the species now confirmed breeding in Clark and Wahkiakum counties (Irons et al. 2012), the committee removed the Black Phoebe from the review list in 2011.
The Black Phoebe’s range expansion into Washington is an extension of its colonization of Oregon. Though the species was recorded there as early as the 1920s, its range grew dramatically starting in the 1970s, with nesting first detected in the late 1980s (Marshall et al. 2003).

Eastern Phoebe (*Sayornis phoebe*) (12, 5). One was recorded singing but was not seen in Ephrata, Grant Co., 2 Jun 2012 (EAPH-2012-1; audio: MY); one was in the Oak Creek Wildlife Area, Yakima Co., 4–8 Jun 2012 (2012-3; SD, SPI, LSa); another was in Rosalia, Whitman Co., 9–24 Jun 2012 (2012-2; MBA, photos: MDy, MLD, TG, TMu; Figure 7); one appeared at the Montlake Fill, Seattle, King Co., 8–10 Dec 2012 (2012-4; Csi, photos: RBj, JG, EHo, RJM, GO, OO, DSn; video: EHo); and another was at Calispell Lake, Pend Oreille Co., 21 May–4 Jun 2013 (2013-1; photo: Ji; audio, video: MCl, Ji). Nine of the 12 Washington records are from eastern Washington, and the Seattle record was the first in winter.

Vermilion Flycatcher (*Pyrocephalus rubinus*) (6, 1). An immature female spent three weeks at Ridgefield NWR, Clark Co., 24 Oct–11 Nov 2011 (VEFL-2011-1; photos: RSh, GTh, LT, RWm). All six of Washington’s records are from western Washington, four of them from late October to late November.

Tropical Kingbird (*Tyrannus melancholicus*) (19*, 5). One was in Bellingham, Whatcom Co., 31 Oct–13 Nov 2010 (TRKI-2010-2; SAR, photos: LD, RH, JMe, FS, GTh); one was in Ocean Shores, Grays Harbor Co., 29 Oct 2011 (2011-2; photo: GO, OO); one was at the Sooes River mouth, Clallam Co., 4 Nov 2011 (2011-2; photo: BW); one was at Driftwood Keys, Kitsap Co., 12 Nov 2011 (2011-5; photo: BW); and one was at Three Crabs, Dungeness, Clallam Co., 24–28 Oct 2011 (2011-1; photos: DL, SM). All of these were heard making the diagnostic call of the Tropical Kingbird. The last was an adult on the basis of the shape of the primaries (P. Pyle in litt. 2012)—Washington’s only Tropical Kingbird conclusively aged as an adult. With 19 records of the Tropical and 24 more of Tropical/Couch’s Kingbirds (see below), the Tropical’s regular late-fall arrival in Washington is now well established, and the species was removed from the review list in 2012.

Tropical/Couch’s Kingbird (*Tyrannus melancholicus/couchii*) (24*, 3). These three Tropical/Couch’s Kingbirds were not heard vocalizing: one at Westport, Grays Harbor Co., 9 Oct 2010 (TRKI/COKI-2010-1; BSh); one at Jamestown, Clallam Co., 27 Oct 2011 (2011-6; BBo); one at Neah Bay, Clallam Co., 4 Nov 2011 (2011-4; photo: BW). The vast majority of Pacific coast Tropical/Couch’s Kingbirds are likely Tropical Kingbirds (Mlodinow 1998a).

Scissor-tailed Flycatcher (*Tyrannus forficatus*) (12, 4). An adult visited Concrete, Skagit Co., 17–19 May 2011 (STFL-2011-2; photo: CK, KK); another adult was on Cockreham Road, Lyman, Skagit Co., 6 Jun 2011 (2011-1; JMa); an adult was on Leadbetter Point, Pacific Co., 17 Jun 2013 (2013-1; photo: DRF); and a juvenile appeared in Wenas, Yakima Co., 9 Aug 2013 (2013-2; photo: BH). The 12 records for Washington are from May to October, with seven on the west side and five on the east side. This pattern is somewhat similar to that in Oregon, which has 19 records, including three for November and one extending into December (Nehls 2014).

Bell’s Vireo (*Vireo bellii*) (4, 1). One at St. Andrews, Douglas Co., 6 Jun 2010 (BEVI-2010-1; photo: BW) was Washington’s first Bell’s Vireo supported by photographs. The photos, as well as the descriptions attending all of these records, suggested the Eastern Bell’s Vireo (*V. b. bellii*) and eliminated the California-breeding Least Bell’s Vireo (*V. b. pusillus*).

Blue-headed Vireo (*Vireo solitarius*) (7, 1). One at Washtucna, Adams Co., 7 Sep 2010 (BHVI-2010-1; photo: Ji), was the sixth in eastern Washington. All but one of these are from 28 August to 8 September, concurrent with the peak of many “eastern” vagrants in Washington, such as the Tennessee Warbler (*Oreothlypis peregrina*) and Blackpoll Warbler (*Setophaga striata*). As for many “eastern” passerines, the peak

Photo by Grace & Ollie Oliver

Figure 7. This adult Eastern Phoebe (EAPH-2012-2), the 10th for Washington, resided at Rosalia, Whitman Co., 9–24 Jun 2012 (photo 13 Jun). At the time of this report, nine of the state’s 12 records were from eastern Washington.

Photo by Tom Munson
of occurrence in Washington is about a month earlier than that in California, late September to mid-October (Hamilton et al. 2007).

Lead-colored Bushtit (Psaltriparus minimus plumbeus) (3*, 2). A small population was discovered in the Columbia Basin near Potholes Reservoir, Grant Co., in 2002. Two were reported there 13 Mar 2011 (BUSH-2011-1; photo: BW). Nesting was confirmed in 2012. A group of 15 on 3 Dec 2012 was seen again on 7 Feb 2013 (2012-1; MY; photo: ToM).

Although the WBRC has accepted but three records, the frequent (albeit unsubmitted) reports from Potholes Reservoir (well away from any known population of any brown-crowned subspecies of the Bushtit, P. m. minimus group) plus documented nesting led the committee to remove the Lead-colored Bushtit from the Washington review list. Nonetheless, this colonization is extraordinary, as the nearest population of plumbeus is in east-central Oregon (Phillips 1986, Marshall et al. 2003), approximately 250 km distant.

Blue-gray Gnatcatcher (Polioptila caerulea) (13, 3). One was in Harrington, Lincoln Co., 2 Oct 2010 (BGGN-2010-1; RWf, photo: CrC), another in Washougal Oaks, Clark Co., 20–21 Jul 2011 (2011-1; CA). One at Ocean Shores, Grays Harbor Co., 20 Oct–11 Dec 2011 was identified as being of the western race, P. c. obscura, by the amount of black in the tail and the call (2011-2; MBo, KBx, photos: RJM, GSM, GO, OO, RSh; Figure 8; see Kershner and Ellison 2012, http://earbirding.com/blog/archives/3518), the only one of Washington’s 13 Blue-gray Gnatcatchers identified to subspecies. A review of past records with photographs or sound recordings is warranted.

Northern Wheatear (Oenanthe oenanthe) (2, 1). A first-fall female Northern Wheatear frequented the Westport jetty, Grays Harbor Co., 26 Oct–5 Nov 2012. (NOWH-2012-1; JBy, BT, photos: RG, KH, ZH, JHi, RJM, GO, OO, JSa, GTh, LT; Figure 9). The similar Isabelline Wheatear (O. isabellina) was eliminated, in part, by the buffy supraloral stripe. Washington’s first record (sight only) came from Thurston Co., 4 Sep 2004 (Mlodinow and Aanerud 2008). Oregon has six records, five from western Oregon, from 17 September to 28 October (Nehls 2014).

Brown Thrasher (Toxostoma rufum) (13, 3). One was at Sentinel Bluffs, Grant Co., 21 May 2011 (BRTH-2011-1; RJM); one at Potholes State Park, Grant Co., 26–28 May 2011 (2011-2; SSc, photo: Ji); and one at Montlake Fill, Seattle, King Co., 12 Jun 2011(2011-3; THa, CSi). All 13 of Washington’s Brown Thrashers have occurred since 1994 and now span most of the state and calendar.

Chestnut-collared Longspur (Calcarius ornatus) (8, 1). An adult male in alternate plumage was in Ocean Shores, Grays Harbor Co., 21–26 Jul 2012 (CCL-2012-1; photo: RSh). Five of Washington’s eight records are from the outer coast, three of them from 26 June to 26 July, when the species should be on its breeding grounds.

Smith’s Longspur (Calcarius pictus) (2, 1). One found at the Oyhut Game Range, Ocean Shores, Grays Harbor Co., on 24 Aug 2013 lingered until 2 Sep (SMLO-2013-1; photos: MCh, CJ, TJ, ToM, GO, OO, LPa, DnP, DSn, RSh, DSL, NS, BW; audio: DSL). Washington’s first record was from King Co., 30 Aug 2006 (Aanerud 2011). The two records seem early, as the species’ peak in Minnesota and North Dakota, along its primary migration route, is from mid-September to mid-October (www.eBird.org). However, Smith’s Longspur departs its western breeding grounds in the Yukon early, mostly from late July to mid-August (Sinclair et al. 2003), and southbound migration in southern Manitoba extends from late August into October (Manitoba Avian Research Committee 2003) and peaks in Alberta during the first half of September (Salt and Salt 1976). Furthermore, the only two coastal records from British Columbia are from late August (Campbell et al. 2001).

McCown’s Longspur (Rhynchophanes maccournii) (1, 1). Washington’s first was an alternate-plumaged male at the Montlake fill, Seattle, King Co., 8 Jun 2013.
Figure 8. Washington’s 12th Blue-gray Gnatcatcher (BGGN-2011-2) was the first identified to subspecies: the western *P. c. obscura*. Critical to that identification is the more extensive dark to the bases of the rectrices, as seen in this photo. This bird visited Ocean Shores, Grays Harbor Co., from 20 Oct to 11 Dec 2011 (photo 24 Oct).

Photo by Ryan Merrill

Figure 9. Washington’s second Northern Wheatear (NOWH-2012-1), the first documented by photograph, was this cooperative first-fall female on the Westport jetty, Grays Harbor Co., 26 Oct–5 Nov 2012 (photo 2 Nov).

Photo by Lyn Topinka
Though the report was not supported by photographs, the descriptions (including field sketches) from multiple observers were compelling and conclusive (MCLO-2013-1; HG, HN, MkW). Oregon has seven records, six from eastern Oregon, and the only western Oregon record is for winter.

McKay’s Bunting (*Plectrophenax hyperboreus*) (4, 1). An adult female in basic plumage was noted at Damon Point, Ocean Shores, Grays Harbor Co., 16 Dec 2011, then again 2–12 Feb 2012 (MKBU-2011-1; MBa, JBy, RSh, DWe, photos:

![Figure 10.](image1.jpg)

Figure 10. Washington’s fifth Hooded Warbler (HOWA-2013-1), a one-year-old male, at Cape Horn, Skamania Co., 4 Jul–31 Aug 2013 (photo 5 Jul).

Photo by Brad Waggoner

![Figure 11.](image2.jpg)

Figure 11. This first-fall female Canada Warbler (CAWA-2010-1) was Washington’s first. It graced McNary NWR, Walla Walla Co., 5–6 Sep 2010 (photo 6 Sep).

Photo by Larry Umthun
Figure 12. A brilliant adult male Summer Tanager (SUTA-2012-1) at Seattle, King Co., 7–13 Dec 2012 (photo 11 Dec), representing Washington’s second record for December and fourth overall.

Photo by Doug Schurman

Figure 13. This worn adult male Painted Bunting (PABU-2012-1) sang persistently along Siwash Creek, Okanogan Co., from 6 Jul to 3 Aug 2012 (photo 6 Jul), providing Washington’s second record.

Photo by Ryan Merrill
Two of the three prior records are from the same location, also during the third from the Puget Trough in late November. Oregon has three records one as far south as Coos County along the southern coast (Nehls 2014).

Ovenbird (*Seiurus aurocapilla*) (23, 4). An adult was banded at the St. Cloud Ranch Day Use Area, Skamania Co., 29 Aug 2010 (OVEN-2010-1; SJ, photo: CJF); one was at the aggregate ponds 5 km southwest of Newhalem, Whatcom Co., 7 Jun 2011 (2011-1; MvB); one was recorded singing in the Sauk Valley, Skagit Co., 22 Jun 2012 (2012-1; photo, audio: RJM); and one was heard singing in East Wenatchee, Douglas Co., 2 Jun 2013 (2013-1; JT). Over half of Ovenbird records are from summer and most are of singing birds. Given that this species breeds as close as southwestern Alberta (Dunn and Garrett 1997), many of the records may involve birds on territory.

Blue-winged Warbler (*Vermivora cyanoptera*) (4, 2). A male was found near Forks, Clallam Co., 23 Jun 2011 (BWWA-2011-1; DDr), and another was at College Place, Walla Walla Co., 4–5 Aug 2012 (2012-1; MLD, BDe). Three of Washington’s four records of the Blue-winged Warbler are from late June to early August. In contrast, only one of Oregon’s four records is for summer, the others being in May and September (Nehls 2014).

Black-and-white Warbler (*Mniotilta varia*) (35, 5). One was at Corkindale Creek, Skagit Co., 19–20 Jun 2010 (BAWW-2010-4; GB, MWn); one at Washtucna, Adams Co., 19 May 2011 (2011-3; photo: LAP); one in Bellingham, Whatcom Co., 19 Sep 2011 (2011-2; FS); a singing male at Diablo, Whatcom Co., 25 May 2012 (2012-2; RKn fide RJM); and one singing male at Ephrata, Grant Co., 29–30 May 2012 (2012-1; MY). Records are scattered throughout the year but are concentrated in late May and early June, which account for 10 of the 35.

Tennessee Warbler (*Oreothlypis peregrina*) (31, 8). A male in alternate plumage was at Sprague Lake, Lincoln Co., 28 Aug 2010 (TEWA-2010-2; TL); one was at the same location, 9 Sep 2010 (2010-3; RJM); a molting adult was banded in Spokane, Spokane Co., 5 Aug 2011 (2011-1; photo: CM); a male in alternate plumage was in Chasew, Okanogan Co., 12 Jul 2012 (2012-1; BW); a male in basic plumage was in Spokane, Spokane Co., 16 Aug–4 Sep 2012 (2012-2; photo: LHa); an immature was in Marblemount, Skagit Co., 11 Sep 2012 (2012-4; photo: RJM); one was at Davenport, Lincoln Co., 21 Sep 2012 (2012-3; Ji); and a male was at Neah Bay, Clallam Co., 12 Nov 2012 (2012-4; photos: RJM, BW). Washington’s records peak from 24 August to 15 September (19 of 31), about three weeks earlier than the peak of mid-September to early October in California (Dunn and Garrett 1997).

Eastern Nashville Warbler (*Oreothlypis ruficapilla ruficapilla*) (1*, 1). The identification of Washington’s first Eastern Nashville Warbler, a singing male at Taylor Lake, Stevens Co., 3 Jul 2012 (NAWA-2012-1; photo, audio: RJM, SM), based on a combination of characters including song, structure, behavior, and upperparts brighter green and yellow more extensive below than in the western *O. r. ridgwayi*. The song matched songs of the nominate subspecies and would have been highly atypical for *ridgwayi*. The relatively short tail was not wagged despite prolonged observation, behavior abnormal for *ridgwayi* but typical of *ruficapilla*. This subspecies breeds west to westernmost Saskatchewan (Smith 1996); records of vagrants include a specimen from northwestern Baja California (Dunn and Garrett 1997).

Hooded Warbler (*Setophaga citrina*) (5, 1). A one-year-old male summered at Cape Horn, Skamania Co., 4 Jul–31 Aug 2013 (HOWA-2013-1; WC, DaH, SHy, audio: MBa, RSh; photos: MCh, WD, CJ, ToM, RJM, GO, OO, LT, BW; Figure 10). Other Washington records comprise two in spring and two in winter.

Northern Parula (*Setophaga americana*) (16, 3). Two singing males were at Columbia Park, Kennewick, Benton Co., 18 Jun–4 Jul 2012 (NOPA-2012-1; photos: SAT, IH, ToM, RJM, SM, LU); another singing male was at Potholes State Park, Grant Co., 4–9 Jul 2012 (2012-2; photo: SM); and a male was at the Leavenworth Fish
Hatchery, Chelan Co., 7 Jul 2012 (2012-3; MK). Half of Washington’s 16 records are of singing birds in June or July.

Magnolia Warbler (Setophaga magnolia) (24, 4). One was at Fishhook Park, Walla Walla Co., 25 Sep 2010 (MAWA-2010-1; MDy, MLD); one was at Harrington Cemetery, Lincoln Co., 7 Sep 2012 (2012-1; photo: JL); a male in alternate plumage was at Gingko State Park, Vantage, Kittitas Co., 5 Jun 2013 (2013-1; photos: KBl, GPA); and one was on Mount Baker, Whatcom Co., 22 Aug 2013 (2013-2; RKn fide RJM). Fifteen of Washington’s 24 records are from late August to late September, including nine from early September.

Bay-breasted Warbler (Setophaga castanea) (3, 1). One was at Vantage, Kittitas Co., 15 Sep 2010 (BBWA-2010-1; TL). Of the two previous records, one was also from a Columbia Basin vagrant trap in September, while the other was of a singing bird in apparently suitable breeding habitat in June. In Oregon, 7 of 11 records are from late May to mid-June (Nehls 2014), but in the West as a whole approximately two-thirds of the records are from fall (Dunn and Garrett 1997).

Chestnut-sided Warbler (Setophaga pensylvanica) (27, 6). The six records comprise a first-fall bird at Little Goose Dam, Columbia Co., 11 Sep 2010 (CSWA-2010-1; photo: RT, TT); a singing male at Protection I., Jefferson Co., 21 Jun 2011 (2011-1; photo, audio: AMo); a first-fall bird at Davenport, Lincoln Co., 10 Sep 2011 (2011-2; photo: JL); a male at Oak Creek Wildlife Area, Yakima Co., 3–7 Jun 2012 (2012-1; KKn, AR, photo AT); one at Johnson Park, Richland, Benton Co., 3 Sep 2012 (2012-3; photo: IH); and a male in alternate plumage at Ritzville, Adams Co., 2 Jun 2013 (2013-1; RKn).

Only 11 of Washington’s 27 records come from the last decade, a distinct contrast to most other vagrant warblers, for which the number of records has increased dramatically in the last 10 to 15 years. Additionally, the pattern of Chestnut-sided Warbler vagrancy has changed markedly. Prior to 2000, most records were from mid June through July; since 2000, most have been from early to mid-September and in early June.

Blackpoll Warbler (Setophaga striata) (32, 5). Accepted were one seen at Wash-tucna, Adams Co., 9 Sep 2007 (BLPW-2007-2; RaH); one in Davenport, Lincoln Co., 14 Sep 2008 (2008-5; photo: MWo); a female at Ephrata, Grant Co., 25–26 May 2011 (2011-1; TBr, video: MY); a male in alternate plumage at Horn Rapids Park, Benton Co., 5 Jun 2011 (2011-2; MvB); and an immature banded at Turnbull NWR, Spokane Co., 1 Sep 2011 (2011-3; photo: MF).

Of any species in Washington, the Blackpoll Warbler has one of the best-defined patterns of vagrancy. All but two records are from the Columbia Basin, and all but five records are from 25 August through 30 September, with 23 from 1 to 15 September. Peak fall passage in California is in late September and early October (Dunn and Garrett 1997), again about three weeks after that in Washington.

Black-throated Blue Warbler (Setophaga caerulescens) (11, 2). A male was in Mill Canyon, Lincoln Co., 8 Oct 2010 (BTBW-2010-1; TL), another in Black Diamond, King Co., 8 Jun 2012 (2012-1; photo: DDN). This species migrates later in the fall than many warblers, and, consistent with this, 7 of the 11 records are from early October to early November. The June record above is Washington’s first in spring.

Canada Warbler (Cardellina canadensis) (1, 1). Washington’s first was an immature female at McNary NWR, Walla Walla Co., 5–6 Sep 2010 (CAWA-2010-1; MDy, MLD, photo: LU; Figure 11). This species was long overdue in Washington, as Oregon has nine records (seven from eastern and two from western Oregon), five of them in September (Nehls 2014).

Thick-billed Fox Sparrow (Passerella iliaca megarhyncha group) (1*, 1). Washington’s first confirmed record of this subspecies group was of a pair at Leech Lake, White Pass, Yakima Co., 5–28 Jul 2013 (TBFS-2013-1; BT, photos: DG, GSM).

The range of Thick-billed Fox Sparrows has traditionally been thought to extend
Figure 14. Washington’s first Eastern Meadowlark (EAME-2012-1) was in Marblemount, Skagit Co., 1–4 Jun 2012 (photo 1 Jun). Note white malar (A) and extent of white in the outer rectrices (B).

Photos by Ryan Merrill

no farther north than central Oregon on the east side of the Cascades (Gabrielson and Jewett 1940). Identification is complicated, however, by the most northerly Thick-billed Fox Sparrows (P. i. fulva) approaching the Slate-colored Fox Sparrows (P. i. schistacea group, including P. i. olivacea of Washington) in color (Swarth 1918, 1920) and bill size (Pyle 1997). Marshall et al. (2003) suggested that fulva ranges to the northern limit of the Cascades in Oregon, on both the east and west slopes.

Figure 15. Washington’s second Lawrence’s Goldfinch (LAGO-2012-1), Keyport, Kitsap Co., 20–21 May 2012 (photo 21 May)—a year and a few days after the first, in nearby San Juan County.

Photo by Ryan Shaw
Since the early 2000s, undocumented summer reports of Thick-billed Fox Sparrows have come from Skamania and Klickitat counties in southern Washington, but the record from Leech Lake is the first to be supported with photographs. The identification relied heavily on the distinctive call notes as well as apparent bill size. Given the morphological similarities with *olivacea*, the committee remains wary of accepting any record of a Thick-billed Fox Sparrow without audio evidence.

Red Fox Sparrow (*Passerella iliaca iliaca* group) (18*, 5) Accepted were one from Stanwood, Snohomish Co., 28 Nov 2010 (RFSP-2010-3; photo: SM); one from Tenino, Thurston Co., 6 Apr 2011 (2011-1; photo: RJM); one in Monroe, Snohomish Co., 30 Nov 2011 (2011-3; photo: RJM); one from Fir I., Skagit Co., 2 Dec 2011 (2011-2; photo: RJM); and one on Bainbridge I., Kitsap Co., 11 Jan 2013 (2013-1; photo: BW). The April record is the first outside September to February since the committee started reviewing subspecies in 2004. There are now 18 records in a 9-year period.

Summer Tanager (*Piranga rubra*) (4, 2). Adult males were in Ilwaco, Pacific Co., 1–5 Dec 2012 (SUTA-2012-2; photos: RJM, RSh, DSw fide SWh) and Seattle, King Co., 7–13 Dec 2012 (2012-1; photos: RBj, JG, EHo, ToM, RJM, RR, DSh; video: HF; Figure 12). These two records are Washington’s first in winter. Oregon has 21 records of the Summer Tanager, with two of the seven western Oregon records in winter (Nehls 2014).

Indigo Bunting (*Passerina cyanea*) (33, 5). One adult male was in South Seattle, King Co., 30–31 Mar 2011 (INBU-2011-1; photo: EN); one was at Sauk Prairie, Skagit Co., 6 Oct 2011 (2011-2; photo, audio: RJM); another was there 7 Aug 2012 (2012-2; RJM); an adult male was in Vancouver, Clark Co., 29 Jun–4 Jul 2012 (2012-1; BT, photos: ScC, SM, JSa, LT); and an adult male was in Skamokawa, Wahkiakum Co., 16–17 May 2013 (2013-1; AE, KMN, photos: ToM, BM). Twenty-four of Washington’s 33 records are from May to July, most of singing males. The March record is well before this species’ normal migration period and suggests that this individual might have wintered locally. Washington has one similar record, from Snohomish Co. in late March, though the landowner had noted the bird since at least late February.

Painted Bunting (*Passerina ciris*) (2, 1). An adult male was singing along Siwash Creek, Okanogan Co., 6 Jul–3 Aug 2012 (PABU-2012-1; DDa, JOw, jRi, BT, photos: LJ, ToM, RJM, GO, OO, STo; video: RJM; Figure 13). The only prior Washington record was of one at a King Co. feeder, 10 Feb–3 Mar 2002 (Mlodinow and Aanerud 2006). Although in California the Painted Bunting occurs predominantly from September to November, in eastern North America its pattern of vagrancy is bimodal, with peaks in late spring/summer and late fall/winter (Mlodinow and Hamilton 2005). Oregon has eight records, six from west of the Cascades, three from December through March and two from November; the only summer record for Oregon is from east of the Cascades (Nehls 2014).

Dickcissel (*Spiza americana*) (9, 3). One was at Windust, Franklin Co., 4 Sep 2010 (DICK-2010-1; SM); a male was in Bow, Skagit Co., 28–29 May 2011 (2011-1; photo: GW); another male came to a feeder in Shelton, Mason Co., 7–9 May 2012 (2012-1; photo: KSh). Seven of Washington’s nine records are from west of the Cascades. Oregon has 17 records, 15 from west of the Cascades (Nehls 2014).

Eastern Meadowlark (*Sturnella magna*) (1, 1). Washington’s first was found singing at Marblemount, Skagit Co., 1–4 Jun 2012 (EAME-2012-1; GB, photo, video, audio: RJM; Figure 14). Records of this species nearest to Washington come from east of the Rocky Mountains, with vagrants west to Alberta (Slater 2001) and Montana (Montana Audubon Society 2014). In song and plumage, this individual agrees with *S. m. magna* of eastern North America, not the southwestern *S. m. lilianae*.

Common Grackle (*Quiscalus quiscula*) (19, 1). A pair was at Potholes State Park,
Grant Co, 12–18 May 2013 (COGR-2013-1; PL, photos: HH, CJ, ToM, GO, OO, GTh). As with previous records, both appeared to be of subspecies versicolor. Eleven of Washington’s 19 records have been since 2001, with peak occurrence (10 records) from mid-May to early July. Oregon has 33 records but, unlike Washington, has not had a recent surge of sightings, with only 11 since 2001 (Nehls 2014).

Great-tailed Grackle (Quiscalus mexicanus) (10, 2). A male was in Pacific Co. at Naselle on 29 May 2013 and at Bay Center from 17 to 26 Jun 2013 (GTGR-2013-1; AMu, AR, photos: DoH, MHa, MO, DO). Another male found at Sam Peach Park, Puyallup, Pierce Co., 7 Aug 2013 remained at least until September 2014 (2013-3; photos: JBs, MCh, ToM, GO, OO, DSn, RSh). Washington’s 10 records are split evenly between eastern and western Washington, with nine since 2001. Eight of the birds were first found between mid-May and early August.

Orchard Oriole (Icterus spurius) (7, 1). A first-fall male was in Neah Bay, Clallam Co., 21 Oct–14 Nov 2012 (OROR-2012-1; photos: RJM, BW). Western Washington now has six records, scattered from early September to late December. The sole record from east of the Cascades is from late June (Mlodinow and Aanerud 2008).

Hooded Oriole (Icterus cucullatus) (9, 2). An adult male at College Place, Walla Walla Co., 28 Jul 2008 (HOOR-2008-1; photo: JK, DK fide MDy, MLD) was the first for eastern Washington. An adult male was in Kelso, Cowlitz Co., 2–10 August 2011 (2011-1; JJ, CJ, RKo, photo: MHi). Records span 25 April to 10 August, with four in early or mid-May.

Baltimore Oriole (Icterus galbula) (6, 2). An adult male was at Juanita Bay Park, Kirkland, King Co., 4 Mar 2013 (BAOR-2013-1; GTr). Another adult male was in Kennewick, Benton Co., 8 May 2013 (2013-2; JAb, KAb, CHb, photo: LTs fide MDy, MLD); it was found injured and later died (specimen not preserved). Four of Washington’s six records are from May or June, split between east and west. Oregon has 17 records, only eight of them from May and June; five are from August to October (Nehls 2014).

Brambling (Fringilla montifringilla) (16, 2). One was in Seattle, King Co., 24 Nov 2012 (BRAM-2012-1; EV fide ED), another in Birch Bay Village, Whatcom Co., 24–26 Dec 2012 (2012-2; photos: ToM, RJM, RSm, VS fide JMe). All but three of Washington’s 16 Bramblings are from the west, and nine occurred from 1989 through 1993. The species’ occurrence in continental North America is irregular, with a spike during the early 1990s (Mlodinow and O’Brien 1996).

Eastern Purple Finch (Haemorhous purpureus purpureus) (1*, 1). Washington’s first was a female or immature male in Conconully, Okanogan Co., 19 Feb 2009 (PUFI-2009-1; TA, photo: RJM).

The Purple Finch has two rather distinct subspecies, H. p. purpureus and H. p. californicus, the latter breeding widely across western Washington. The nominate subspecies breeds west into the central interior of British Columbia with a few occurring west to the central coast of the province (Campbell et al. 2001). Since this subspecies is highly migratory, or at least irruptive (Wootton 1996), its occurrence in Washington has been expected. For good discussions of the identification of Purple Finch subspecies, see Rutt et al. (2014) and Sibley (2014).

Hoary Redpoll (Acanthis hornemanni) (19, 5). Accepted were one at Mary Anne Creek, Chesak, Okanogan Co., 27 Feb and 2 Mar 2010 (HORE-2010-1; GG, BLB, MRo); one on Samish I., Skagit Co., 2 Jan 2012 (2012-3; photo: RJM); one at Umptanum Falls, Yakima Co., 5 Feb 2012 (2012-7; SD); one at Anatone, Asotin Co., 6 Mar 2012 (2012-5; JJ, GSh); and one first-winter bird at Steptoe Butte, Whitman Co., 25–27 Nov 2012 (2012-9; photos: CrC, JI). Given the exceptional difficulty of distinguishing this species from Common Redpoll (A. flammea), the committee
treats reports of the Hoary Redpoll conservatively; it may occur more regularly than the data indicate.

Lawrence’s Goldfinch (Spinus lawrencei) (2, 2). A male in Friday Harbor, San Juan Co., 2 May 2011 (LAGO-2011-1; photo: MPr fide BJ) was Washington’s first. The second, also male, appeared in Keyport, Kitsap Co., 20–21 May 2012 (2012-1; BW, photos: SKI, RSh; Figure 15). These occurrences are consistent with the pattern of vagrancy in Oregon, which has eight records, five of them from 12 April to 16 May (Nehls 2014). Reports Not Accepted by the Committee—Identification Uncertain

Emperor Goose (Chen canagica) (10*, 2). A supposed Emperor Goose seen at Everson, Whatcom Co., 15 Dec 2011 (EMGO-2011-2, vote: 2-5-0) later died, but the specimen was lost. Extensive white on the undertail coverts, seen in photos of the bird while alive, raised suspicions that it might have been a hybrid.

American Black Duck (Anas rubripes) (0, 0). The details in a report from the Auburn/Enumclaw Plateau in King Co., 19 Jul 1998 (ABDU-1998-1, vote: 0-7-0), recalled from memory several years later, were insufficient.

Tufted Duck (Aythya fuligula) (30*, 12). A report from Priest Rapids Dam, Yakima and Grant counties, 1 Dec 2012–9 Feb 2013 (TUDU-2012-4, vote: 0-7-0) failed to eliminate a hybrid Tufted Duck × scaup. A female reported from the Washougal sewage ponds, Clark Co., 24 Mar 2013 (2013-6, vote: 0-7-0) was seen only briefly, with a tuft on the head being the only relevant field mark noted.

Arctic Loon (Gavia arctica) (3, 1). Six reports were not accepted in this period: Photographs of one in alternate plumage in Sequim, Clallam Co., in August 2010 (ARLO-2010-1, vote: 0-7-0) and the description of one at Bainbridge I., Kitsap Co., 5 Feb 2011 (2011-1, vote: 2-3-2) did not fully eliminate the Pacific Loon (G. pacifica); one at Alki, West Seattle, King Co., 1 Jan 2011 (2011-2, vote: 2-5-0) was inadequately described. Report of loons in basic plumage from Ediz Hook, Port Angeles, Clallam Co., 27 Jan 2013 (2013-1, vote: 2-5-0) and Neah Bay, Clallam Co., 6 Mar 2013 (2013-2, vote: 1-6-0) failed to eliminate the Common Loon. A report of one from just south of the Beebe Bridge in Douglas Co., 15 Feb 2013 (2013-3, vote: 0-7-0), provided minimal details, not allowing for identification beyond “loon.”

Great Crested Grebe (Podiceps cristatus) (0, 0). A report of this species, unknown in North America, from Lake Chelan, Chelan Co., 28 Jan 2013 (GCGR-2013-1, vote: 0-7-0) did not eliminate far more likely options such as the Red-necked Grebe (P. grisegena).

Ashy Storm-Petrel (Oceanodroma homochroa) (2,0). The description of a bird off Westport, Grays Harbor Co., 1 May 2010 (ASSP-2010-2, vote: 3-2-2) suggested the Ashy Storm-Petrel but was inadequate to establish the identification.

Band-rumped Storm-Petrel (Oceanodroma castro) (0, 0). A report from 142 km west of Ilwaco, Pacific Co., 10 Jul 2008 (BSTP-2008-1, vote: 1-5-1) was not accepted because of the brevity of the sighting and the difficulty of the identification.

Red-faced Cormorant (Phalacrocorax urile) (1, 0). A report from the Salt Creek Wildlife Area, Clallam Co., 17–20 Mar 2011 (RFCO-2011-1, vote: 1-5-1) was insufficiently detailed to exclude a breeding-plumaged Pelagic Cormorant (P. pelagicus).

Broad-winged Hawk (Buteo platypterus) (24*, 6). A report from Ellensburg, Kittitas Co., 16 Oct 2011 (BWHA-2011-1, vote: 1-6-0) was too brief to eliminate other species. A report from Myrtle Edwards Park, Seattle, King Co., 19 Sep 2011 (2011-4, vote: 0-7-0) included no description and only one small photo not identifiable to species. A report of a juvenile from Bennington Lake, Walla Walla Co., 27 Aug 2012 (2012-2, vote: 0-7-0) did not rule out an accipiter. The size and shape of
one reported from Corkindale, Skagit Co., 1 Oct 2012 (2012-4, vote: 5-2-0) fit the Broad-winged Hawk but were insufficient to establish the bird’s identification.

Common Ringed Plover (Charadrius hiaticula) (1, 0). A single-observer report of one calling at Nisqually NWR, Thurston Co., 7 Oct 2011 (CRPL-2011-1, vote: 5-2-0) enjoyed significant initial support among the committee but was ultimately not accepted as its vocalizations were not recorded and it was not seen well enough to eliminate the Semipalmated Plover (C. semipalmatus).

Curlew Sandpiper (Calidris ferruginea) (11, 1). One in basic plumage, reported from Deer Lagoon, Island Co., 27 Sep 2012 (CUSA-2012-2, vote: 1-6-0), was too distant to allow the observers to see the necessary field marks adequately. A report of two in alternate plumage at the Whidbey Golf Course, Island Co., 30 May 2013 (2013-1, vote: 0-7-0) did not eliminate the Red Knot (C. canutus).

Red-necked Stint (Calidris ruficollis) (5, 1). A report from Three Crabs, Dungeness, Clallam Co., 6–7 Aug 2010 (RNST-2010-1, vote: 0-5-2) did not clearly eliminate the Little Stint (C. minuta) or brightly colored juveniles of North American peeps.

Red-necked Stint (Calidris ruficollis) (5, 1). A report from Three Crabs, Dungeness, Clallam Co., 6–7 Aug 2010 (RNST-2010-1, vote: 0-5-2) did not clearly eliminate the Little Stint (C. minuta) or brightly colored juveniles of North American peeps.

White-rumped Sandpiper (Calidris fuscicollis) (7, 3). One reported from Ridgefield NWR, Clark Co., 10–11 May 2013 (WRSA-2013-1, vote: 2-4-1) was seen poorly, and some field marks noted, such as a sandy color and the lack of prominent supercilium, were incorrect for an alternate-plumaged White-rumped Sandpiper.

Thick-billed Murre (Uria lomvia) (20, 3). One reported at Anacortes, Skagit Co., 6 Nov 2010 (TBMU-2010-1, vote: 1-6-0) was seen at too great a distance in poor light for the Common Murre (U. aalge) to be eliminated convincingly. One reported from Southworth, Kitsap Co., 25 Dec 2010 (2010-2, vote: 1-6-0) was seen at a distance of 300 m, and the identification relied primarily on a perceived gape line.

Long-billed Murrelet (Brachyramphus perdix) (9, 2). Two reported in President Channel off San Juan I., San Juan Co., 13 Dec 2004 (LBMU-2004-2, vote: 0-6-0) were seen for only 2 seconds, with the identification based solely on the perceived dark nape.

Scripps’s/Guadalupe/Craveri’s Murrelet (Synthliboramphus scrippsi/hypoleucus/craveri) (4, 1). A report of one from Edmonds, Snohomish Co., 18 Sep 2011 (SCMU/GUMU/CRMU-2011-3, vote: SCMU/GUMU = 5, not accepted = 2) did not eliminate other possibilities, including the Long-billed Murrelet.

Crested Auklet (Aethia cristatella) (0, 0). A report of two birds seen briefly from Point No Point, Kitsap Co., 7 May 2013 (CRAU-2013-1, vote: 0-7-0) did not convincingly eliminate other species, such as the Whiskered Auklet (A. pygmaea).

Horned Puffin (Fratercula corniculata) (75*, 49). Remains found on Cranberry Road South, Pacific Co., 23 Apr 2007 by COASST (HOPU-2007-25, vote: 5-2-0) were too scant to be identified to species from a photo.

Costa’s Hummingbird (Calypte costae) (11, 2). The photographs and description of a hummingbird reported from Camas, Clark Co., 31 Dec 2012 (COHU-2012-1,
TENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

vote: 1-5-1) did not eliminate Anna’s (C. anna) or the Black-chinned (Archilochus alexandri).

Broad-tailed Hummingbird (Selasphorus platycercus) (4, 0). A report of one from College Place, Walla Walla Co., 7 Sep 2007 (BTAH-2007-1, vote: 0-7-0) was based on photos of multiple birds, some or all Rufous Hummingbirds (S. rufus). One reported from Biscuit Ridge, Dixie, Walla Walla Co., 17 Jul 2012 (2012-1, vote: 0-7-0) appeared to be a hybrid, with a Calliope Hummingbird (S. calliope) as one of the parents and a Black-chinned or Anna’s as the other.

Alder Flycatcher (Empidonax alnorum) (3, 0). The description of one reported from Montlake Fill, Seattle, King Co., 12 Jun 2013 (ALFL-2013-1, vote: 1-5-1) did not eliminate the Willow Flycatcher (E. traillii). The described calls were also similar to some of the less frequent calls of the Willow Flycatcher.

Eastern Phoebe (Sayornis phoebe) (12, 5). The description of one reported from Washtucna, Adams Co., 4 Sep 2010 (EAPH-2010-1, vote: 3-3-1) did not rule out the Western Wood-Pewee (Contopus sordidulus).

Blue-headed Vireo (Vireo solitarius) (7, 1). Photos and recordings of a vireo singing in Bellingham, Whatcom Co., 14–19 Jul 2013 (BHVI-2013-1, vote: 0-5-2) were inconclusive; the recordings suggested Cassin’s Vireo (V. cassiniii).

Gray-cheeked Thrush (Catharus minimus) (1, 0). Details in a report from Fishhook Park, Walla Walla Co., 23 Sep 2012 (GCTH-2012-1, vote: 1-5-1) fit an interior Hermit Thrush such as C. guttatus auduboni more closely.

Redwing (Turdus iliacus) (1, 0). A report from Seattle, King Co., 23 Nov 2010 (REDW-2010-1, vote: 0-7-0) did not convincingly distinguish the bird from an American Robin (T. migratorius).

Phainopepla (Phainopepla nitens) (1, 0). The report of a male in Seattle, King Co., 5 Jun 2013 (PHAI-2013-1, vote: 0-7-0) lacked essential field marks such as the wing patches (despite the bird’s being seen in flight).

Black-and-white Warbler (Mniotilta varia) (35, 5). One reported from Crocker Lake, Jefferson Co., 18 Aug 2011 (BAWW-2011-1, vote: 0-7-0) was seen and described too briefly to be identified. A report from Magnuson Park, Seattle, King Co., 27 Jul 2012 (2012-3, vote: 2-4-1) did not rule out the Black-throated Gray Warbler (Setophaga nigrescens). Two birds reported from North Fork I., Whatcom Co., 4 Mar 2013 (2013-1, vote: 0-7-0) were described as having yellow underparts and obviously not this species.

Tennessee Warbler (Oreothlypis peregrina) (31, 8). A description of one at Frenchman’s Bar County Park, Clark Co., 2 Sep 2013 (TEWA-2013-1, vote: 2-5-0) mentioned a white eyebrow and yellow undersides, field marks suggesting a different species.

Mourning Warbler (Geothlypis philadelphia) (2, 0). One recorded singing at Altair Campground, Clallam Co., 8 Jul 2013 (MOWA-2013-1, vote: 1-6-0) was not seen adequately to be identified visually, and the song may have been within the repertoire of MacGillivray’s Warbler (G. tolmiei). Furthermore, warblers occasionally sing other species’ songs, and a hybrid Mourning × MacGillivray’s Warbler might sing the song of either species.

Hooded Warbler (Setophaga citrina) (5, 1). Differences between observers’ details in a report of one at Newhalem, Whatcom Co., 1 Jun 2012 (HOWA-2012-1, vote: 5-2-0) left the committee unconvinced of the bird’s identification.

Bay-breasted Warbler (Setophaga castanea) (3, 1). One reported from the Ellenger Homestead, Washtucna, Adams Co., 15 Sep 2012 (BBWA-2012-1, vote: 1-5-1) was seen briefly and described scantily.

Blackburnian Warbler (Setophaga fusca) (6, 0). A report from Washtucna, Adams
Co., 3 Sep 2010 (BLBW-2010-1, vote: 4-3-0) lacked details sufficient to eliminate Townsend's Warbler (S. townsendi).

Blackpoll Warbler (Setophaga striata) (32, 5). A report from Cape Disappointment, Pacific Co., 12 Sep 2007 (BLPW-2007-1, vote: 3-4-0) was not endorsed chiefly because the bird's underparts were described as being, in part, orange-buff.

Red Fox Sparrow (Passerella iliaca iliaca group) (18*, 5). Photographs of a Fox Sparrow in Davenport, Lincoln Co., 1 Sep 2010 (RFSP-2010-2, vote: 0-7-0) showed a bird more consistent with subspecies altivagans or with a Red × Sooty Fox Sparrow rather than a "pure" Red Fox Sparrow.

Brambling (Fringilla montifringilla) (16, 2). The report of a male from the Bow Rest Area along Interstate 5 in Skagit Co. in early September 2012 (BRAM-2012-3, vote: 1-6-0) was not accompanied by a thorough description.

Eastern Purple Finch (Haemorhous purpureus purpureus) (1*, 1). An adult male Purple Finch in Friday Harbor, San Juan Co., 19 Dec 2010 (PUFI-2010-1, vote: 1-3-3) was seen by a single observer and not sufficiently described to establish a first-state record. One reported in Johnson Park, Richland, Benton Co., 18 Oct 2010 (2010-2, vote: 1-3-3) appeared in photographs more likely to be of the western subspecies because of its relatively weak facial pattern.

Hoary Redpoll (Acanthis hornemanni) (19, 5). These 10 reports lacked description of at least one crucial field mark such as an unmarked rump patch or unstreaked or lightly streaked undertail coverts: one from the Kalispell Reservation, Pend Oreille Co., 3 Jan 2012 (HORE-2012-8, vote: 1-6-0); one in Nine Mile Canyon, Walla Walla Co., 15 Jan 2012 (2012-1, vote: 1-6-0) and another there 16 Jan 2012 (2012-6, vote: 2-5-0); one in Chesaw, Okanogan Co., 18 Feb 2012 (2012-4, vote: 1-5-1); one along Level Road, Lincoln Co., 28 Feb 2012 (2012-2, vote: 0-7-0), one in Mead, Spokane Co., 28 Nov 2012 (2012-10, vote: 3-4-0); one from Teanaway Road, Kittitas Co., 16 Dec 2012 (2012-11, vote: 2-5-0); one from the Squalicum beach trailhead, Whatcom Co., 22 Dec 2012 (2012-12, vote: 0-7-0); one from Bellevue, King Co., 12–13 Feb 2013 (2013-1, vote: 0-5-2); and one from Hungry Hollow Road, Okanogan Co., 25 Feb 2013 (2013-2, vote: 0-7-0).

Barnacle Goose (Branta leucopsis) (0, 0). The committee reviewed earlier Washington reports and concluded that for this species an origin in captivity is far more likely than natural occurrence from the wild. It will continue reviewing Barnacle Goose reports, however, in case a plausible hypothesis for a wild origin arises. Records of this species in North America are widely scattered across the continent and away from the northeast and mid-Atlantic coast do not form a pattern of natural occurrence (Mlodinow and O'Brien 1996). The reports reviewed were of one in Kent, King Co., 21 Nov 1981 (BARG-1981-1, origin vote: 0-5-2); one at the Nooksack River Delta, Whatcom Co., 9 Dec 1996 (1996-1, origin vote: 0-5-2); one at Brady Loop, Grays Harbor Co., 27 Mar–15 Apr 2007 (2007-1, origin vote: 0-5-2); and one at Ridgefield NWR, Clark Co., 22 Feb 2011 (2011-1, origin vote: 0-5-2). All were considered correctly identified.

Northern Cardinal (Cardinalis cardinalis) (0, 0). Photographs of a female in Renton, King Co., 8 Jun 2011 (NOCA-2011-1, origin vote: 0-5-2) and an adult male in South Bend, Pacific Co., 4–10 Feb and 5–12 May 2012 (2012-1, origin vote: 0-6-1) left no doubt as to the birds' identity. But in Washington a Northern Cardinal
is more likely of captive rather than wild origin; there have been at least two instances of known escapees.

ACKNOWLEDGMENTS

We thank WBRC committee members Kevin Aanerud, Shawneen Finnegan, Ryan Merrill, Dennis Paulson, Ryan Shaw, Bill Tweit, Brad Waggoner, and Charlie Wright for advice and comments, as well as Jon Dunn, Michael Force, Dan Gibson, Paul Lehman, Peter Pyle, and Philip Unitt for comments, advice, and support. In addition, we thank the following observers for contributing their records of birds for our consideration: Kevin Aanerud (KAa), Carlo Abbruzzese (CA), Ryan Abe (RA), Jane Abel (JAb), Keith Abel (KAb), Mark Ahlness (MA), Jon Anderson (JAn), Kathy Andrich (KAn), Steve Aranoff (SAr), Gail Aslanian (GA), Steve Aslanian (SAs), Scott Atkinson (SAT), Tom Aversa (TA), Paul Bannick (PBA), Robert Barnes (RBA), Matt Bartels (MBA), Blair Bernson (BBB), Randy Bjorkland (RBj), Eric Bjorkman (EBj), Tammy Bjorkman (TBj), Kevin Black (KBl), Gary Bletsch (GB), Bob Boelkelheide (BBBo), Nina Bohn (NnB), Nick Bonomo (NKB), Michelle Boutiette (MBo), Paul Bowen (PBo), Keith Brady (KBy), Marv Breece (MBv), Jeremy Breeze (JyB), John Bremer (JoB), Tim Brennan (TBr), Mike Britton (MB), Jerry Broadus (JBs), Ernie Brooks (EBr), Kenneth Brown (KBr), Janet Bruening (JaB), Jeff Bryant (JBy), Penny Burns (PBu), Coleman Byrnes (CB), Wilson Cady (WC), Steven Caldwell (StC), Kenneth I. Campbell (KIC), Marianne Campbell (MCA), Keith Carlson (KeC), Scott Carpenter (ScC), Peter Carr (PC), Michael Charest (MCh), Sue Chickman (SCh), Mike Clarke (MCi), Corey Clatterbuck (CCI), Craig Corder (Crc), Liz Cormier (LC), Etta Cossey (ECa), Cameron Cox (CaC), Michael Crowder (MCR), Bev J. Dage (BjD), Kirsten Dahl (KD), Debbie Dain (DDa), Lee Dallas (LD), Pat Damron (PRD), Ed Deal (ED), Paul DeBruyn (PDB), Michael Deckert (MDt), Hans deGrys (Fdg), Merry Lynn Denny (MLD), Mike Denny (MDy), Darrel DeNune (DDN), Bob Derling (BDe), Robert Dice (RD), Jane Dolliver (JDa), Amy Douglas (AD), Jack L. Douglas (JLD), Scott Downes (SD), Marc Dragiciewicz (MDr), David Drummond (DDr), Wendy Duncan (WD), Dalene S. Edgar (DSE), Don H. Edgar (DHE), Andrew Emlen (AE), Candace Emmons (CE), Greg Englin (GE), John Epler (JE), Pam Essley (PE), Pete Fahey (PF), Shawneen Finnegan (SF), David Flaim (DF), CJ Flick (CFj), Bob Flores (BFI), Houston Flores (HF), Burton Foote (BFu), Bernard Foy (BF), Whitney Fraser (WF), Marian Froeb (MF), Daniel R Froehlich (DRF), George Gerdzis (GG), Helen Gilbert (HG), Rod Gilbert (RG), Denny Granstrand (DG), Terry Gray (TG), Jordan Gunn (JG), Eric Guzman (EG), Vince Hagel (VH), Arlen Hagen (AHA), Sherry Hagen (SHG), Lindell Haggin (LHa), Dom Hall (DoH), Marva Hall (MHa), John Hanna (JHa), Knut Hansen (KH), Todd Hass (THa), Zach Hawn (ZH), Dave Hayden (DHa), Sherry Hayden (SHy), Hank Heiberg (HFH), Jill Hein (JiH), Jeff Heihlen (JeH), Eric Heisey (EHe), Carol Henry (CHa), Connie Herber (CHb), Connie Herzog (CHz), Thomas Herzog (THa), Chazz Hesselein (CzH), Rick Hibshman (RhH), Joseph Higbee (JHi), Brendan Higgins (BH), Amy Hill (AHi), Lisa Hill (LHi), Mike Hill (MHi), Randy Hill (RaH), Christopher Hinkle (CHi), Michael Hobbs (MHi), Scott Horton (SHo), Evan Houston (EHo), Mark Houston (MaH), Larry Hubbell (LHu), Ivar Husa (IH), David Irons (DI), Jon Isacoff (JI), Jeff Jendro (JJ), Hugh Jennings (Hj), Barb Jensen (BJ), Chuck Jensen (CJ), Lee Johnson (LJ), Todd Johnson (TJ), Stuart Johnston (SJ), Katie Jones (KJ), Anne Kahle (AK), Sue Keilman (SKa), Matt Kizer (MK), Cindy Kleinhuizen (CK), Kris Kleinhuizen (KK), Sandy Klipper (SK), Randy Knapp (RK), Dorothy Knowles (DK), John Knowles (JK), Russ Koppendrayer (RKO), Liz Kuehn (LK), Bruce LaBar (BLB), Dow Lambert (DL), Fanter Lane (FL), Ken Lane (KLa), Christine Lee (CL), Nathan Lee (NL), Paul Lehman (PL), Jon Leland (JL), Laurie Lindeman (LLa), Kathy Linnell (KLa), Terry Little (TL), Clarence C. Lupo (CCL), Qinglin Ma (QM), Joe Mackie (JMa), Ama Magisos (AMa), Tom Mansfield (ToM), David A Marques (DAM), Terry Martin (TM), Faye McAdams Hands (FHM), Marsh McCord (MMC), Cindy McCormack (CM), Andrew McCormick (AMC), Kenny McCoy (KMC),
TENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

Patrick McKann (PM), Lamont McLachlan (LM), Brad McNally (BM), Kerrie McNally (KMN), Jim McRoberts (JMR), Guy McWethy (GMW), Joe Meche (JMe), Ryan Merrill (RM), Angela Messner (AMe), G. Scott Mills (GSM), Jeff Mills (JMi), Steve Modinow (SM), Andre Moncrieff (AMo), Roger Moyer (RMoy), Diane Mulholland (DMu), Judy Mullally (JMu), Tom Munson (TMu), Mike Munts (MMu), Ann Musche (AMu), Henry Mustin (HM), Sue Nattinger (SN), Vic Nelson (VN), Ed Newbold (EN), Henry Noble (HN), Tim O’Brien (TO), Diane O’Meagher (DO), Michael O’Meagher (MO), Daniel O’Hagan (DaO), Janet Oja (JOj), Grace Oliver (GO), Ollie Oliver (OO), Jim Owens (JOW), Eric M Page (EMP), George Pagos (GPa), Bruce Paige (BrP), Debby Parker (DbP), Jim Parker (JPa), Paul Parker (PP), Sally Parker (Spa), Laurel Parshall (LPa), Beau Patterson (BeP), Mike Patterson (MkP), Barbara Patton (BaP), Michael Patton (McP), Dennis Paulson (DnP), Scott Pearson (SpP), Steve Pink (SpP), Jennifer Plombom (JPL), Lily Ann Plumb (LAP), George Power (GPo), Rosaleen Power (RPo), Michele Preston (MPt), John Puschock (JPu), Scott Ramos (SR), John Rasmussen (JRa), Heather Reed (HR), Alan Richards (AR), Jeanelle Richardson (JRI), Carol Riddell (CRI), Gary Rittenmeyer (GR), Celia Robert (CRo), Randy Robinson (RR), James Roche (JRo), Marcus Roening (MRo), Mark Russell (MrR), Mary Russell (MRR), Luke Safford (LSa), Jen Sanford (JSA), Janet Schmidt (JSc), Sarah Schmidt (SSc), Bill Schmoker (BSc), Doug Schonewald (DSd), Mike Schroeder (MSC), Doug Schurman (DSn), Tony Scruton (TS), Fredrick Sears (FS), Adam Sedgley (ASp), Ryan Shaw (RSh), Bill Shemder (BSH), Ken Sheppard (KSh), Gina Sheridan (GSn), Connie Sidles (Csi), Dave Slager (DSl), Ann Sletetebak (ASI), Kathy Sletetebak (KSI), Robert Small (RSm), Virginia Small (VS), Gary Smith (GSm), Netta Smith (NS), Larry Spear (LSp), Karl Spees (KSp), Meredith Spencer (MSP), Beth St. George (BSG), Latresha Starling (LSt), Sumer Starling (SST), Andy Stepniewski (AST), Ellen Stepniewski (EIS), Clinton Stipek (CSl), Eftin Strong (EFs), Ingrid Strong (IS), Brian Sullivan (BSu), Ruth Sullivan (RSu), Cyndie Sundstrom (CSu), Doug Swanson (DSw), Jerry Tangren (JT), Rick Taylor (RT), Tina Taylor (TT), Warren Terrell (WT), Gregg Thompson (GTh), Mick Thompson (MT), Shep Thorp (STh), Asta Tobiassi (AT), Lynn Tompkins (LTs), Sam Tooley (STo), Lyn Topinka (LT), Kenneth Trease (KT), Gretchen Tremoulet (GT), Bill Tweit (BT), Brian Uher-Koch (BUK), Igor Uhrvic (IU), Larry Umthun (LU), Eric Vandegrift (EV), Sally Vogel (SV), Brad Waggoner (BW), Dan Waggoner (DWA), Sarah Wagner (SWa), Janet Waterstrat (JWu), Paul Waterstrat (PW), Diane Weinstein (DWe), Natalie Whitman (NW), Suzy Whittey (SWh), Ryan Wiese (RW), Mike Wile (MkW), Jack Williamson (JW), Michael Willison (MW), Roger Windemuth (RWM), Ginny Wolff (GW), Michael Woodruff (MWo), Roger Woodruff (RWf), Charlie Wright (CW), Matt Yawney (MY), Diane Yorgason-Quinn (DYQ).

LITERATURE CITED

Allen Press, Lawrence, KS.
Brazil, M. 2009. Birds of East Asia: Eastern China, Taiwan, Korea, Japan, Eastern
Russia. Christopher Helm, London.
Campbell, R. W., Dawe, N. K., McTaggart-Cowan, I., Cooper, J. M., Kaiser, G.
Columbia Mus., Victoria.
Campbell, R. W., Dawe, N. K., McTaggart-Cowan, I., Cooper, J.M. Kaiser, G. W.,
Chesser, R. T., Banks, R. C., Barker, F. K., Cicero, C., Dunn, J. L., Kratter, A. W.,
Lovette, I. J., Rasmussen, P. C., Remsen, Jr., J. V., Rising, J. D., Stotz, D. F.,
and Winker, K. 2012. Fifty-third supplement to the American Ornithologists’
Union Check-list of North American Birds. Auk 129:573–588; doi 10.1525/
auk.2012.129.3.573.
International, Wageningen, the Netherlands.
Duncan, J. R., and Duncan, P. A. 2014. Northern Hawk Owl (Surnia ulula), in The
Birds of North America Online (A. Poole, ed.), no. 356. Cornell Lab. Ornithol.,
Ithaca, NY; doi 10.2173/bna.356.
Houghton Mifflin, Boston.
Everett, W. T., Ward, M. L., and Brueggeman, J. J. 1989. Birds observed in the ice-
Corvallis.
California. W. Field Ornithol., Camarillo, CA.
Howell, S. N. G. 2012. Petrels, Albatrosses & Storm-Petrels of North America: A Photo-
Boston.
Irons, D., Waggoner, B., and Merrill, R. 2012. Seasonal reports: Oregon & Wash-
Irons, D., Waggoner, B., and Merrill, R. 2013a. Seasonal reports: Oregon & Wash-
Irons, D., Waggoner, B., and Merrill, R. 2013b. Seasonal reports: Oregon & Wash-
Kershner, E. L. and Ellison, W.G. 2012. Blue-gray Gnatcatcher (Polioptila caeru-
Omnithol., Ithaca, NY; doi 10.2173/bna.23.
in Avian Biol. 1.
TENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

118

Accepted 8 February 2016
NEVADA BIRD RECORDS COMMITTEE
REPORT FOR 2014

MARTIN MEYERS, Secretary, Nevada Bird Records Committee, c/o Great Basin
Bird Observatory, 1755 E. Plumb Lane #256, Reno, Nevada 89502;
NevadaBirdRecords@gbbo.org

ABSTRACT: In 2014, the Nevada Bird Records Committee (NBRC) reviewed 96
reports covering the period 1 December 1929–19 September 2014 and endorsed
89 of them. There were no changes to the Nevada list or the Nevada review list in
2014. In this year, however, the NBRC endorsed records of five species that had
been on the state list without specific records previously endorsed: the Least Storm-
Petrel (Oceanodroma microsoma), Wood Stork (Mycteria americana), Magnificent
Frigatebird (Fregata magnificens), Snowy Owl (Bubo scandiacus), and Tropical
Kingbird (Tyrannus melancholicus). Nevada’s first successful nesting of the Common
Black Hawk (Buteogallus anthracinus) was documented. The continuing increase
in the Neotropic Cormorant (Phalacrocorax brasilianus) in the southwestern U.S.
is reflected in Nevada, with the number of NBRC-endorsed records rising from two
to seven in 2014.

The NBRC began 2014 with 55 reports pending review. During 2014,
we added 73 reports to the pending queue. The committee completed
reviews of 96 reports during the year, leaving 27 in the pending queue, the
difference of five resulting from reports believed to represent multiple occur-
cences of the same individual and reports withdrawn prior to review. Since
the founding of the NBRC in 1994, 1098 reports have been reviewed, of
which 1005 (91.5%) have been endorsed.

At its founding in 1994, the committee decided not to review any sightings
prior to that year but reversed that decision several years later. Fortunately,
founding secretary James Cressman and his wife Marian Cressman contin-
ued to accumulate documentation for “pre-committee” reports. One of the
committee’s long-term goals is to organize and review as many of those
reports as possible, along with early documentation from other sources. The
committee began reviewing pre-committee reports in 2007. Since that time,
we have reviewed 125 and endorsed 112. Of the 73 reports added to the
pending queue in 2014, 23 preceded the committee’s founding.

Of the 96 reports reviewed by the committee in 2014, 89 were endorsed.
Of those, 81 were supported by photographs. Six were also supported by
video recordings and four by audio recordings. Two were supported by
specimens. Eight records were endorsed entirely on the basis of written
descriptions (and, in one case, a sketch). None of the seven reports not
endorsed was supported by a photograph, video recording, audio record-
ing, or specimen.

The NBRC has six voting members and a nonvoting secretary. In 2014,
the committee’s voting members were Aaron Ambos, Carl Lundblad, Greg
Scyphers, Dennis Serdehely, Jeanne Tinsman, and Will Richardson, and the
position of secretary continued to be held by Martin Meyers.

The NBRC’s website at www.gbbo.org/nbrc contains a statement of
purpose, links to a downloadable submission form, the committee’s bylaws,
the Nevada state checklist, the state review list, and answers to frequently

REVISIONS TO THE NEVADA STATE LIST AND NEVADA REVIEW LIST

No species were added to or removed from the Nevada list during the period covered by this report. At the end of 2014, the Nevada list remains at 492. The committee uses the term “establishing record” to designate the first NBRC-endorsed record of a species that was already on the state list. Early in its history, the NBRC adopted an existing checklist (Titus 1996) based on numerous sources that constituted the most reliable information available at the time. At the end of 2013, there were 20 species on the list without an endorsed record. During 2014, the committee reviewed and endorsed records of five of these species. Records of four, the Least Storm-Petrel (*Oceanodroma microsoma*), Wood Stork (*Mycteria americana*), Magnificent Frigatebird (*Fregata magnificens*), and Snowy Owl (*Bubo scandiacus*), were endorsed on the basis of occurrences pre-dating the formation of the NBRC, the fifth, the Tropical Kingbird (*Tyrannus melancholicus*) on the basis of an occurrence in 2014. The committee continues to pursue documentation of the remaining 15 species. After all sources of documentation available to us have been exhausted, we will reevaluate the status of those remaining species.

No species were added to or removed from the Nevada review list in 2014. There are currently 156 species on the Nevada review list, of which five are exempt from review in some limited geographic area. In addition, two subspecies are currently on the review list: the Mexican Mallard (*Anas platyrhynchos diazi*) and the Eurasian Green-winged Teal (*A. crecca crecca*). The committee has endorsed four records of *A. c. crecca*. The committee placed *A. p. diazi* on the review list in an effort to accumulate data on its occurrence, but we have not, as yet, reviewed any of the reports and have decided to wait to do so until there is more clarity on its taxonomic status and identification criteria.

SPECIES ACCOUNTS

Each species account is introduced with a header in the following format: English name, *scientific name*, and, in parentheses, the total number of endorsed records of the species (including those endorsed in this report), followed by the number of records endorsed in this year’s report. An asterisk preceding the species’ name signifies that the species is no longer on the Nevada review list. Two asterisks after the total of records denote that the number of records refers to a restricted review period, usually signifying that the species is no longer on the review list, has been added to the review
list because of a perceived drop in population, or is exempt from review in some locations. Note that one record can include multiple birds.

After the heading for each species comes each report of that species reviewed in 2014, in the following format: NBRC report number, date or range of dates of observations submitted to the NBRC, and location (county in parentheses). If the report involved multiple birds, the number follows the county designation.

For endorsed records: the name of each submitter, followed by “(P),” “(V),” or “(A)” if he or she provided a photo, video, or audio recording, respectively. If the initial finder or finders sent documentation to the NBRC, those names are listed first, followed by a semicolon. A pound sign (#) indicates a specimen record; this is followed by the specimen’s catalog number. In the case of a specimen, a “(P)” indicates that the specimen was photographed and that the photograph(s) are included in the documentation. The photographer in such cases, typically a representative of the committee or the housing institution, is not credited in the account.

If there are multiple observations of the species, they are ordered by date of first sighting. Any discussion of the species in general, not specific to an observation, concludes the account.

The museum collections housing specimens cited in this report are the Donald R. Dickey Bird and Mammal Collection at the University of California, Los Angeles (UCLA), and the University of Nevada, Reno Museum of Natural History (UNMB; formerly the University of Nevada Department of Biology Museum).

BRANT *Branta bernicla* (6, 2). 2013-067, Henderson Bird Viewing Preserve (Clark), 14 Jun 2013. R. Michal (P), D. DesMarais (P), T. Almond (P); originally found by C. Nycek.

2013-079, Soda Lake, Fallon (Churchill), 6 Aug–14 Sep 2013, four birds. M. Meyers (P); M. Andrews, G. Scyphers (P; Figure 1), K. Drozd (P). These geese were in extremely worn condition, which mitigated against their being aged with certainty (Chris Nicolai, U.S. Fish and Wildlife Service, pers. comm.).

RED-THROATED LOON *Gavia stellata* (8, 1). 2013-113, Las Vegas Bay and Government Wash, Lake Mead NRA (Clark), 7 Dec 2013–1 Mar 2014. Two immatures. A. Lee (P); M. Meyers, S. Burrell, C. Bullock (P), T. Hyde (P, V). The committee decided that the observation on 1 March likely represented one of the two birds seen on 7 and 19 December and combined the two reports into a single record.

These Least Storm-Petrels reached Nevada in the wake of hurricane Kathleen, which moved northeast from the Pacific Ocean, across Baja California and up the
Figure 1. This group of heavily worn Brant lingered at Big Soda Lake, Churchill Co., from 6 Aug to 14 September 2013, providing viewing opportunities for many northern Nevada birders.

Photo by Greg Scyphers

Figure 2. The NBRC has been working hard over the past few years attempting to find and review documentation for species on its review list for which it had no endorsed records. Part of that effort involves searching for museum specimens. This Wood Stork, collected at St. Thomas, Clark Co., 22 September 1930 by A. J. van Rossem, is preserved in the Donald R. Dickey Bird and Mammal Collection, University of California, Los Angeles.

Photo by Martin Meyers
Colorado River valley on 10 September 1976. Simultaneously, as many as 1000 also reached the Salton Sea, Imperial County, California (Patten et al. 2003).

WOOD STORK *Mycteria americana* (1, 1). 2014-006, St. Thomas, Lake Mead NRA (Clark), 22 Sep 1930. A. J. van Rossem (P, UCLA 31185; Figure 2). Juvenile. Establishing record. The location, St. Thomas, was inundated when Lake Mead was filled in the 1930s, but the recent drought has allowed the ghost town to emerge from the Overton Arm of the lake (www.nps.gov/lake/naturescience/st-thomas-nevada.htm). Linsdale (1936) listed six records for Nevada, dating back to 1871, including two preserved specimens but not this one. He reported that W. H. Burt had seen a flock of 25 circling high in the air just east of St. Thomas the day before van Rossem collected the specimen. Alcorn (1988) summarized other sightings, mostly from southern Nevada but including a few from central and northern locations as well. He quoted C. S. Lawson’s assessment, in 1976, that the Wood Stork was “an occasional to rare summer visitant.” Since the 1980s, however, there have been no further reports, paralleling the species’ decline in the southwestern U.S. as a whole (e.g., Patten et al. 2003).

MAGNIFICENT FRIGATEBIRD *Fregata magnificens* (1, 1). 2014-041, Davis Dam, Lake Mead NRA (Clark), 17 Sep 1976 (following hurricane Kathleen). C. S. Lawson (P). Establishing record. The poor reproduction of the photo in Lawson (1977) was supplemented with a copy of the original slide.

2014-042, Las Vegas (Clark), 18 Nov 1983. NOT ENDORSED. A letter to the editor in the *Las Vegas Review Journal* (22 November 1983) reported this sighting. The brief description convinced the committee that a frigatebird was seen, but was insufficient to identify the species.

BROWN BOOBY *Sula leucogaster* (2, 1). 2014-008, Cottonwood Cove, Lake Mojave, Lake Mead NRA (Clark), 16–17 Feb 2014. J. Tinsman (P; Figure 3); G. Scyphers (P). David Vander Pluym provided the committee with photos of a Brown Booby that spent much of winter 2013–2014 some 113 km to the south at Lake Havasu in Arizona. Comparisons of plumage showed that the Nevada bird was the same individual. Vander Pluym also wrote, “I also received an eBird report from the morning of the 16th of a Brown Booby flying north along the Colorado River in Bullhead City. Plenty of time for it to reach Cottonwood Cove by the afternoon.” The only previous record for Nevada is of two at Las Vegas Bay, Lake Mead, on 27 August 1971 (Lawson 1973a).

NEOTROPIC CORMORANT *Phalacorax brasilianus* (7, 5). 2013-085, Davis Dam, Lake Mead NRA (Clark), 21 Aug 2013. M. Meyers (P). This juvenile was photographed sitting on the Arizona side but was observed flying into Nevada for a brief swim.

2013-100R, Floyd Lamb Park (Clark), 28 Sep 2013–13 Jul 2014. M. Meyers (P; this issue’s inside back cover); J. Icenogle (P), J. Tinsman (P). Found simultaneously by Meyers and Scyphers on the day of the NBRC’s biennial meeting. The bird’s location and age (adult) convinced the committee that it was the same individual present during winter 2012–2013 (NBRC 2012-056).

2014-051, Sunset Park, Las Vegas (Clark), 9 Aug 2014. J. Boone (P). Adult. Substantial increases in sightings of this species in southeastern California, western Arizona, and southwestern Utah (and north along the Wasatch front) were described in last year’s NBRC report (Meyers 2015).

Figure 3. On the basis of timing of observations and comparison of photos, this immature Brown Booby at Lake Mojave, Clark Co., 16–February 2014 is presumed to be the same bird that spent much of the winter at Lake Havasu, Arizona. It represents Nevada’s second record of the Brown Booby, more than 42 years after the first.

Photo by Jeanne Tinsman

2013-081, Laughlin (Clark), 5 Aug 2013. K. and N. Finklestein (P). This immature-plumaged bird spent the day riding a shuttle boat back and forth across the Colorado River between Laughlin and the Arizona side.

2013-080, Las Vegas Bay, Lake Mead NRA (Clark), 7–20 Aug 2013. A. Lee (P); M. Meyers (P). Immature.

2014-021, Las Vegas Bay, Lake Mead NRA (Clark), 23 Aug 1990. NOT ENDORSED.

2014-018, Floyd Lamb Park (Clark), 28–30 May 2014. G. Scyphers (P; Figure 4); D. Vogt (P), M. Meyers. Adult. Reported via eBird on 1 June and via the Nevada Birds Listserv through 21 June.

The four Nevada records of the Little Blue Heron are for spring (21 April–17 June), consistent with sightings from Arizona, where the species is a “casual spring and summer visitor to southern Arizona” (www.azfo.org/gallery). In contrast, all three Nevada records of the Reddish Egret are for summer (27 July–19 September), corresponding closely to the seven California desert records through 2001, which span 28 July–29 September (Hamilton et al. 2007). However, seven of the nine
Arizona records of the Reddish Egret are from fall and winter (http://abc.azfo.org/ABCVote/_ABCReports_Public_View_list.aspx).

REDDISH EGRET *Egretta rufescens* (3, 1). 2014-046, Las Vegas Bay, Boulder Beach, and Boulder Harbor, Lake Mead NRA (Clark), 27 Jul–19 Sep 2014. T. Hyde (P), Eric Hough (P); G. S. Clemson (P), M. Meyers (P). Reported via the Nevada Birds Listserv until 29 September. This cooperative, long-staying immature was the first of this species to be documented in Nevada since 2004 (Meyers 2010).

WHITE-TAILED KITE *Elanus leucurus* (18**, 1). 2014-040, Upper Las Vegas Wash (Clark), 14 Mar–1 Apr 1994. M. Cressman. This species was removed from the state review list in 2013, but reports preceding that date continue to be reviewed.

COMMON BLACK HAWK *Buteogallus anthracinus* (11, 2). 2013-087, Meadow Valley Wash (Lincoln), 26 Aug–1 Sep 2013, two birds. A. Ambos (P); R. Lowry.

2014-050, Meadow Valley Wash (Lincoln), 18–25 Jun 2014, three birds. M. Buschow (P, V). Breeding had been suspected for several years. Pairs had been seen, some displaying together. Buschow discovered the first nest on 18 June. In her words, “First bird alerted me to its presence by pooping on me.” On a return visit on 25 June, she photographed a downy chick in the nest (Figure 5).

HARRIS’S HAWK *Parabuteo unicinctus* (8, 1). 2013-103, Las Vegas (Clark), 19 Oct 2013–17 Jan 2014. N. McDonal; C. Grant (P). Two reports documented a Harris’s Hawk in the same general vicinity in Las Vegas. The committee voted to consider both as representing the same individual and suspected it was a wanderer.
Figure 5. Confirmation of the first successful breeding of the Common Black Hawk in Nevada, in Meadow Valley Wash, Lincoln Co., came on 25 June 2014 when Marissa Buschow captured this image of the downy head of a chick in the nest, attended by one of the parents.

Photo by Marissa Buschow

Figure 6. Most of Nevada’s Parasitic Jaegers have been seen only in flight, occasionally perched or swimming at a distance. But this subadult photographed at close range at Pyramid Lake, Washoe Co., 3–7 September 2013 allowed superb documentation of features such as the shape and pattern of the bill and the characteristic warm tones to the plumage.

Photo by Dennis Serdehely
from the small group (NBRC 2011-105) nesting in nearby Boulder City from 2011 through at least early 2013 (Meyers 2014). Out-of-range Harris’s Hawks sometimes pair, establish groups, and breed for a number of years but typically then die out or move on, as has occurred on several occasions in southeastern California (Patten and Erickson 2000, Unit 2004).

RUDDY TURNSTONE Arenaria interpres (5, 1). 2013-083, south end of Pyramid Lake (Washoe), 17–18 Aug 2013. R. Lowry (P); M. Meyers (P). Juvenile, for which the date is a bit early (J. L. Dunn in litt.)

RUDDY TURNSTONE Arenaria interpres (5, 1). 2013-083, south end of Pyramid Lake (Washoe), 17–18 Aug 2013. R. Lowry (P); M. Meyers (P). Juvenile, for which the date is a bit early (J. L. Dunn in litt.)

BUFF-BREASTED SANDPIPER Calidris subruficollis (0, 0). 2014-031, south end of Pyramid Lake (Washoe), 31 Aug 1994. NOT ENDORSED. This is one of the 15 species listed for Nevada by Titus (1996) for which the NBRC has endorsed no records.

2014-037, Upper Las Vegas Wash (Clark), 25–26 Jul 1972. C. S. Lawson (P, #UNMB 1748). Lawson (1973b) wrote, “On 26 July 1972 I collected a Red Phalarope ... from a flock of about 250 phalaropes. The flock consisted of 4 or 5 Red Phalaropes in winter plumage, 225 Wilson’s Phalaropes..., and 25 Northern Phalaropes.” The preceding day, Lawson had photographed a male in breeding plumage, the same plumage as the specimen (unpublished notes and slide on file). Because of the inconsistencies regarding the number of birds and their plumage, the committee endorsed only a single individual.

Figure 7. This first-cycle Little Gull at Pyramid Lake, Washoe Co., represents a second record for Nevada. It remained for only one day, 30 October 2013.

Photo by Martin Meyers
G. Scyphers (P).

PARASITIC JAEGER Stercorarius parasiticus (8, 2). 2013-091, south end of Pyramid Lake (Washoe), 3–7 Sep 2013, two birds. D. Serdehely (P; Figure 6); G. and P. Nelson (P), R. Lowry (P), M. Meyers (P), M. Andrews, K. Drozd (P), F. Welden (P).
In contrast to those for the Long-tailed Jaeger, none of the records the NBRC has endorsed of the Parasitic Jaeger are of adults.

Both of these records were of adults, as are half of Nevada’s 12 records. Of course, adults are much easier to identify so it is probably unrealistic to suggest that these numbers translate to the actual ratio.

LITTLE GULL Hydrocoloeus minutus (2, 1). 2013-106, south end of Pyramid Lake (Washoe), 30 Oct 2013. M. Meyers (P; Figure 7); G. Scyphers (P), R. Lowry (P). First cycle. The only Little Gull previously endorsed (2007-149) was also in its first cycle, at Key Pittman WMA (Lincoln County) 24–26 November 2007 (Meyers 2010).

HEERMANN’S GULL Larus heermanni (12, 2). 2013-094, Virginia Lake, Reno (Washoe), 14 Apr 2004. J. Thompson (P); originally found by Fred Petersen. Adult in alternate plumage.
2013-102, south end of Pyramid Lake (Washoe), 6 Oct 2013. R. Lowry (P); D. Serdehely (P). Second or third cycle.
Nine of Nevada’s 12 records have been of adults. Five of the 12 were found in October, four in April, two in May, and one in June

2013-059, Henderson Bird Viewing Preserve (Clark), 10 Jan 2000. NOT ENDORSED.

WESTERN GULL Larus occidentalis (8, 1). 2013-109, Lake Mojave, Lake Mead NRA (Clark), 26 Oct 2013. T. Almond (P). First-cycle bird photographed in flight. Multiple photos revealed a thick, bulbous-ended, all-dark bill with a prominent gonydeal angle. The outer primaries appeared entirely black. One photo showed most of upperwing, which lacked an obvious pale panel in the inner primaries. These features, combined with the bird’s overall shape and broad wings, convinced all but one member of the committee of the identification. Nevada records of the Western Gull come from three counties, Washoe (3), Mineral (2), and Clark (3). Inland records of this species in California, particularly at the Salton Sea, have increased significantly in recent years. For example, McCaskie and Garrett (2014) reported, “up to 20 Western Gulls at [the sea’s north end] through the period (March through May 2013) illustrate how numerous this gull has become on the Salton Sea.”

2013-114R, Las Vegas Bay, Lake Mead NRA (Clark), 28 Dec 2013. A. Lee (P); D. Vogt (P), R. Lowry (P). This adult is considered to represent a return of the adult observed at the same location in January 2012 (2012-004).

2014-001, Sparks Marina (Washoe), 6 Jan 2014. G. Scyphers (P); M. Meyers (P). First cycle.

2014-013, Sparks Marina (Washoe), 16 Apr 2014. G. Scyphers (P). Since Sparks Marina, is checked regularly, more than three months had passed between the two sightings, and the birds differed in plumage and structure, the committee concluded that the bird seen in January had not remained there until April.

GLAUCOUS GULL Larus hyperboreus (15, 4). 2014-032, Boulder Beach, Lake Mead NRA (Clark), 30 Nov–16 Dec 1972. C. S. Lawson (P). A typed summary of the Henderson Christmas Bird Count commented that the bird had been present “since November 20,” which contradicts Lawson’s report and Lawson (1973b), which specified the first sighting as 30 November. This first-cycle bird represents the first Nevada record of the Glaucous Gull.

2014-002, Las Vegas Bay, Lake Mead NRA (Clark), 11–23 Jan 2014. A. Lee (P); D. Ghiglieri (P; Figure 8). Adult.

SNOWY OWL Bubo scandiacus (1, 1). 2014-005, Indian Springs (Clark), 1 Dec 1929. A. J. van Rossem (P, #UCLA 31263, Linsdale 1936). Establishing record. There are a few anecdotal reports of the Snowy Owl in Nevada, but none contain enough documentation to allow committee review. The winters of 1926–1927 and 1930–1931 saw substantial Snowy Owl invasions into the northern U.S., but that of 1929–1930 did not (Gross 1931).

TROPICAL KINGBIRD Tyrannus melancholicus (1, 1). 2014-026, Laughlin (Clark), 15 May 1980. NOT ENDORSED.

2014-025, Pahranagat National Wildlife Refuge (NWR) (Lincoln), 7 Nov 1982. NOT ENDORSED.

2014-024, Miller’s Rest Stop (Esmeralda), 17 Jun 2014. G. Scyphers (P, V), M. Meyers (P, V; Figure 9). Establishing record.

The first two reports are of Tropical/Couch’s (T. couchii) Kingbirds, but their documentation was insufficient for species identification. Record 2014-024, on the other hand, was supported with extensive recordings of vocalizations, as well as

Figure 8. Of Nevada’s 15 endorsed records of the Glaucous Gull, three have been of adults, like this individual at Las Vegas Bay, Lake Mead, 11–23 January 2014.

Photo by Dennis Ghiglieri
Figure 9. This Tropical Kingbird at Miller’s Rest Stop, Esmeralda Co., 17 June 2014 is the first to be endorsed by the NBRC. Documentation for earlier sightings did not eliminate Couch’s Kingbird. Fortunately, this bird was video-recorded vocalizing repeatedly, confirming the identification.

Photo by Martin Meyers

Figure 10. The Lapland (Calcarius lapponicus) and Chestnut-collared (C. ornatus) Longspurs have proven to be fairly regular visitors to Nevada in fall and winter, and both species have been removed from the Nevada review list. But McCown’s is encountered considerably less frequently. This male found near the shoreline of Lake Mead on 26 October 2013 was the fifth to be endorsed by the NBRC. Smith’s Longspur (C. pictus) has been satisfactorily documented twice.

Photo by Andrew Lee
photos permitting assessment of the wing formula, identifying this Tropical Kingbird convincingly. This species is considered “Rare but regular along the West Coast to BC” by Dunn and Alderfer (2011) and breeds as close to Nevada as the lower Colorado River Valley (http://azfo.org/seasonalReports/SeasonalReportSummer2011.html). The Tropical would seem much more likely to occur in Nevada than Couch’s, but Couch’s has been documented in both Arizona (Rosenberg et al. 2011) and California (Rottenborn and Morlan 2000); the 2015 NBRC report will discuss Nevada’s first Couch’s Kingbird, found in January 2015.

SCISSOR-TAILED FLYCATCHER *Tyrannus forficatus* (8, 1). 2014-023, Miller’s Rest Stop (Esmeralda), 26 May 2014. R. Lowry (P).

YELLOW-THROATED VIREO *Vireo flavifrons* (6, 1). 2013-048, near Derby Dam (Washoe), 28 May–7 Aug 2013. G. Scyphers (P, A); M. Meyers (A), Z. Ormsby (A). This is the first record for northern Nevada.

2013-093, Floyd Lamb Park (Clark), 10 Sep 2013. A. Lee (P).
2013-098, Corn Creek (Clark), 17 Sep 2013. J. Tinsman (P).
2014-017, Mogul (Washoe), 26 May 2014. J. Anderson (P).

In addition, a fifth record, of a Red-eyed Vireo sharing an active nest with a Warbling Vireo (*V. gilvus*) in a park in Reno (Washoe) in July 2013 was endorsed in 2015 (details in next year’s report). Prior to 2013, no more than two Red-eyed Vireos were recorded in Nevada in any one year.

PURPLE MARTIN *Progne subis* (12, 5). 2013-065, Dyer (Esmeralda), 24 May 2013, two birds. R. Lowry (P). Female-type plumage.
2013-107, Corn Creek (Clark), 9 Sep 2013. J. Bailey (P). Female-type plumage.
2014-015, Corn Creek (Clark), 22 May 2014. A. Lee (P). Female-type plumage.

WINTER WREN *Troglodytes hiemalis* (3, 1). 2013-108, Pahranagat NWR (Lincoln), 13 Nov–27 Dec 2013. R. Fridell (P, A); M. Meyers (P, V, A), R. Lowry (P). This individual was found at the same location where Nevada’s second Winter Wren (2011-092) was observed in November 2011 (Meyers 2014). This section of Pahranagat NWR has also seen several Pacific Wrens (*T. pacificus*) in November and December during the years of the two Winter Wren sightings as well as in 2012, when no Winter Wren was observed. The committee voted to consider 2013-108 an individual different from 2011-092.

VEERY *Catharus fuscescens* (3, 0). 2013-047, Corn Creek (Clark), 27–28 May 2013. NOT ENDORSED. Two written reports but no photos or audio/video recordings were submitted. The documentation was strong, but the committee decided that the difficulty of identification, particularly possible confusion with the Russet-backed Swainson’s Thrush (*C. ustulatus ustulatus*), which is regular in Nevada in spring migration, argued against endorsement.
CHESTNUT-COLLARED LONGSPUR *Calcarius ornatus* (9**, 1). 2013-006, Key Pittman WMA (Lincoln), 23 Sep 2011. G. Scyphers (P); M. Meyers (P). At its biennial meeting the day after this sighting, the committee voted to remove the species from the review list. The nine records the NBRC has endorsed involve a total of 33 birds.

MCCOWN’S LONGSPUR *Rhynchophanes mccownii* (5, 1). 2013-104, Boulder Beach, Lake Mead NRA (Clark), 26 Oct 2013. A. Lee (P; Figure 10).

These very early-season records fit with the pattern of fall migration in the species’ regular range, where it is one of the earliest of all eastern wood-warblers (Dunn and Garrett 1997). In California, CBRC-endorsed fall records begin in early August (Hamilton et al. 2007).

RED-FACED WARBLER *Cardellina rubrifrons* (3, 1). 2013-071, Kyle Canyon area, Mt. Charleston (Clark), 29 Jun–3 Aug 2013. A. Lee (P; Figure 11). All three Nevada records are from Kyle Canyon in summer. In August 2007, a single individual (2007-094) was observed over two weeks (Meyers 2008). In 2009, a single individual (2009-075) was present 22 June–9 August (Meyers 2010), timing very similar to the 2013 record. In 1974, there were scattered reports at various locations in the Spring Mountains (which include Mt. Charleston), all in September (Alcorn 1988; records the NBRC has not reviewed). In California, all of the records endorsed by the CBRC through 2005 span the period 13 May–8 October (Hamilton et al. 2007, http://www.californiabirds.org/cbrc_book/update.pdf).

Only the 1976 record (2014-035) is for winter. All others are from April (five records), May (two), and June (three). “Painted Redstarts summer casually in the mountains of southern California,” while “fall and winter birds occur mainly along the southern coastal slope” (Hamilton et al. 2007). The species breeds in the Hualapai Mountains just south of Kingman, Arizona, less than 35 miles from the Nevada border (Corman and Wise-Gervais 2005).

GRASSHOPPER SPARROW *Ammodramus savannarum* (6, 1). 2013-099, Las Vegas Bay, Lake Mead NRA (Clark), 21 Sep 2013. R. Bailey (P); J. Streit. All six records the NBRC has endorsed are from late September through late October. A few 19th century records, including one specimen of a juvenile, imply the Grasshopper Sparrow was a rare breeding species in northern Nevada at least formerly, and three reports from the breeding season are published in the Nevada breeding bird atlas (Floyd et al. 2007). Linsdale (1936) collected one specimen at the southern tip of Nevada along the Colorado River opposite Fort Mohave, Arizona, on 7 May 1934 (MVZ 64914). None of these records has yet been reviewed by the committee.

HEPATIC TANAGER *Piranga flava* (2, 1). 2014-043, Kyle Canyon area, Mt. Charleston, Spring Mountains (Clark), 4–24 Jul 2014. B. Murray (P; Figure 12); M. Swink (P); M. Meyers (P, V, A). Adult male. Murray reported that the male was accompanied by another tanager that might have been a female Hepatic, but she was unable to be certain. Meyers also reported that the male was briefly accompanied by a yellow tanager, but he could not confirm its identification. The only other record (2002-18) of the Hepatic Tanager the NBRC has endorsed, also of an adult male, is from Miller’s Rest Stop, a desert migrant trap, 29 September 2002 (Cochran 2006).
The species was first recorded from Nevada by Johnson (1965), who saw one in Hidden Forest Canyon, Sheep Range (Clark), on 7 June 1963, probably heard another higher in the canyon the following day, and reported that R. A. Fletcher collected one in the Clover Mountains (Lincoln) on 26 June 1963 (MVZ 150699; records not yet considered by the NBRC). On this basis, apparently, Austin and Bradley (1971) listed the Hepatic Tanager as a visitor in Clark County’s woodlands and as a summer resident in its montane forests and C. S. Lawson (in Alcorn 1988) inferred it was “an uncommon to rare breeding species in the mountains of southern Nevada.” By the time of publication of the Atlas of the Breeding Birds of Nevada (Floyd et al. 2007), “the conventional wisdom was that the species was present in these Vegas-area sky islands,” leading to surprise at the lack of observations in the Spring Mountains from 1997 to 2000. In fact, the occurrence in 2014 represents the first specific published record of the Hepatic Tanager for the Spring Mountains.

NORTHERN CARDINAL, *Cardinalis cardinalis* (3, 1). 2014-038, Las Vegas (Clark), 6 Jan–7 Mar 1975. C. S. Lawson (P). In his typed report to American Birds for winter 1974–1975 (with handwritten annotations), Lawson commented that this female was noted initially in the last week of December 1974. He first observed it 6 January, photographed it 7 January, and last observed it 7 March. All three Nevada records of the Northern Cardinal (two females, one male) have been from the Las Vegas area. None were conclusively identified to subspecies. In all cases, on the basis of proximity to the breeding range and no obvious evidence of captivity in plumage or structure, the committee decided that the birds were likely of natural origin. The only other submission to the NBRC, from Ruby Lake NWR in Elko County (2011-089), was not endorsed because of questionable origin (Meyers 2014). In California, this species began to colonize along the Colorado River in the 1940’s, and some birds

Figure 11. All three NBRC-endorsed records of the Red-faced Warbler are from the Fletcher Canyon trail in the Kyle Canyon section of the Spring Mountains National Recreation Area. All are summer records, in 2007, 2009, and this one, 29 June–3 August 2013. The habitat in this area is suitable for the Red-faced Warbler, and access is easy, attracting birders regularly. There are several reports from other locations in the Spring Mountains, all for early September 1974 (Alcorn 1988), but the NBRC has been unable to find reviewable documentation of them.

Photo by Andrew Lee
found at desert oases away from the river “may represent legitimate, wild, wandering birds” (Hamilton et al. 2007). However, the resident population along the river is now probably extirpated. Dunn and Alderfer (2011) wrote, “formerly a few … to Colorado River in southeastern CA.”

PYRRHULOXIA *Cardinalis sinuatus* (2, 1). 2014-033, Corn Creek (Clark), 15 May 1993. R. Rucker. Adult female, according to the thorough and careful written documentation. The timing of this late spring record fits with the Pyrrhuloxia’s pattern in the California desert, where seven CBRC-endorsed records (comprising 13 individuals) are from late spring and early summer (with one of those birds remaining into mid-summer.) There are also two records from that region for winter, one for fall, and three for mid-summer (Hamilton et al. 2007, http://www.californiabirds.org/cbrc_book/update.pdf). Nevada’s only other record (2009-018) is from 15 December 1979 (Meyers 2010).

PAINTED BUNTING *Passerina ciris* (10, 1). 2013-111, McCarren Ranch (Storey), 13–14 Sep 2013. G. Scyphers (P); R. Lowry (P). The first record from northern Nevada. This individual was in female/immature plumage, as were eight of Nevada’s nine previous Painted Buntings. For more information on this species in Nevada, see Meyers (2015).

DICKCISSEL *Spiza americana* (7, 1). 2014-014, Veterans Memorial Park, Hawthorne (Mineral), 15 May 2014. G. Scyphers. Male. Nevada’s third spring record (one in April, two in May). The four other records are from September.

BRONZED COWBIRD *Molothrus aeneus* (4, 1). 2013-116, Corn Creek (Clark), 21 May 2013. G. Scyphers (P). Adult male. All four NBRC-endorsed records involve birds found in spring in southern Nevada (Clark and Nye counties.)

ORCHARD ORIOLE *Icterus spurius* (9, 1). 2014-047, Corn Creek (Clark), 15 Jul
2014. M. Swink (P). Adult male. Perhaps a fall migrant, as “after nesting, Orchard Orioles, particularly males, leave the breeding grounds early” (Jaramillo and Burke 1999).

CORRIGENDA

The introduction to the 2013 annual report (Meyers 2015) stated, “the committee began reviewing pre-committee records in 2007. Since that time, we have reviewed 93 such records, of which 86 have been endorsed.” Those totals were incorrect. The second sentence should have read, “since that time, we have reviewed 97 such records, of which 89 have been endorsed.”

ACKNOWLEDGMENTS

The NBRC thanks everyone who contributed to the accounts contained in this report. All submissions, photos, advice, comments, and opinions are greatly appreciated. We apologize to anyone who may have been overlooked. Some of the contributors on this list are no longer with us, but their contributions are no less appreciated: Tim Almond, Aaron Ambos, John Anderson, Meg Andrews, James Bailey, Rod Bailey, Jennifer Ballard, Scott Barnes, Jim Boone, Renée Bourgea, Carl Bullock, Samantha Burrell, Marissa Buschow, G. Scott Clemson, Marian Cressman, Dave DesMarais, Ken Drozd, Karole and Norm Finklestein, Shawneen Finnegan, Rick Fridell, Dennis Ghiglieri, Craig Grant, Leonard Hoskins, Eric Hough, Theresa Hyde, John Icenogle, Mark Kasprzyk, Charles S. Lawson, Andrew Lee, Paul E. Lehman, Tim Lenz, Rob Lowry, Neil McDonal, Martin Meyers, Randall Michal, Kathy Molina, Vincent Mowbray, Bernadine Murray, Greg and Pam Nelson, Christina Nycek, Nathaniel Nye, Zachary Ormsby, Anne Pellegrini, William Prange, John C. Ruckdeschel, Robert Rucker, Mike San Miguel, Greg Scyphers, Dennis Serdehely, Archie Slater, Justin Streit, Jesse Swift, Mike Swink, Jane Thompson, Jeanne Tinsman, Carolyn Titus, Adriaan Joseph van Rossem, David Vander Pluym, Deb Vogt, Jack Walters, and Fred Welden.

Committee members Jeanne Tinsman, Greg Scyphers, and Carl Lundblad reviewed the report and provided helpful suggestions. Outside review was provided by Daniel D. Gibson, Paul E. Lehman and Jon L. Dunn. Special thanks to Western Field Ornithologists and Great Basin Bird Observatory for their support and encouragement.

LITERATURE CITED

Accepted 6 November 2015
FACTORS INFLUENCING NONTARGET BIRD OCCUPANCY OF RESTORED WETLANDS IN CALIFORNIA’S CENTRAL VALLEY

SHARON N. KAHARA, Humboldt State University, Department of Wildlife, 1 Harpst St., Arcata, California 95521; Sharon.Kahara@humboldt.edu

WALTER G. DUFFY, U. S. Geological Survey, California Cooperative Fish and Wildlife Research Unit, Humboldt State University, Arcata, California 95521

RYAN DiGAUDIO, Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, California 94954

ROSEMARY RECORDS, Colorado State University, Department of Watershed Science and Department of Civil and Environmental Engineering, Fort Collins, Colorado 80523

ABSTRACT: Intensively managed restored wetlands and flooded croplands of California’s Central Valley support millions of wintering waterbirds. While the benefits to wintering waterfowl are well documented, the effect of intensive management on birds at other times of the year is less clear. Practices such as drainage, mowing, disking and burning may be a nuisance to these nontarget birds at best or life threatening at worst. Alternatively, irrigation over the summer may create habitat that might otherwise be lacking in the dry season. Our objective was to assess the influence of management, adjacent land use, and habitat characteristics on the richness, diversity, and occupancy of birds other than waterfowl in the spring and summer. We conducted 640 bird surveys on restored wetlands managed at varying levels in 2008 (4 April–30 July) and 2009 (19 April–16 July) and used likelihood-based modeling to evaluate occupancy and the relative importance of intensity of management and various environmental factors. Management was not the most important predictor of the richness, diversity, or occupancy of nontarget birds in the summer; rather, variables such as wetland size, vegetation composition, and landscape characteristics were more important for most bird guilds. Contrary to the commonly held view that restored wetlands in California’s Central Valley support only wintering waterfowl, they also support a diverse avifauna year round regardless of how they are managed. Bird occupancy and diversity in restored wetlands may be enhanced by creating and maintaining large, complex mosaics of vegetation.

Each year California’s Central Valley hosts the majority of the Pacific Flyway’s wintering waterfowl (Gilmer et al. 1982). Restored wetlands provide critical food and habitat for winter visitors, and there is broad support for programs and initiatives geared toward increasing the extent of wetlands in winter (CVJV 2006). Far less emphasis is placed on the role restored wetlands play in supporting summer breeders, migrants, and year-round residents. Greater than 95% of all depressional wetlands and 98% of riparian wetlands in California were destroyed between 1800 and 1980 (Dahl 1990, CVJV 2006, Garone 2011, Duffy et al. 2016). The passage of the Swamplands Act in 1850 and subsequent revisions led to extensive alterations to natural hydrology through the creation of reservoirs and channelization of the Central Valley’s main rivers. Restoration has been intended to replace the thousands of acres of wetland lost to agriculture and human settlement. Most managed restored wetlands target wintering waterfowl and therefore receive most of their water in the fall and winter. Historically, however, much of the
Central Valley flooded in early spring and summer following peak flows in the Sacramento and San Joaquin rivers (Katibah 1984). The effects of this shift in the timing of flooding on wildlife occupying these wetlands in spring and summer are often overlooked. Greater scrutiny of the factors affecting spring and summer birds may help enhance biodiversity and expand their ecosystem service.

State legislation governing water appropriation and individual landowners’ water rights constrain wetland management by limiting access to surface water. As a result, the Central Valley’s restored wetlands are managed at widely different levels, from none to intensive (Duffy et al. 2011). Intensive management usually involves a series of hydrological manipulations including a drawdown of the water level in spring and irrigation in summer so seed-producing plants germinate in high density. This is followed by artificial flooding in the fall to coincide with the arrival of wintering waterfowl, a strategy often referred to as “moist-soil management” (Fredrickson and Taylor 1982). Moist-soil management also includes disking, mowing, burning, and herbicide application to maintain a desired composition of vegetation or to eliminate invasive plants and mosquitoes (Fredrickson and Taylor 1982, CVJV 2006). These activities typically take place between March and August when they may disturb breeding birds. Similar agricultural practices have been faulted for birds’ avoiding a site and population declines (e.g., Beedy and Hamilton 1999, Zuckerberg and Vickery 2006). Alternatively, irrigation over the dry summer may attract opportunistic birds to managed wetlands.

Though managed wetlands support a wide variety of birds in the spring and summer (Kahara et al. 2012), it is unclear whether bird occupancy in those seasons is driven primarily by moist-soil management or other factors. Other studies suggest that characteristics of the site (e.g., Webb et al. 2010) and adjacent landscape (Sterling and Butnner 2011, Fleskes et al. 2012) play an important role, depending on the species. Our primary objective was to assess the relative importance of intensity of management, habitat at the site, and characteristics of the surrounding landscape in determining these wetlands’ occupancy by and diversity of birds from April to July.

STUDY AREA

The Central Valley, about 650 km long and 120 km wide, covers 108,800 km² (Schoenherr 1992), ~26% of the total area of California. It may be subdivided into the Sacramento River sub-basin in the north and San Joaquin and Tulare sub-basins in the south (Figure 1). Its topography is relatively flat, elevations ranging from 120 m in the north and south to below sea level in the Sacramento–San Joaquin delta (Schoenherr 1992). Over 90% of precipitation falls from November to May. Air temperatures vary little through the valley; average July highs approach 38 °C at both Bakersfield in the south and Redding in the north, while average December lows at Bakersfield (2.9 °C) are only slightly warmer than at Redding (2.7 °C). Precipitation decreases from north (average 90 cm/year) to south (average 12 cm/year) and from east to west, because of the rain shadow of the Coast Ranges (Carter and Resh 2005). We used the three Central Valley sub-basins to categorize our study sites along the gradient of precipitation.
Most of our study sites were wetlands restored under the Wetlands Reserve Program (WRP), a U.S. Department of Agriculture (USDA) conservation initiative established under the Food Security Act of 1985. The WRP gave private landowners the opportunity to restore, protect, and enhance wetlands on their property through a cost-share agreement with the USDA and applied only to converted former wetlands. The Agricultural Act of 2014 replaced the WRP with the Agricultural Conservation Easement Program (ACEP); however, WRP easements established prior to the enactment of ACEP remain valid for the duration of their contracts.
WRP easements are often subdivided into smaller manageable areas or “units” that are typically between 10 and 50 ha in size. Wetland units comprise a basin surrounded on all sides by levees 1–2 meters high to hold water. Troughs, islands, and sloughs are common design features for varying the topography and water depths within the basin while allowing water to be conveyed from inlets to outlets. When flooded, wetland units with varied topography promote the germination of a diverse assemblage of plants depending on their tolerance for duration and depth of flooding (van der Valk and Davis 1978, Fredrickson and Taylor 1982).

METHODS

From 10 April to 30 July 2008, we surveyed 60 units in 26 wetlands restored under the WRP and one unit in Kern National Wildlife Refuge. From 19 April to 16 July 2009, we surveyed 11 units in 11 WRP wetlands. Three sites were surveyed in both years.

For this study, we ranked wetlands by three levels of intensity of management according to assessments by biologists with the Natural Resource Conservation Service and interviews with land owners. Management at the highest level (“intensive”) entailed a combination of moist-soil techniques including hydrological and mechanical manipulation every year since restoration. Wetlands managed at the intermediate level received some or all techniques of moist-soil management in at least 50% of the years since restoration. Unmanaged wetlands had never had any moist-soil management techniques applied to them since restoration. We also categorized wetlands by time since restoration, as relatively young (5 years or less since restoration at time of sampling) or relatively old (>5 years since restoration at time of sampling). Most wetlands ranged in age from 0 (restored within 12 months of our surveys) to 12 years.

Habitat Surveys

We distinguished uplands from wetlands by their preponderance of flood-intolerant plants and grasses. We subdivided wetlands, dominated by flood-tolerant plants, into four approximately circular concentric zones around the lowest elevation in the unit and defined by plant species with similar tolerance for depth and duration of flooding: (1) moist soil, (2) shallow emergent vegetation, (3) deep emergent vegetation, and (4) open water. We then defined four transects per unit, beginning each at the outer edge in each of the four cardinal directions around the unit and continuing them along a depth gradient toward the center of the wetland, until we encountered open water or until the vegetation became uniform. In the latter case, we limited transects to 100 m, and distances between transects were not fixed. We then measured the radius from the center of the lowest zone to the outer perimeter of each zone and estimated the area of each zone as \[\pi(R_1^2 - R_2^2) \], where \(R_1 \) and \(R_2 \) are the zone’s outer and inner radii. From these areas, we calculated the proportion each zone represented of the unit’s entire area. We used the number of zones in each wetland unit as an indicator of its habitat complexity.
We estimated land use within a 10-km radius of each wetland unit (m²), using the 2008 and 2009 cropland data layers for California (http://www.nass.usda.gov/research/Cropland/SARS1a.htm) with ArcMap 9.3 (ESRI, Redlands CA). Existing land uses were reclassified under 12 categories of agricultural and non-agricultural land use. We analyzed rice, corn, and other grains separately, as waterfowl forage on them more than on other crops (Ackerman et al. 2006, CVJV 2006).

Bird Surveys

By area searches (Ralph et al. 1993), we surveyed all birds in the selected wetlands from 4 to 13 times (mean 8.5) approximately once every 3 weeks. Experienced observers equipped with spotting scopes began all surveys within half an hour after local sunrise. We omitted birds flying over, unless they were foraging aerially, and did not broadcast recorded calls, so numbers of secretive marsh birds such as rails were underestimated.

Data Analysis

We grouped species by 11 guilds defined by shared foraging behaviors and similar environmental requirements (Hickey et al. 2008). Then we compared the richness and diversity of species by intensity of management, sub-basin, and time since restoration according to the Shannon–Wiener index, which is also a measure of entropy (uncertainty) that reflects differences in proportional abundances of birds. Smaller values indicate wider variation in proportional abundance of species within the community and dominance by one or a few species. For comparisons of the number of vegetation zones, water depth, and proportion of each vegetation zone by intensity of management we used a Kruskal–Wallis one-way analysis of variance.

Bird-Occupancy Models

We used the program Presence (version 3.1; United States Geological Survey, Patuxent Wildlife Research Center, Laurel, MD) to model site occupancy and distinguished between models by means of Akaike’s information criterion corrected for small sample sizes (AICc; Burnham and Anderson 2002). Program Presence estimates the likelihood of detection from patterns of detection and nondetection over multiple visits to the site (MacKenzie et al. 2002). We selected covariates a priori on the basis of our observations in the field and previous research during a period including spring migration but before fall migration (Kahara et al. 2012).

We considered a site occupied by a guild if at least one species of the guild was detected, unoccupied if no species of the guild was detected on any visit. To identify the model with the lowest value of AICc (reduced model), we modeled probability of occurrence as a function of each covariate both individually and in combination. If in any given model this value was greater than in the reduced model, then we eliminated that variable from further consideration. If two of the retained variables were correlated (Pearson correlation coefficient \(r \geq 0.7 \)), we eliminated the variable with the higher AICc value. We ranked the models by AICc value and report the “best” model (lowest AICc value).
RESULTS

We completed 508 bird surveys on 61 sites in 2008 and 132 surveys on 11 sites in 2009. In both years the largest number of sites was managed at the intermediate level (43% in 2008, 45% in 2009), followed by intensively managed (36, 36) and unmanaged (21, 18). Intensively managed sites were older and smaller than intermediate and unmanaged sites (Table 1). Sites managed at different intensities differed mainly in vegetation composition. Unmanaged sites had significantly more upland vegetation (average 9.4%) than either intermediate or intensively managed sites. Wetland vegetation covered an average of 8.1% of intensively managed sites and 11.3% of intermediate sites, more than three times that of unmanaged sites (3.4%). Intensively managed sites had the most shallow marsh vegetation (average 6.1%), though not much more than unmanaged sites (average 5.7%). At all three levels of management deep marsh vegetation covered the least area, most on intermediate sites (average 0.6%). Vegetation coverage (average 6.6%) and depth (4.5 cm) of water were greatest on unmanaged sites in the summer but were not significantly different.

Bird Data

Over the survey period, we recorded 174 and 112 species in 2008 and 2009 respectively (Table 2). These included 17 species currently listed as of concern in California or nationwide (Hickey et al. 2008). Most special-status birds favored older, intensively managed wetlands in the northern Central Valley (Table 3). Smaller values of the Shannon-Wiener index suggest a greater disparity in species’ abundance in the Tulare sub-basin than in the other two sub-basins (Table 4). Occupancy and species diversity of upland birds were best described by the null model (including all covariates), indicating that the mean probability of use did not differ by wetland unit or could not be differentiated by the covariates we selected.

Covariates selected in the most parsimonious bird-occupancy models varied by guild (Table 5). Though management was included in some of the top ten models for wading birds, marsh birds, dabbling ducks, and aerial feeders, it was not the most important variable. Habitat complexity was the most important variable determining occupancy by wading birds, marsh birds, and shorebirds and an important variable for all wetland guilds except geese. The most important variable influencing goose occupancy was sub-basin, most geese being found in the Sacramento sub-basin. Moist
Table 2 Principal Bird Species Recorded April–July 2008 and 2009 on Restored Wetlands in California’s Central Valley, by Guild

<table>
<thead>
<tr>
<th>Guild</th>
<th>Species (most abundant in bold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wading birds</td>
<td>Black-crowned Night-Heron (Nycticorax nycticorax), Cattle Egret (Bubulcus ibis), Great Blue Heron (Ardea herodias), Great Egret (A. alba), Green Heron (Butorides virescens), Snowy Egret (Egretta thula), White-faced Ibis (Plegadis chihi)</td>
</tr>
<tr>
<td>Geese</td>
<td>Canada Goose (Branta canadensis), Greater White-fronted Goose (Anser albifrons), Snow Goose (Chen caerulescens)</td>
</tr>
<tr>
<td>Aerial feeders</td>
<td>Western Wood-Pewee (Contopus sordidulus), Ash-throated Flycatcher (Myiarchus cinerascens), Barn Swallow (Hirundo rustica), Cliff Swallow (Petrochelidon pyrrhonota), Northern Rough-winged Swallow (Stelgidopteryx serripennis), Tree Swallow (Tachycineta bicolor), Western Kingbird (Tyrannus verticalis)</td>
</tr>
<tr>
<td>Raptors</td>
<td>White-tailed Kite (Elanus leucurus), Northern Harrier (Circus cyaneus), Swainson’s Hawk (Buteo swainsoni), Red-tailed Hawk (B. jamaicensis), American Kestrel (Falco sparverius), Great Horned Owl (Bubo virginianus), Burrowing Owl (Athene cunicularia), Loggerhead Shrike (Lanius ludovicianus)</td>
</tr>
<tr>
<td>Gulls</td>
<td>Ring-billed Gull (Larus delawarensis)</td>
</tr>
</tbody>
</table>

(continued)
soil, shallow emergent vegetation, and grain crops within 10 km were the most important variables contributing to occupancy by diving birds, dabbling ducks, and raptors, respectively. Local variables were more important than landscape variables for all guilds except geese and raptors. Wetland area, number of vegetation zones, proportion of shallow emergent vegetation, proportion of deep emergent, and grain crops influenced occupancy positively in all models in which they were included. Proportion of moist soil on site and corn in the adjacent landscape negatively influenced occupancy by diving birds and geese, respectively. Where year was included in best fitting models, it was related to occupancy negatively, likely because of the reduced survey effort in 2009.

Table 2 (continued)

<table>
<thead>
<tr>
<th>Guild</th>
<th>Species (most abundant in bold)</th>
</tr>
</thead>
</table>

Occurring at three or more sites, with five or more sightings.
DISCUSSION

Wetlands provide multiple ecosystem services (Millennium Ecosystem Assessment 2005), for which restored wetlands in the Central Valley are often managed to provide only a small subset. Assessing the services restored wetlands deliver beyond those their management prescribes may help us create systems that more closely resemble their natural counterparts and are more resilient when the climate is unfavorable and resources are few.

Actively managed wetlands are used more often and support greater numbers of waterbirds than do unmanaged wetlands (Kaminski et al. 2006, O’Neal et al. 2010, Kahara et al. 2012), suggesting an important role for

Table 3 Criteria of Restored Wetlands Favoring Occurrence of Special-Status Birds in California’s Central Valley, April–July

<table>
<thead>
<tr>
<th>Species</th>
<th>Years since restoration</th>
<th>Management</th>
<th>Sub-basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>American White Pelican</td>
<td><5</td>
<td>Intermediate and intensive</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Loggerhead Shrike</td>
<td>>5</td>
<td>Intensive</td>
<td>Tulare</td>
</tr>
<tr>
<td>Long-billed Curlew</td>
<td>>5</td>
<td>Intensive</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>>5</td>
<td>Intensive</td>
<td>Tulare</td>
</tr>
<tr>
<td>Nuttall’s Woodpecker</td>
<td>>5</td>
<td>Intensive</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Song Sparrow</td>
<td><5</td>
<td>Intensive</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Whimbrel</td>
<td>>5</td>
<td>Intensive</td>
<td>Sacramento and Tulare</td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>>5</td>
<td>Unmanaged</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Yellow-billed Magpie</td>
<td><5</td>
<td>Intermediate</td>
<td>Sacramento</td>
</tr>
</tbody>
</table>

Table 4 Richness and Diversity of Bird Species in Restored Wetlands of California’s Central Valley, April–July, 2008–2009, by Intensity of Management, Sub-basin, and Time since Restoration

<table>
<thead>
<tr>
<th>Intensity of management</th>
<th>n</th>
<th>Mean species richness (± SE, range)</th>
<th>Mean Shannon–Wiener index (± SE, range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmanaged</td>
<td>15</td>
<td>12.97 (28.85, 37.15)</td>
<td>5.29 (6.02, 23.24)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>31</td>
<td>13.81 (27.23, 37.25)</td>
<td>5.72 (4.34, 20.88)</td>
</tr>
<tr>
<td>Intensive</td>
<td>26</td>
<td>13.02 (1.20, 36.83)</td>
<td>6.01 (4.18, 16.50)</td>
</tr>
<tr>
<td>Sub-basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento</td>
<td>21</td>
<td>13.90 (1.46, 37.83)</td>
<td>6.35 (0.73, 23.26)</td>
</tr>
<tr>
<td>San Joaquin</td>
<td>6</td>
<td>17.98 (3.08, 20.00)</td>
<td>3.84 (1.25, 6.61)</td>
</tr>
<tr>
<td>Tulare</td>
<td>15</td>
<td>9.61 (1.39, 16.82)</td>
<td>4.38 (0.44, 5.28)</td>
</tr>
<tr>
<td>Time since restoration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5 years</td>
<td>42</td>
<td>11.82 (1.35, 37.83)</td>
<td>4.94 (0.60, 20.89)</td>
</tr>
<tr>
<td>>5 years</td>
<td>30</td>
<td>15.49 (1.89, 37.15)</td>
<td>6.84 (0.98, 23.26)</td>
</tr>
</tbody>
</table>

* Largest value minus smallest value.
management. However, our results suggest that management carried out in the spring and summer is less important in determining bird occupancy than are characteristics of the site’s habitat and adjacent land use. Occupancy by waterbirds and upland birds was more likely to be a function of a wetland’s size, vegetation composition, and diversity. Although any wetland changes seasonally with germination of food plants and flooding, unmanaged wetlands are more likely than managed wetlands to remain consistent across seasons. Surprisingly, nearly half of all unmanaged wetlands we studied held more and deeper water over the summer than did intermediate or intensively managed wetlands. Therefore, lack of management does not preclude year-round water.

Though management of water and vegetation in most restored wetlands in the Central Valley follows a prescribed regime to create optimal habitat for wintering waterfowl, the timing and duration of these practices may be adjusted to cater to spring and summer bird use. For example, lowering water levels over 2 to 3 weeks between January and March may favor abundant seed production by plants such as smartweed (Polygonum spp.; Heitmeyer et al. 1989), but this schedule is too early for migratory shorebirds, whose numbers peak in April. A drawdown in April and May would provide shorebirds more habitat during migration. Alternatively, an even later drawdown (between May and June) would greatly benefit nesting shorebirds, particularly in the San Joaquin and Tulare sub-basins where there is less habitat for them than in the Sacramento Valley (Duffy et al. 2011, Kahara et al. 2012). Partial drawdowns and a greater diversity of hydrological regimes should maximize waterbird potential, and delaying vegetation management,

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Factors Influencing Probability of Detection and Occupancy of Guilds of Birds in Restored Wetlands of California’s Central Valley, April–July, 2008–2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guild</td>
<td>Detection probability</td>
</tr>
<tr>
<td>Wading birds</td>
<td>None</td>
</tr>
<tr>
<td>Marsh birds</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Geese</td>
<td>None</td>
</tr>
<tr>
<td>Diving birds</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Dabbling ducks</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Shorebirds</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Aerial feeders</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Raptors</td>
<td>Number of surveys</td>
</tr>
<tr>
<td>Upland birds</td>
<td>None</td>
</tr>
</tbody>
</table>
such as eradication of undesirable plants by disking, burning, shredding, or mowing, would benefit a broad spectrum of nesting birds.

Landscape covariates appeared in many of the top bird-occupancy models but were not as important as characteristics of the site’s habitat, as found by Valente et al. (2011). Bird–habitat relationships were consistent with previous studies, including relationships with extent of wetland (VanRees-Siewert and Dinsmore 1996, Naugle et al. 2001, Webb et al. 2010) and of shallow emergent vegetation (Kaminski and Prince 1984, Murkin et al. 1992, Webb et al. 2010). After extent of wetland, the presence of complex vegetation mosaics was the second most important factor contributing to occupancy. The guilds most likely to be affected by vegetation diversity were wading birds, marsh birds, dabbling ducks, and shorebirds. The gradient of vegetation zones observed at many of the restored sites creates structural heterogeneity and diverse food and habitat resources that may explain the diversity of bird species we observed under all management regimes. Vegetation diversity may be achieved through variation in topography in larger (>40 ha) wetlands or by maintaining multiple smaller (<4 ha) management units at different successional stages (Fredrickson and Taylor 1982).

Contrary to our expectations, grain crops in the adjacent landscape enhanced bird occupancy of wetlands, but this may have been a consequence of the timing of our study. In the fall and winter, flooded grain crops attract both wetland and upland species (Miller et al. 1989, Elphick and Oring 1998, Elphick 2000, Czech and Parsons 2002, Ma et al. 2010, Fleskes et al. 2012), possibly drawing them away from restored wetlands. Over the spring and summer, however, disturbance from increased agricultural activity may have the opposite effect and drive birds onto restored wetlands, elevating their importance as refugia during this period.

In the Central Valley, heavy dependence on irrigation for moist-soil management means that habitat availability for birds is a function not only of the weather but also of individual landowners’ water rights and state regulations. Wetland managers in the drier southern Central Valley face greater challenges obtaining water than those in the north, which receives up to four times more rainfall. In the Tulare sub-basin, wetland managers have historically depended on groundwater, which is rapidly diminishing, becoming increasingly expensive, and contaminated (Hartmann and Goldstein 1994). The more frequent multi-year droughts forecast for the future may force the adoption of alternatives to intensive moist-soil management. Nevertheless, as we found, lack of management does not necessarily negate the value of restored wetlands, even if the effect on wintering waterfowl is severe. Creation of larger tracts with complex vegetation mosaics may allow unmanaged wetlands to continue to support a diverse avifauna in the spring and summer.

ACKNOWLEDGMENTS

We greatly appreciate the generous cooperation of all participating landowners and land managers. The staff of the Colusa, Kern, Pixley, Sacramento, and San Joaquin national wildlife refuges provided access and assistance. For their assistance with habitat and bird surveys we also thank Beth Werner, Shannon Chapin, Mary Burke, and Bryan Atkinson. J. Groves and C. Hickey provided valuable guidance. The manuscript was improved by the thoughtful comments and edits of Ron LeValley,
BIRD USE OF RESTORED WETLANDS IN THE CENTRAL VALLEY

Philip Unitt, and an anonymous reviewer. Funding for this research was provided by the NRCS Conservation Effects Assessment Project–Wetlands.

LITERATURE CITED

ment and habitat associations of bird fauna in restored wetlands of California’s Central Valley, USA. Diversity 4:396–418; doi 10.3390/d4040396.

Accepted 3 February 2016
BREEDING OF THE SHORT-EARED OWL IN NEW MEXICO

RAYMOND A. MEYER, 3065 Camino Real, Las Cruces, New Mexico 88001; ltecnm@gmail.com

DEEANNE T. MELIOPoulos, 2241 Entrada del Sol, Apt. 6A, Las Cruces, New Mexico 88001; deannem@nmsu.edu

GRANT M. BEAUPREZ, New Mexico Department of Game and Fish, 202 CR 3, Texico, New Mexico, 88135; grant.beauprez@state.nm.us

SARTOR O. WILLIAMS III, Division of Birds, Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131; sunbittern@earthlink.net

ABSTRACT: We report four instances of breeding by the Short-eared Owl (Asio flammeus) in three areas of New Mexico in 2014, the first confirmed breeding for the state and southernmost known for interior North America. A nest and two pre-fledged juveniles plus a family group were at two sites in Otero County, a pair with one pre-fledged juvenile was found in Luna County, and a family group was observed in Roosevelt County. Each area had received substantial precipitation in September 2013, resulting in increased vegetative cover and growth of annual plants, presumably increasing small mammal prey for owls. Regurgitated pellets collected from the Otero County sites revealed that the Short-eared Owls preyed mainly on heteromyid rodents. Breeding should be considered possible for birds detected in March and later in areas south of the normal range when conditions are favorable.

In North America, the Short-eared Owl (Asio flammeus) breeds across the continent from the low Arctic, including southern Alaska, south to roughly 40° north latitude in the western states of Nevada, Utah, Colorado, and Kansas (AOU 1998, Wiggins et al. 2006). Historically, it nested in suitable habitat along the entire California coast, but in recent years it has bred consistently only in the central and northern regions of the state (Grinnell and Miller 1944, Garrett and Dunn 1981, Wiggins et al. 2006, Roberson 2008). On the east coast, the Short-eared Owl breeds from the northern portions of the Canadian provinces south to northern Virginia (AOU 1998). In interior states, instances of Short-eared Owls nesting south of the species’ usual limit have been reported in southern Colorado (Boyle 1998), northern Oklahoma (Nice 1931, Blaha et al. 1995, Wilson 1995), and Kentucky (Stamm and Clay 1989).

The Short-eared Owl is a partial migrant, withdrawing from the northern portion of its range to winter farther south. It winters from southernmost Canada south through the U.S. into northern Mexico, and less commonly as far south as Oaxaca and the Yucatan Peninsula in southern Mexico (Enriquez-Rocha et al. 1993, Howell and Webb 1995, AOU 1998). The Short-eared Owl moves nomadically, responding to fluctuations in its prey such that its distribution and abundance can vary greatly from season to season anywhere in its range, including occasional extralimital breeding (Clark 1975, Poulin et al. 2001, Wiggins 2004, Wiggins et al. 2006, Booms et al. 2014).
STATUS IN NEW MEXICO

In New Mexico, the Short-eared Owl is considered an uncommon migrant and winter resident statewide with numbers and distribution varying from year to year (Hubbard 1978, Avery and Keller 2010). It is usually associated with open habitats, particularly open grasslands and wetlands, but it also occurs in shrublands and stands of trees (Ligon 1961, Wiggins 2004, Avery and Keller 2010). In the southern part of the state from November to March, Short-eared Owls use lowland desert swales and basins vegetated primarily with dense grasses including Tobosa (*Pleuraphis mutica*) and Alkali Sacaton (*Sporobolus airoides*) (Meyer pers. obs.).

Despite circumstantial evidence, Short-eared Owl breeding has not been confirmed previously in New Mexico. Such evidence was first reported from eastern New Mexico in 2005 (Avery and Keller 2006; Figure 1), on the basis of a suspected pair noted by multiple observers 14.5 km west of Portales in northern Roosevelt County from May to August. Though the birds’ pro-
longed stay in presumably suitable habitat during the breeding season, and their territorial and aggressive behavior, suggested they were breeding, no nest or young were witnessed. A second instance involved up to 12 birds, possibly including a family group, in grasslands of central New Mexico near Tome, Valencia County, from June to July in 2007 (N. Am. Birds 61:621, 2008; Figure 1). In addition, Short-eared Owls were observed with no suggestion of nesting on at least five occasions in summer from 2000 to 2009 in Colfax (N. Am. Birds 59:634, 2006), Harding (N. Am. Birds 55:468, 2001), Curry (N. Am. Birds 54:409,2000; 63:631, 2010), and Hidalgo (N. Am. Birds 61:621, 2008) counties in eastern and southern New Mexico.

Breeding in 2014

In 2014, breeding by Short-eared Owls was documented in two areas of south-central New Mexico and at another site in eastern New Mexico (Figure 1). On Otero Mesa in central Otero County, Meyer observed two breeding pairs approximately 10 km apart from late May to early June. At one of the sites, the nest, two young, and two adults were observed. At the second location, two juveniles and two adults were seen but a nest was not found. During the same period, Meliopoulos observed one young bird and two adults farther west near Nutt in northeastern Luna County. In eastern New Mexico, Beauprez saw up to six birds, presumably a family group, southwest of Floyd in northern Roosevelt County from late May to early July.

Otero County: Cocklebur Tank

On 28 May 2014, Meyer encountered a pair of owls aggressively defending an area on the Otero Mesa portion of the McGregor Range of Fort Bliss. One of the adult owls stooped on him several times, emitting loud alarm calls, while the other bird remained in flight at a distance. A search of the area resulted in the discovery of a nest and, nearby, an owlet approximately 12 days old (32.348° N, 105.711° W, elevation 1508 m). The McGregor Range includes the northwestern corner of Otero Mesa bounded to the north by the foothills of the Sacramento Mountains and to the west by the Tularosa Basin. In this portion of the range military activity is limited but modest numbers of livestock graze. Roads are mostly unmaintained and used infrequently.

The nest was a simple scrape with minimal lining of plant material and feathers. It was located on the northern perimeter of a small, shallow basin adjacent to the earthen Cocklebur Tank. Surrounding the nest was a dense canopy of vegetation, primarily Russian Thistle (Kali tragus) with some gumweed (Grindelia sp.), remaining from the previous growing season. Grass cover was sparse, primarily Vine Mesquite (Hopia obtusa). The accumulated Russian Thistle formed a ring about 25 m wide and 0.6 m high around the northern edge of the basin. Much of the basin’s bottom was vegetated with dense cocklebur (Xanthium sp.). Surrounding the basin was homogeneous plains-mesa grassland with widely scattered Soaptree Yuccas (Yucca elata) and shrubs on gently sloped terrain (Mehlhop et al. 1996).

On 3 June, two adults and two young were in a small group of shrubs (Condalia ericoides) about 120 m northwest of the nest (Figure 2). The
young birds appeared incapable of flight and presumably had moved from the nest on foot. On 20 June, no Short-eared Owls were detected in the area.

Otero County: Godfrey Tank

On 22 May 2014, Meyer observed a Short-eared Owl landing at a large mat of Russian Thistle southwest of Godfrey Tank, in a broad, rather flat swale known as El Paso Draw, about 10 km north-northwest of Cocklebur Tank. He initially presumed the owl to be a late migrant, but after finding the nest at Cocklebur Tank, he revisited Godfrey Tank on 28 May. No owls were detected in the immediate vicinity of the 22 May sighting, but two adults and an apparent juvenile were encountered roughly 650 m to the north (32.432° N, 105.757° W, elevation 1469 m), within 100 m of each other roosting under small Soaptree Yuccas. After being flushed, one adult flew overhead briefly emitting alarm calls, while the other bird flew a short distance to another yucca. In a later visit to the site on 3 June, four birds were observed in close proximity to each other, roosting under yuccas about 165 m east of the 28 May location. After being flushed, two of the birds flew a few hundred meters to the east while the other two birds, roosting under one yucca, flew a short distance before landing. The behavior, slightly different appearance, and down and feathers found at their roost site suggested that the two latter birds were juveniles.

At this site, the dominant woody vegetation was short (height mostly <2 m) Soaptree Yucca and Sand Sagebrush (*Artemisia filifolia*). Grass cover was sparse, primarily dropseeds (*Sporobolus* spp.), forbs were numerous, and the soil was sandy. Small clusters of dead Russian Thistle had built up around woody plants and in depressions throughout the area. Roost sites also were found in dense accumulations of Russian Thistle along a nearby fence. Two hours of searching in the roosting area or in the adjacent draw failed to reveal a nest.

Nine pellets collected at the Cocklebur Tank nest, possibly those of nestlings, were uniform in size and contained partial skulls and lower mandibles of 23 pocket mice, likely the Silky Pocket Mouse (*Perognathus flavus*) on the basis of morphological characteristics, geographic location, and habitat (Clary et al. 1999, Dalquest and Stangl 1986). More than 10 castings collected at the daytime roost near Godfrey Tank were more variable in composition, containing primarily pocket mice (30), but also five kangaroo rats (*Dipodomys* sp.), two unidentified heteromyids, a gopher (*Geomyidae*), and an unidentified bird.

Luna County: Nutt Grasslands

On 1 June 2014, Meliopoulos observed a Short-eared Owl in flight during a breeding bird survey on the Nutt grasslands. Investigation after the bird landed revealed a second adult and one owlet, all roosting under separate Soaptree Yuccas within 15 m of each other (32.568° N, 107.465° W, elevation 1435 m; Figure 3). The young owl appeared to be nearly fledged, being fully feathered with a black face, well-developed ear tufts, and an unstreaked
buffy breast and belly. On 4 June, a search within a radius of 100 m of the detection site yielded neither the young nor adult owls, only down feathers and two pellets under Soaptree Yuccas within 60 m of the owlet’s location. The Soaptree Yuccas used by the owls ranged from 1 to 1.3 m in height.

The Nutt grasslands are dominated by Tobosa grass with scattered forbs, Soaptree Yuccas, and Longleaf Ephedra (*Ephedra trifurca*). The owls were in an area of dense Tobosa and small clusters of widely spaced yuccas with nearby fences lined with dense Russian Thistle. The Nutt grasslands are considered one of the few remaining tracts of relatively intact desert grassland, though a 769-ha wind farm was installed there in 2011, as well as a 202-ha solar facility in 2013. The owls were located 987 m from the solar facility, 3.43 km from the nearest wind turbine, and 219 m from New Mexico Highway 26.

Roosevelt County: Southwest of Floyd

On 29 May 2014 during the Floyd Breeding Bird Survey, L. F. Neely observed a Short-eared Owl 13.4 km southwest of Floyd in northern Roosevelt County. During a visit to the same area on 14 June, Beauprez did not see owls at the original detection site but flushed three, suspected to be two adults and a fledgling, while driving approximately 560 m to the north (32.412° N, 103.684° W, elevation 1338 m). The owls flushed from the roadside where dense Russian Thistle had accumulated along a fence line. On 26 June Beauprez observed six owls along the same road about 120 m south of the 14 June location. In a final visit to the site on 8 July he flushed four Short-eared Owls. Roosevelt County lies at the western edge of the shortgrass steppe region of the Great Plains. The vegetation at the site was primarily native short/mixed grassland, minimally disturbed, dominated by grama (*Bouteloua* spp.), with widely scattered Sand Sagebrush.

No direct evidence of Short-eared Owl nesting was observed at the Floyd site, but the photographs of four individuals taken on 14 June suggested that two, if not all, were juveniles (D. Wiggins, D. Holt, pers. comm.). Two showed the dark facial disks typical of young birds. The plumage of all four was richly colored and unworn, suggesting that all were hatch-year birds. In addition, it is unlikely that more than two adults would occur during the breeding season in such close proximity or that adults would be attending young as late as July.

Chronology

Short-eared Owls begin breeding in February, and most nest from April to mid June (Wiggins et al. 2006). At the New Mexico sites, the early stages of breeding, including pair establishment, probably occurred in March. For nests on Otero Mesa and the Nutt grasslands, we estimate the clutches were completed between 25 March and 18 April, hatching from 24 April to 16 May, and fledging from 25 May to 16 June, on the basis of known intervals for stages of the nest cycle (Wiggins et al. 2006).
DISCUSSION

The Short-eared Owl observations in 2014 represent the first confirmed breeding for this species in New Mexico and the most southerly documented for interior North America, approximately 300–500 km beyond the southernmost known interior breeding sites in northern Oklahoma and southern Colorado. Nevertheless, the Short-eared Owl may breed widely, albeit infrequently, south of its normal range. Given previous reports of suspected breeding and periodically favorable conditions, it likely did so in New Mexico prior to 2014 (see Avery and Keller 2006, 2010). For example, a widespread rodent irruption, the result of a wet monsoon season in 2006, prompted unusual nesting in 2007 by raptors including the Long-eared Owl (Asio otus) and Northern Harrier (Circus cyaneus) at multiple lowland locations across the state (N. Am. Birds 61:489, 2007; 61:621, 2008). The winter–spring season of 2007 produced an unprecedented number of Short-eared Owl sightings in New Mexico (Williams unpubl. data) and the apparent family group in Valencia County. Occasional summer sightings also have been reported from coastal and inland Texas where breeding was not suspected but possible (N. Am. Birds 57:516, 2004; 59:622, 2006), including sites south of the New Mexico breeding localities (M. W. Lockwood pers. comm.).

The locations of New Mexico breeding in 2014, spanning a distance of 390 km and two ecoregions, shared common habitat features. All areas consisted of relatively flat, extensive grasslands, open or with sparse shrubs, although the cover and composition of grass varied. Apart from infrequent traffic on roads, there was little human activity near the sites. Dense accumulations of Russian Thistle, used in concealment at the Cocklebur Tank nest, also was potential nesting habitat at the other three sites. Use of such thickets was more likely at the Godfrey Tank and the Floyd sites where other habitat suitable for nesting was limited. Tall, dense tobosa grassland, similar in structure to nesting habitat farther north, was a viable option in Luna County. In addition to cover, Russian Thistle provides a food source for rodent prey (Forbes 1962, Schmidly 2004, Longland 2007).

Breeding of the Short-eared Owl has been closely linked to the abundance of small mammals (Bent 1938, Pitelka et al. 1955, Clark 1975). In arid regions, the growth of vegetation, particularly annual plants, induced by rain stimulates rodents’ reproduction and rapid population growth (Brown and Heske 1990, Ernest et al. 2000, Lightfoot et al. 2012). The areas where the Short-eared Owls nested received rainfall well above average late in the 2013 growing season, following a period of severe drought. In September 2013, 12.6 cm fell at the Remote Automated Weather Station on Otero Mesa; 7.6–17.6 cm fell at stations around Nutt, and 15.1 cm was recorded at the Melrose Range station northwest of Floyd (www.wrcc.dri.edu/raws.dri.edu/index.html).

Breeding Short-eared Owls prey primarily on small mammals, particularly voles (Wiggins et al. 2006, Booms et al. 2014). South of the breeding range, wintering Short-eared Owls rely on other prey, and their diet may be more varied (Valdez-Gómez et al. 2009, Williford et al. 2011). The pellets collected on Otero Mesa in 2014 suggested that the owls preyed heavily on small heteromyids. Pocket mice (Chaetodipus spp., Perognathus spp.) and Ord’s Kangaroo Rat (Dipodomys ordii) have high reproductive rates and
Figure 2. One of two pre-fledged Short-eared Owls roosting under a shrub (*Condalia ericoides*) about 120 m from the nest on Otero Mesa, Otero County, New Mexico, 3 June 2014.

Photo by Raymond A. Meyer

Figure 3. Pre-fledged Short-eared Owl in tobosa grassland west of Nutt, Luna County, New Mexico, 1 June 2014.

Photo by DeeAnne T. Meliopoulos
are active year round (Brown and Zeng 1989, Thibault and Brown 2008, Lightfoot et al. 2012). At Fort Bliss, Clary et al. (1999) found the Silky Pocket Mouse (*Perognathus flavus*) was the most abundant rodent and the one most frequently captured in yucca grassland and open grama grassland. While increased numbers of rodents likely contributed to the Short-eared Owl breeding on Otero Mesa, the low total biomass of the small-mammal community dominated by diminutive pocket mice (weight 6–10 g) may have resulted in owl broods smaller than in areas with larger, more typical prey, where clutch sizes are as high as 11 (Clark 1975, Wiggins et al. 2006).

These cases of breeding far south of its usual breeding range demonstrate the Short-eared Owl’s tendency to nomadism and opportunism (Stone et al. 1994, Figueroa-R. et al. 2009, Valdez-Gómez et al. 2009, Williford et al. 2011). The species’ nesting is difficult to confirm because of its nocturnal habits, selection of remote areas, reluctance of adults to leave nests, and resorting to defensive behavior only when a threat is very near a nest or young (Wiggins et al. 2006). Nevertheless, in suitable habitat during the potential breeding season (mid-February–August), observers should be alert for Short-eared Owl breeding activity after ample rain elicits abundant growth of grasses and forbs and elevated densities of small mammals.

ACKNOWLEDGMENTS

We thank Lannois F. Neely for providing information regarding the initial Short-eared Owl observation in Roosevelt County and Patricia Mehlhop for preparing Figure 1. David A. Wiggins and Denver W. Holt assisted with aging the birds photographed in Roosevelt County. Matthew J. Baumann and David E. Quady provided helpful comments on the manuscript.

LITERATURE CITED

Accepted 22 January 2016
ALLEN’S HUMMINGBIRD NESTS IN MEXICO: EXPANSION OF SELASPHORUS SASIN SEDENTARIUS INTO BAJA CALIFORNIA

RICHARD A. ERICKSON, LSA Associates, 20 Executive Park, Suite 200, Irvine, California 92614; richard.erickson@lsa-assoc.com

ABSTRACT: Subspecies Selasphorus sasin sedentarius of Allen’s Hummingbird has been expanding its range in southern California since the 1960s. Nesting near Tijuana, Baja California, in 2014 and 2015 established the first nesting records for Mexico. The species is likely to expand farther into Mexico, and some local displacement of Anna’s Hummingbird (Calypte anna) may be expected.

Although it winters primarily in south-central Mexico, Allen’s Hummingbird (Selasphorus sasin) is almost endemic to coastal California during the breeding season (Howell and Webb 1995, AOU 1998). Two subspecies have been described: the smaller migratory nominate sasin, breeding from southwestern Oregon (Marshall et al. 2003) to mainland Ventura County, California, and the larger nonmigratory sedentarius, originally restricted to the Channel Islands (Grinnell and Miller 1944) and subsequently expanding to the nearby mainland (Wells and Baptista 1979). Presumably because of

Figure 1. Real del Mar, Baja California, 19 Feb 2015. Allen’s Hummingbirds nested in the dark green tree (cf. Ficus rubiginosa) on the right.

Photo by Richard A. Erickson

Western Birds 47:161–166, 2016; doi 10.21199/WB47.2.5
its restricted range, Allen’s Hummingbird is recognized as a federal “bird of conservation concern” (USFWS 2008) and a “California special animal” (CDFW 2015); the species has not been identified for conservation purposes in Mexico (SEMARNAT 2010).

Unitt (2004) summarized the range expansion of sedentarius onto the California mainland, beginning on the Palos Verdes Peninsula in the 1960s, with nesting first confirmed in Orange County in 1980 and San Diego County in 2001. The subspecies is now common essentially throughout coastal San Diego County (Unitt and Hargrove in press).

HISTORICAL STATUS ON THE BAJA CALIFORNIA PENINSULA

Although often confused with the more northerly Rufous Hummingbird (S. rufus), which also migrates through northwest Mexico, Allen’s Hummingbird has long been known as a spring and fall transient through the state of Baja California (Grinnell 1928). Phillips (1975) reviewed Allen’s Hummingbird in Mexico, emphasizing the identification challenges presented by this species pair, and accepted no records for the months of April and May, at the height of the breeding season in California. Through the early 2000s, there were still no winter records of Selasphorus hummingbirds for the Baja California Peninsula (Erickson et al. 2001), though a few individuals had been seen into April in the California border region (Unitt 2004). Records through 2013 in eBird/aVerAves (www.ebird.org) and those accumulated since the inception of North American Birds coverage of the Baja California Peninsula in 2000 (see Erickson et al. 2008) match the seasonality outlined by Phillips (1975). On the southern half of the peninsula, Howell et al. (2001) and Erickson et al. (2013) acknowledged identification problems but found no unequivocal records of Allen’s Hummingbird for Baja California Sur at any time of year.

Over the past 15 years, I have made repeated observations of birds at Real del Mar (Figure 1), an upscale private community centered on a golf course and ponds on the coast of Baja California approximately 10 km south of the California border. Among the vast ornamental plantings is a large hedge of hummingbird-friendly cape honeysuckle (Tecoma capensis). Often accompanied by others, I made 48 visits to this location from 2001 to 2013, and Mark J. Billings made an additional three during the same period. The visits occurred in every month of the year except February, with multiple visits in all of those months except August. We recorded Selasphorus hummingbirds on 23 of those visits, but confirmed Allen’s Hummingbird only once: an early spring migrant on 16 January 2006 (M. J. Billings).

RESIDENT ALLEN’S HUMMINGBIRD ARRIVES IN MEXICO

Since 2010, Selasphorus hummingbirds (a few confirmed as, and most presumed to be, Allen’s Hummingbirds) have wintered regularly in ornamental vegetation at scattered locations in coastal Baja California south to Ejido Eréndira, approximately 50 km south of Ensenada (31.28° N, 116.38° W), where Matt Sadowski and Ryan M. Abe noted four on 30 December 2012 (N. Am. Birds 67:344, 2013). The first of these wintering birds found was at Real del Mar 30 December 2010 (M. Sadowski pers. comm.).
2010, the first observation hinting at nesting of Allen’s Hummingbird in Mexico was of one unidentified Selasphorus hummingbird at Real del Mar on the unusual date of 15 May (M. J. Billings).

In 2014 I observed one or two male Allen’s Hummingbird at Real del Mar on 16 April (displaying), 18 April, and 18 June, along with several female Selasphorus hummingbirds in April. Seven Selasphorus hummingbirds that could not be identified to age or sex were observed on 18 June, and might have included juveniles. I suspected a used nest found on 18 April to belong to Allen’s Hummingbird, but comparison of the nest with nests preserved at the Western Foundation of Vertebrate Zoology in Camarillo, California, was inconclusive, as the sympatric Anna’s Hummingbird (Calypte anna) could not be eliminated from consideration. The nest (now WFVZ 192408) was located about 2.5 m off the ground on the underside of the outer branches of an ornamental myoporum tree (Myoporum laetum). Nesting was first confirmed on 6 October 2014. I observed ten Selasphorus hummingbirds on that date, including a female collecting nest material in a patch of Myoporum approximately 150 m from the April nest tree, but I did not find the nest.

On 19 February 2015 I observed a female Allen’s Hummingbird at Real del Mar repeatedly feeding two fledglings in the dead branches of a Myoporum approximately 50 m from the 2014 nest tree (see this issue’s inside front cover), and another female constructing a nest approximately 3 m off the ground on the underside of the canopy of an ornamental fig tree (cf. Ficus rubiginosa) approximately 20 m from the 2014 nest tree. Also seen that day were two male Allen’s Hummingbirds and six Selasphorus hummingbirds not identified to species. On 11 April 2015, I saw two male Allen’s Hummingbirds and six other Selasphorus hummingbirds, and was surprised to find the Ficus nest still active more than seven weeks after its discovery. A female was actively feeding two nestlings (Figure 2). The used nest was collected on 24 June 2015 and is now WFVZ 194797.

DISCUSSION

The surge in winter records of Selasphorus hummingbirds in northwest Baja California since 2010 apparently represents the beginning of Allen’s Hummingbird colonization of this urbanizing area (Erickson et al. 2013). Given continuing development in that portion of Mexico, and the associated proliferation of ornamental planting, it seems possible that Allen’s Hummingbird will eventually colonize the entire California biogeographic region of Baja California, south to El Rosario at approximately 30° N. This corresponds to the continuing expansion of the subspecies’ range in southern California: to the east into San Bernardino (Redlands) and Riverside counties (Clark and Mitchell 2013; www.ebird.org) and to the northwest, apparently into Santa Barbara County (Lehman 2015).

Anna’s Hummingbird may suffer some local displacement as Allen’s Hummingbird becomes established in Mexico, as the two species overlap broadly in their habitat preferences. Pitelka (1951) studied competition between migratory Allen’s Hummingbirds and Anna’s Hummingbirds and found the larger Anna’s dominant, but he emphasized the advantage conferred by Anna’s permanent residency and earlier nesting (traits shared by seden-
tarius). Also within the range of migratory Allen’s, Legg and Pitelka (1956) found female Anna’s dominant over female Allen’s, but male Anna’s were displaced by male Allen’s. Yeaton and Laughrin (1976) studied hummingbirds on Santa Cruz Island during the fall and found that sedentarius excluded Anna’s Hummingbirds from its favored territories. Without the constraint of migration, sedentarius has been wildly successful at displacing Anna’s from numerous locations it formerly occupied in the Los Angeles area (Kimball L. Garrett pers. comm.), and results from the Los Angeles Christmas Bird Count suggest the same (fide Daniel S. Cooper). This displacement has not yet been detected in San Diego County (Philip Unitt and Paul E. Lehman pers. comm.). It may be too early to compare the two species at Real del Mar, where Anna’s Hummingbird still nested in 2015 (WFVZ 194798), but the average number of Anna’s recorded on three October visits in 2014-2015 was 3.7, compared to an average of 14.2 (range 5–25) on 16 October visits from 2001 to 2013 (pers. obs.).

The long nesting season observed at Real del Mar is not unprecedented, and may help explain the subspecies’ success in colonizing new territory. As early as the 1970s, Wells and Baptista (1979) reported sedentarius attending eggs and/or young in all months of the year except for September and

Figure 2. Allen’s Hummingbird nest and nestling at Real del Mar, Baja California, 11 April 2015.

Photo by Richard A. Erickson
October, with nest building observed in October. Although reuse of nests has been reported in this species (Clark and Mitchell 2013), the nesting in Ficus at Real del Mar in both February and April 2015 likely represented a single attempt, the long cycle perhaps due to a protracted nest-building stage or inclement weather, in which nestlings may enter torpor for a few days (C. J. Clark in litt.).

ACKNOWLEDGMENTS

Many individuals accompanied me during my visits to Real del Mar and elsewhere in Baja California; the observations of Mark J. Billings and Matt Sadowski were particularly helpful in the preparation of this note. Western Foundation of Vertebrate Zoology staff Linnea S. Hall, René Corado, Adam J. Searcy, and Elizabeth Price accessioned the 2014 and 2015 nests into their collection and emphasized the difficulty in distinguishing Allen’s and Anna’s Hummingbird nests. Daniel S. Cooper, Kimball L. Garrett, Paul E. Lehman, and Philip Unitt discussed hummingbird distribution in southern California. Leo J. Simone assisted with plant identification. Enrique D. Zamora-Hernández, James Bailey, Christopher J. Clark, Brian Myers, Billings, Cooper, and Unitt made helpful comments on drafts of this paper.

LITERATURE CITED

California Department of Fish and Wildlife, Natural Diversity Database (CDFW). 2015. Special animals list; www.dfg.ca.gov/wildlife/nongame/list.html.
Accepted 28 December 2015
NOTES

FIRST RECORD OF THE COMMON SANDPIPER FOR THE HAWAIIAN ISLANDS

THANE K. PRATT, P. O. Box 420, Volcano, Hawaii 96785; thane-linda@earthlink.net
REGINALD E. DAVID, P. O. Box 1371, Kailua-Kona, Hawaii 96745; davidr003@hawaii.rr.com
EBEN H. PAXTON, USGS Pacific Island Ecosystems Research Center, P. O. Box 44, Hawaii Volcanoes National Park, Hawaii 96718; epaxton@usgs.gov

With a breeding range spanning Eurasia and a winter range extending from Africa to Australasia, the Common Sandpiper (*Actitis hypoleucos*) is indeed the common and familiar sandpiper of the Old World. It is the Old World counterpart of the Spotted Sandpiper (*A. macularius*) of the Americas and its only congener. The Spotted Sandpiper is a vagrant to the Hawaiian Islands (David 1991, Pyle and Pyle 2009), but no Common Sandpiper had been reported until one spent the winter of 2010–2011 at Honuapo lagoon, Whittington Beach County Park, Hawaii Island. Previously, Pyle and Pyle (2009) summarized all records of *Actitis* for the islands and concluded that 21 of the 32 could be identified with certainty as Spotted Sandpipers. Among the remaining 11 records, the Common Sandpiper could not be ruled out. The Common Sandpiper is a possibility because it reaches Micronesia as a regular winter visitor (Baker 1951) and western Polynesia and Alaska as a vagrant (Kessel and Gibson 1978, Pratt et al. 1987, Gibson and Byrd 2007). There are no records elsewhere in North America (Howell et al. 2014).

The bird at Honuapo lagoon was discovered on 30 October 2010 by Pratt. The lagoon is a small brackish inlet 100–200 m across that once served as a fishpond but is now open to the sea. As the only sizable wetland with mudflats in Ka‘u District, it rarely offers much besides a few Wandering Tattlers (*Tringa incana*) and Pacific Golden-Plovers (*Pluvialis fulva*). Following the bird’s discovery, we revisited Honuapo on 10 dates from November through April to study it. We observed the sandpiper for the last time on 24 April, but Darren Dowell reported it via www.ebird.org on 8 May. The bird was photographed by Jack Jeffrey on 1 December and by David on 24 April. Detailed field notes and photographs have been filed with the Hawaii Bird Records Committee, which has accepted the record.

Our initial identification as *Actitis* was based on the bird’s appearance and behavior—including diagnostic pulsed, fluttering flight low over the water, which readily distinguishes this genus from other sandpipers (Hayman et al. 1986, O’Brien et al. 2006, Chandler 2009). On this first visit, Pratt noted that the bird was not a perfect match for a Spotted Sandpiper owing to its legs being dull greenish gray and the bill being evenly grayish without pink or orange at the base.

Field marks indicating the Common versus the Spotted Sandpiper, seen on all or nearly all subsequent visits, included the all-dark bill without pale base, the white wing-bar that extended proximally to the body, lack of ventral spotting, and gray legs without a yellow tint. In addition, the prominent tail extension was seen on four visits. The patterning of the tertials and the streaking and other fine markings on the neck and upperparts could be seen only on the few occasions when the bird was very near, as described below.

It was evident that the sandpiper went through two molts during its winter residency. When it first arrived, the bird was in juvenal plumage. We observed the following features on 8 November when the bird could be viewed well: the longest tertial showed seven dark notches distally along about two-thirds of the protruding feather, which
was otherwise clear brownish gray without vermiculation—a feature distinguishing the juvenile Common from the Spotted Sandpiper—and four distal bands (dark, light, dark, light tip) on the wing coverts, indicating juvenal plumage in both species.

On 1 December the bird appeared to be molting. By late winter (as observed on 14 and 27 March), it clearly looked different, with noticeably fresh nonbreeding plumage with a dark brown patch down the side of the neck and breast vs. the finely streaked breast of the juvenal plumage. The species undergoes a complete molt to attain nonbreeding plumage (Higgins and Davies 1996, Chandler 2009).

More visible was the partial molt from nonbreeding to breeding plumage that took place in spring (February–May for the species; Higgins and Davies 1996). From our field notes for 13 April: “Shaft streaking appears to be coming in along sides of neck.
Neck feathers somewhat thinned out, molting?” And on 24 April: “The bird appeared to be mostly through an incomplete molt with contour feathers replaced on head, neck, and patchily across the saddle.” On this date, markings of breeding plumage were first noticed: shaft streaking on the sides of the neck and across the upper throat (more so than 2 weeks earlier); streaking on the side of face, ear coverts, and forehead; and cross-bars on many dorsal feathers, including the scapulars. It seemed as though the eye-line and superciliary were more prominent than before (Figure 1). These field marks, plus the immaculate white breast and dark brown sides to the neck and breast, describe the distinctive breeding plumage of a Common Sandpiper.

We thank the Hawaii Bird Records Committee for their considering the record and Jack Jeffrey for photographing the sandpiper. We also appreciate the helpful review by Jon L. Dunn.

LITERATURE CITED

Accepted 24 March 2016
Interspecific kleptoparasitism, or the stealing of food from other species, is fairly widespread among birds, most frequently reported for seabirds, especially among the Charadriiformes (Brockman and Barnard 1979, Furness 1987, Iyengar 2008). Though most kleptoparasitic species engage in this behavior facultatively, some (especially within the Charadriiformes) may be obligate kleptoparasites during a particular season and potentially throughout the year (Iyengar 2008). Within the family Pelecanidae it has been infrequently reported in the literature.

The ecology and behavior of seabirds meet many of the ecological factors proposed for the evolution of kleptoparasitism, including open habitat, feeding in mixed-species groups, scavenging, and the host’s habits being predictable (Brockman and Barnard 1979, Paulson 1985, Iyengar 2008). Though kleptoparasitism often involves a larger species stealing food from a smaller species, the Brown Pelican (*Pelecanus occidentalis*) is perhaps better known as the victim of kleptoparasitism by smaller gulls than vice versa, with several species of gulls and terns reported to steal from it (Shields 2014).

The Brown Pelican was the first species of pelican reported to kleptoparasitize (Sefton 1950, Brockmann and Barnard 1979), and this behavior has since been reported in the Americas by the closely related Peruvian Pelican (*P. thagus*) (Duffy 1980) and the American White Pelican (*P. erythrorhynchos*) (O’Malley and Evans 1983, Anderson 1991). Reports of kleptoparasitic attacks by the Brown Pelican have appeared to be isolated incidents. In the Peruvian Pelican, however, Duffy (1983) reported that 18% of attempts to obtain prey involved piracy. Most reported kleptoparasitic attacks by the Brown Pelican and closely related Peruvian Pelican have been in mixed feeding flocks where the pelican is sitting on the water and grabs with its bill or otherwise attacks a nearby species, getting it to drop its food (Sefton 1950, Duffy 1980, Lanciani 2000). This is especially common in situations where the birds are feeding on offal being thrown by people, though it occurs regularly in “wild” situations as well (D. Anderson pers. comm.). The Brown Pelican’s target species have included the Double-crested Cormorant (*Phalacrocorax auritus*) and unidentified gulls (*Larus* spp.), as well as other Brown Pelicans (D. Anderson pers. comm.). Brown Pelicans have also been observed landing on Great Blue Herons (*Ardea herodias*) in order to get them to drop food (Bildstein 1980). O’Malley and Evans (1983) observed aerial chases by American White Pelicans in pursuit of food, but I am aware of no such observations involving the Brown Pelican.

At ~16:30 on 19 October 2013, during an organized whale watch out of Long Beach, California, in the vicinity of Platform Ellen (Orange County), I noted a subadult (second-cycle) Western Gull (*L. occidentalis*) chasing an adult Western Gull, followed by two adult Brown Pelicans.

The four birds were first seen flying parallel to the boat, about a kilometer away and only a few meters above the water. The second-cycle Western Gull was close behind the adult Western Gull with the two pelicans following about three meters behind the gulls. The adult gull banked up at roughly a 45° angle to a height of about 5 meters above the water before gliding back down in an attempt to escape. The second-cycle gull followed closely, and the pelicans also followed, banking up behind the gulls. The lead gull reversed course and quickly made a sharp ascent; through labored flight the pelicans were able to follow. While the second-cycle gull was able to stay on the tail of the lead gull, the pelicans fell back to about 10 meters behind both gulls. However, when the lead gull reversed course again, flying low over the water, both pelicans were able to shorten the gap and eventually overtake the second-cycle gull, placing
NOTES

them directly behind the lead gull. Because our set course at this time took us away from the birds, we were not able to see the outcome of this chase, though when last seen the pelicans were lined up directly behind the adult gull, with the lead pelican only about a meter behind. Our observation lasted about 60 seconds, although the kleptoparasitic pursuit likely began before we first noted the birds and continued after we lost sight of them.

Though birds are among the best-known kleptoparasites, most studies have focused on a few species, mainly around seabird colonies (Brockman and Barnard 1979, Furness 1987, Iyengar 2008, Flower et al. 2013). Little attention has been paid to comparing kleptoparasitism with alternative foraging techniques or facultative switching (Flower et al. 2013). Although the Brown Pelican has been reported to steal from other birds on the water, this behavior appears to be more common where the bird is scavenging. As my observation appears to be the first report of an active chase by a Brown Pelican it might have represented an opportunistic encounter rather than a regular behavior, although both pelicans were adults, which suggests prior success with this behavior. As the species meets many of the proposed ecological conditions including those listed above and use of “beaters,” species that may herd prey for capture (Brockman and Barnard 1979, Paulson 1985, Iyengar 2008), further attention to kleptoparasitism in the Brown Pelican may reveal aerial pursuit as a regular foraging technique.

I thank Lauren Harter for her helpful comments on an early draft of this paper as well as her notes on the observation, Peter Pyle for comments on earlier draft of this paper as well as his comments on aging, and Dan Anderson for his comments on observations of pelicans. Linnea Hall, Western Foundation of Vertebrate Zoology, Dawn Fletcher, and Bob Gill helped accessing literature.

LITERATURE CITED

NOTES

Accepted 1 February 2016

WFO’S 41ST ANNUAL CONFERENCE—HUMBOLDT COUNTY, CALIFORNIA
28 September–2 October 2016

PLEASE JOIN US at Western Field Ornithologists’ 41st annual conference, 28 September through 2 October 2016 in Fortuna, Humboldt County, California. The beautiful River Lodge Conference Center, on the shores of the Eel River, will be our venue. Four motels and an RV park are within a short walk of the River Lodge, as well as a couple of eateries; more restaurants are available in downtown Fortuna, a few minutes away by car.

As at past conferences, we’ll offer full-day field trips on Thursday and Sunday, and half-day field trips and workshops on Friday and Saturday mornings. Science sessions, with short presentations and discussion afterward, will occupy the early afternoons; they will be followed on Friday by Nathan Pieplow’s popular bird-sound identification challenge (form a team and join in!) and on Saturday by Ed Harper’s always-educational expert panel addressing bird identification through photos. Friday will conclude with WFO’s no-cost reception and cash bar—held outside if weather permits—while WFO’s annual meeting, banquet, and keynote address, along with a silent auction of donated items to benefit WFO’s youth scholarship program, will conclude Saturday’s program.

Two dozen different field trips, each offered twice, will explore areas ranging from bottomlands near the northern edge of Del Norte County to Shelter Cove, on the Lost Coast where the King Range meets the Pacific Coast in southernmost Humboldt County. Trips will also range from Humboldt County’s headlands, bays, spits, estuaries, coastal lagoons and marshes eastward to dense redwood forests and to interior mountains that approach 6000 ft. elevation. Other trips will visit well known coastal or near coastal migrant and vagrant traps in Arcata and Eureka; still others will target species of particular interest, such as Ruffed Grouse, Spotted Owl and Gray Jay, or simply chase whatever rarities have turned up in preceding days.

Our outstanding workshop lineup includes Jon Dunn addressing fall warblers and Stephen Shunk discussing western woodpeckers (both with associated field trips) as well as Peter Pyle explaining everything you’ve been afraid to know and didn’t want to ask about molt. Phil Unitt will lead a bird-specimen workshop, Nathan Pieplow will teach you how to listen to and identify bird sounds more analytically, Kimball Garrett will address field-identification issues posed by non-native birds, and Christine Elder will teach you how to sketch birds in the field.

Friday and Saturday afternoons’ science sessions will offer a series of short presentations on a variety of topics, all aimed to interest both serious amateur and professional field ornithologists. Each talk will allot time for questions and discussion with the audience afterward, a hallmark of WFO’s conferences. These sessions still have spaces available; if you would like to present, contact Steve Rottenborn at srottenborn@harveyecology.com for information. Abstracts are due by 30 June.

More information about the conference, and a link to register, are available at www.westernfieldornithologists.org/conference.php. We hope to see you in Fortuna!
BOOK REVIEWS

Better Birding is an unusual book. Not quite a manual of tips for birders, not quite a photographic field guide, and not an in-depth guide to a single group of birds, this book falls somewhere in the intersection of these three styles. Its main goal is to foster better birding by instructing birders in learning the ins and outs of identification of select groups of birds, so that they can apply the practice of knowing a group intimately more broadly. This is accomplished by providing information not only on field marks but also on behavior, habitat, taxonomy, and other facets of identification that are not often covered in depth in other identification guides. At its heart, this is a guide to really getting to know the birds.

The introduction is brief, only 17 pages. Here, the authors clearly outline their goals, discuss what it takes to become a better birder, and detail the aspects of birds' lives that are included in the group accounts, such as molt, taxonomy, vocalizations, and distribution. Other useful topics covered briefly here include how to be prepared for finding rarities, why and how to use www.eBird.org, and whether to broadcast recordings. A deeper introduction to these topics would have been welcome, but as it is, the introduction is more than sufficient to prepare the reader for the following chapters; anyone wishing to learn more on these topics would be wise to turn to other sources, such as some of the ten references listed at the end of the introduction.

The bulk of Better Birding covers 24 groups of North American birds, chosen to span a diversity of taxonomic groups and identification issues and to present a wide variety of approaches to identification. The taxonomic level covered in each group varies from a few sister species (e.g., monochromatic “mallards”), a genus (e.g., Brachyramphus murrelets), and a few closely related or similar genera (e.g., Troglodytes and Cistothorus wrens) to an entire family (e.g., the loons). The level of difficulty varies as well, from relatively easy (e.g., white herons) to advanced (e.g., swifts of the genus Chaetura). The organization of the group accounts is unconventional and, in my opinion, not very useful: various accounts are grouped mostly by habitat preferences or habits. The most useful grouping is of the accounts of the curlews and godwits into “large shorebirds.” Reading the book, I didn’t gain anything from accipiters and American rosefinches being grouped into “birds of forest and edge.” As I flip through, finding what I’m looking for can be difficult.

The details within each chapter vary with the group and the best techniques for identification. These are laid out in an introduction to the group, followed by “Hints and Considerations,” identification, then detailed descriptions of each species. The second page of each chapter contains a bold “Focus on” heading, which lists the most important factors to key in on for identification within each group. These may be as diverse as head pattern, bill color, vocalizations, range, habitat, primary extension, structure, etc., depending on the particular group. Sometimes range maps, “Taxonomic Notes,” and/or “Natural History Notes” are added to provide additional information. Just a few of the useful and often unique bits of information presented in various chapters include a photo of a flock of Pacific Loons, noting that flock size is a useful identification clue (p. 35), rules of thumb for picking out a hybrid of the Mallard and a related monochromatic species from either parental species (p. 59), and photos of typical views of Brachyramphus murrelets swimming or flying away. The treatment of the Atlantic gadfly petrels both covers taxonomy (p. 140) and presents side-by side comparisons of these with confusion species, showing the Trindade Petrel with the Sooty Shearwater and Long-tailed Jaeger, for example (pp. 144–145). Useful too
BOOK REVIEWS

are photos of the habitats of the marsh sparrows (p. 184), a discussion of mimicry in *Haemorhous* finches (p. 211), and a series of photos showing differences in primary emargination by age and sex in the Couch’s and Tropical kingbirds (p. 256). Each chapter ends with a brief list of references, which include mainly primary literature (journal articles) but also relevant books and web pages. These provide a great opportunity for the interested birder to delve more deeply into the lives of each group of birds.

Photographs, most of high quality, are used liberally throughout, often to illustrate variation within a species, make comparisons between species, show how the progression of molt affects appearance, or provide a variety of examples of variation in shape in flight. Most photographs are presented in a grid on the page with appropriate captions underneath, but several plates consist of a Richard Crossley-style composite image in which numerous photos are edited into one plate, allowing for better comparisons. My favorite use of this style is with comparisons of the Sharp-shinned and Cooper’s hawks (pp. 204–205). These two plates, one for adults and one for juveniles, show a total of 15 pairs of photos, each pair representing one Sharp-shinned and one Cooper’s Hawk in a similar plumage and pose, resulting in very useful comparisons.

In contrast to the thorough treatment of the visual aspects of identification through abundant photographs, *Better Birding* gives audio identification less attention. This is mentioned in the introduction, where the authors urge birders to learn by listening in the field, and recommend some online resources. In the group accounts, voice is briefly described for each species whenever relevant, and sometimes compared directly to confusion species, especially when voice is of paramount importance for identification, as for the Couch’s and Tropical kingbirds or Pacific and Winter wrens. For a few groups such as the screech-owls and curlews, reference numbers are given to Macaulay Library recordings. Accounts of most groups, however, lack these references to recordings, so a tremendous resource for learning aural identification is underutilized. No sonograms are depicted, though they could have been useful to illustrate vocal differences in groups such as the *Haemorhous* finches and the longspurs.

The style of *Better Birding* may bring to mind references such as Kaufman’s *Field Guide to Advanced Birding* [2011, Houghton Mifflin Harcourt, New York; reviewed in *Western Birds* 42(3)] or another new book in this genre, *The Peterson Reference Guide to Birding by Impression*. *Better Birding* is similar in many ways to the latter title (see book review in this issue). *Advanced Birding* shares goals similar to those of *Better Birding*: providing a wide-angle view of identification to instruct birders in how to look at birds to understand the big picture, rather than focusing on a few key field marks. The methods used to accomplish these goals differ in important ways, though both are effective in their own way. *Better Birding* focuses more on a rich array of photographs and side-by-side comparisons, whereas *Advanced Birding* excels in the detailed information provided in the text. This is especially evident where the two books overlap, particularly with the loons and the accipiters. Ultimately, overlap between the two is minimal, and both are worthwhile investments.

Despite a few faults, *Better Birding* has wide appeal, from the beginner who has begun learning bird identification but wants to know how the expert tour leader makes identifications so effortlessly, to the expert who wants to delve deeper into the identification and variation within the groups this book covers. The strength of *Better Birding* lies in its detailed discussion of the groups covered, useful tips for identification, numerous photographs used well to illustrate variation and comparisons, and specific guidelines for the factors on which birders should focus faced with a tough identification in one of these groups. I would like to see this treatment applied more widely to other challenging groups (more seabirds, *Myiarchus* flycatchers, gnateatchers, *Catharus* thrushes, thrashers, and *Passerina* buntings, for example), but this book does not aim to be a complete advanced identification guide. Rather, it is more of an introduction to how to go about learning bird identification, and the kinds of factors one may have to consider for various groups. The core philosophy of *Better Birding*
can be summarized in a Japanese proverb quoted in the introduction: “Don’t study something. Get used to it.”

Lauren B. Harter

For bird observers keen to sharpen their identification skills, there is an ever-expanding selection of literature to aid in self-study. One of the newest is this reference guide. The title immediately piqued my interest. To bird by “impression,” one does not focus on obscure field marks, e.g., the apical spot on the 9th primary. In this respect, the book is quite different from the requisite field guide or advanced identification book. The most intriguing aspect of the title is *Knowing and Identifying Birds*. “Knowing” a bird indicates a depth of understanding beyond mere identification. What the authors have attempted here is to put this level of understanding into words and photographs.

In its first 19 pages, the introduction to *Birding by Impression* (BBI) walks us through the key principles for understanding the “reference” chapters to follow. It forms a solid foundation upon which the rest of the book is built. It explains the main points *Birding by Impression* uses to describe each species or guild of species, on the basis of “unchanging characteristics”: size, body shape/structure, and behavior. This is the way many of us recognize a good friend from half a block away, or the way that many birders recognize familiar species at a glance. “Supplemental characteristics” such as plumage patterns and general coloration, habitat use, and vocalizations are considered next. These help to distinguish species that are superficially similar in shape or structure. Finally, “non-BBI details” round out each description, where additional notes are helpful in the identification process—for example, finer feather details to examine, when general patterns and coloration are not enough.

The remaining 36 chapters cover almost every family of birds in the U.S. and Canada, though, oddly, the book never explicitly states its geographic scope. Coverage of the taxa is good, with the great majority of species regularly occurring in the U.S. and Canada being treated by photos, written description, or both. About halfway through reviewing the book, I began to wonder why the book seemed so highly visual with just 200 photographs, as claimed by the book jacket and introduction. In reality, the book sells itself short—by my rough count, there are about 700 images in this book, some of those featuring multiple species within a single image! The authors also manage to avoid an east-coast bias, something I notice too often in a variety of bird books. Western birdwatchers and field ornithologists will find a great deal applicable to our region.

The book is written to appeal to a broad range of bird observers. Many advanced birders, however, are likely to employ the *Birding by Impression* approach already. Yet, those who tend to primarily focus on plumage details will find a lot of useful insight into identification by gestalt here. Although this book finally put a name to something I have been practicing for some time, reading *Birding by Impression* also helped me find new words to describe how we identify birds at a glance. This is invaluable when one is trying to teach others how to truly look at birds, rather than simply rattling off field marks that add up to a species name.

Birding by Impression is not explicitly presented as an “advanced” identification guide but will serve as one. It does not shy away from immature gulls or female hummingbirds. I was surprised, though, to find that it took on the question of the Eastern and Western wood-pewees, a subject that many experts avoid completely. Yet I felt some chapters were lacking. I fully recognize the difficulty in parsing a family as diverse
as the Emberizidae, but the sparrows in general could have been better treated. I believe
I truly “know” the sparrows in my region, and I’m able to identify them at a glance
primarily by shape and structural differences, the key points emphasized so well in
other chapters. The main differences between genera of sparrows are restricted to chart
format here; the value of expanded photographic support would have been inestimable.
In many cases throughout the book this sort of “quick comparison chart” is very useful
(see hummingbirds), but serves as only a “CliffsNotes” version of sparrow identification.

For the most part, however, the choice of images and photographic editing is
admirable, allowing for good comparison of similar species. A prime example of this
is the wrens, where important structural differences are emphasized with well-cropped
photos of six species in amazingly similar poses on very similar backgrounds. This
allows the reader to focus easily on what the authors have discussed in the text, as the
eye is naturally drawn to the most important features. Throughout the book, “quiz”
photos make excellent use of this layout. The critical thinking process involved in
pondering these quizzes (answers in the Appendix) is sure to be beneficial in assimilat-
ing Birding by Impression techniques.

The only unhelpful facet of the book is its use of measurements. I get squeamish
when birds are discussed as if they’re perched on an imaginary ruler. I have yet to
meet anyone who can accurately judge the difference between 12 ½ and 11 inches
under field conditions, the stated difference in length between the Northern and Gilded
flickers. Even folks who have memorized bird lengths from field guides use relative
comparisons to judge the size of a bird in the field, a solid Birding by Impression
technique, rather than estimating a bird’s actual span from stem to stern. Listing
weight would have been a superior tool, as used in The Sibley Guide to Birds, giving
the reader a feel for a bird’s “magnitude.”

This issue is mitigated, however, by the designation of reference species. A superb
example is in the tyrant flycatchers. When describing the sizes of various flycatchers,
the authors do not specify lengths in inches but, importantly, offer common birds for
comparison (Ruby-crowned Kinglet, American Robin, etc). They also make a point that
I espouse on field trips: although some flycatchers may measure longer in a specimen
drawer, they are often more comparable to, and more easily confused with, some of
the smaller species because of their more slender shape.

Such an undertaking is virtually guaranteed to incur a few minor errors and omis-
sions along the way. For example, the Green Violet-ear is not a regular vagrant to
southeastern Arizona (p. 152)—not even one record exists for that state. Body shape
descriptions are switched in the chart comparing the Sulphur-bellied Flycatcher and
Great Kiskadee (p. 176). Fortunately, typos and errors such as these appear to be
few. Omissions are more difficult to judge, as the aim of this book is not necessarily
to compare every single bird likely to occur in North America. Still, I was struck that
there was no comparison of the Zone-tailed Hawk with the Turkey Vulture! Birders
are far more likely to overlook a Zone-tailed Hawk by dismissing it as a Turkey Vulture
than they are to confuse a California Condor with a Turkey Vulture—a less confusing
BBI topic that is addressed.

Overall, however, this work is packed with useful information that will help many
birders make sense of confusingly similar species. It does, in fact, present an approach
that will seem quite different to folks who have learned their birds by thumbing through
a field guide to determine which bird most closely matches their observations. A
broad range of birdwatchers somewhere between “novice” and “expert” will reap
the greatest benefit from this work. Though the book is written such that beginning
birders need not feel intimidated—it largely avoids technical jargon—I doubt it will
find much audience among folks who are still sorting out sparrows from finches. If
you are ready to take your identification skills to the next level, however, regardless
of your current proficiency, this book could prove a real asset.

John Yerger
During the afternoon of 25 November 2012, while driving northwest along Via Real in Carpinteria, Santa Barbara County, California, I observed an immature hawk perched on a power line overhanging the road. It had a very distinctive face pattern, with a bold buffy-white throat, auricular, and supercilium contrasting with a dark brown malar, eyeline, and crown. The back and wings were dark brown, and the underparts were buffy white with distinct brown streaking throughout. Structurally, the hawk most resembled a Red-shouldered Hawk (*Buteo lineatus*), appearing somewhat small and stocky but with a longer tail. I was able to approach on foot to within 30 yards and study the hawk more closely through 8 × 42 power binoculars, while also obtaining several photographs. Over the next half hour I continued my observation of the hawk as it foraged within ¼ mile of this area, crossing Highway 101 twice from Via Real to perch along Santa Claus Lane. During this observation I noted that the upper surface of the rectrices was brown with several dark bands. In contrast, the underside of the tail was light gray or buffy white with only a few indistinct brown bands. While the bird was perched the wingtips fell well short of the tail tip. The undertail coverts were white, and the tarsi and feet were orange-yellow. The bill was dark and hooked, set off from the face by a yellow cere. In flight, the underwing color matched the buffy-white color of the underparts but with only minimal, nearly indistinct dark streaking throughout. Its size, shape, foraging style (perch hunting), and tail length (shorter than in an *Accipiter*) made me confident in identifying this hawk to the genus *Buteo*.

From what I observed in the field, I concluded I had photographed either an immature Red-shouldered Hawk of the paler eastern subspecies *B. l. lineatus* or a young Broad-winged Hawk (*B. platypterus*). However, with identification of the bird still unresolved, I sent my photographs to Tony Leukering, who identified the hawk as an immature Gray Hawk (*B. plagiatus*), a species with no previously accepted records in California. Over the next several months hundreds of additional observers observed and photographed the hawk within ¼ mile east or west of the original observation point along Via Real and adjacent Santa Claus Lane. The bird continued to be seen in the general area through 16 March 2013 (e.g., see this issue’s outside back cover, upper photo).

On 5 December 2013 the hawk was discovered to have returned for a second winter, this time in full adult plumage, and to the same area as it had used previously during the winter of 2012–2013. In 2014 it remained in the area through 22 March. On 29 November 2014 it returned for its third consecutive winter (this issue’s outside back cover, lower photo), this time remaining in the area only through 2 February 2015 and not seen thereafter, suggesting that it may have met an untimely demise. It did not return for the 2015–2016 season. The California Bird Records Committee has accepted all three records as records 2012-193, 2013-225, and 2014-155 (Pike et al. 2014, www.californiabirds.org).

Several characteristics observed in the field, also shown well in photographs, helped establish its identity in 2012–2013 as a Gray Hawk in immature plumage. These include (1) wingtips that fall well short of the tail tip (not the case in either the Red-shouldered Hawk or Broad-winged Hawk), (2) the bold face pattern, and (3) the tail pattern with a wide pale terminal band (not including the pale tip) that is unlike the tail patterns of both Red-shouldered Hawk and Broad-winged Hawk (Millsap et al. 2011).
Equally important in reaching a conclusive identification as a Gray Hawk in immature plumage was distinguishing it from the allopatric Gray-lined Hawk (*B. nitidus*). Differing in plumage, structure, and calls, it was split as a species from the Gray Hawk by Millsap et al. (2011) and Chesser et al. (2012) and replaces the Gray Hawk from Costa Rica south to Paraguay and northern Argentina. It is believed to be largely resident. Millsap et al. (2011) discussed plumage features distinguishing these two taxa in all sex and age classes. Those observed in the juvenile plumage of the Gray Hawk at Carpenteria included (1) a dark brown crown and dark malar stripe (*B. nitidus* shows a buffy crown with incomplete brown streaking and lacks a malar stripe), (2) a mostly white breast and belly with narrow dark streaking (in *B. nitidus* dark splotches replace thin streaking over similarly colored underparts), (3) the dark brown upper surface of the primaries, visible in flight, where *B. nitidus* shows a large light buffy patch, (4) a darker brown base color to the upper surface of the rectrices with narrow dark bands (in *B. nitidus* the base color is much lighter and the bands are wider), and (5) the white upper tail coverts with dark shaft streaks visible in flight (in *B. nitidus* the upper tail coverts are buffy). While not always visible in the field, an interesting distinguishing character is the banding on the feathers covering the tibial portion of the leg of the Gray Hawk; the tibial feathers of the Gray-lined Hawk are unmarked at all ages.

The Gray Hawk occurs from southeastern Arizona, southern New Mexico, and southern and western Texas south through Middle America to northwestern Costa Rica (Bibles et al. 2002). In the southwestern U.S. and northern Mexico most Gray Hawks are migratory. In contrast, Gray Hawk populations from central Sonora southward are nonmigratory (Howell and Webb 1995). Wintering individuals are rare within the northern portion of the range, though there are many records at this season for the lower Rio Grande valley in Texas and in southern Arizona (Bibles et al. 2002).

In northern Mexico and the southwest U.S. Gray Hawks occupy riparian woodlands and associated mesquite (*Prosopis* spp.) woodland, scrub, and grassland along major watercourses. Historically, they nested in mature woodlands of mesquite, cottonwood (*Populus* spp.), and netleaf hackberry (*Celtis reticulata*) (Bibles et al. 2002). Extensive woodcutting and ground-water depletion throughout the southwestern United States beginning in the late 1800s removed much of this habitat. Destruction of habitat coincided with the species’ decline in much of its range in the U.S. (Bibles et al. 2002). But since the 1960s its range has expanded north, beginning with the recolonization of the Santa Cruz and San Pedro river valleys of Arizona, continuing into western and southern Texas during the 1970s and 1980s, and reaching southwestern New Mexico during the 1990s (Williams and Krueper 2008). Northward expansion was coupled with a spread to elevations higher than previously recorded, reaching close to 1760 m in the Huachuca Mountains of Arizona and 1600 m in the Davis Mountains of Texas (Williams and Krueper 2008). Additionally, recent records have come from the northern Mexican Plateau within interior northern Mexico, where the species was historically unrecorded (*N. Am. Birds* 57:408, 61:337, 61:519). Within the U.S. Gray Hawks currently nest in large cottonwoods and willows (*Salix* spp.), and forage in adjacent mesquite scrub (Bibles et al. 2002), and even more recently have been found in oaks (e.g., in Madera Canyon, Arizona; M. Stevenson in litt.).

Range expansion within Arizona has brought the species east through Cochise County, northeast to the vicinity of San Carlos Lake (Gila River drainage), north to the vicinity of Roosevelt Lake (Salt River drainage), northwest to the vicinity of Phoenix, and west into the Baboquivari Mountains (Williams and Krueper 2008). Recent reports from Yavapai County in northern Arizona include a single bird found at Bridle Creek near Bagdad 16 March 2012 and a second bird near Humboldt 27 April 2012 (Corman and Tomoff 2012). More recently in Yavapai Co., a vocal, likely nesting pair of Gray Hawks was along Date Creek northwest of Wickenburg 13–16 July with a juvenile later observed at this location 16 August 2013 (Corman and
Tomoff 2013a). A pair of vocal Gray Hawks along Agua Fria Road near Humboldt 19 August 2013 also suggested breeding (Corman and Tomoff 2013b). This area is due west of Prescott and roughly 90 km east-northeast of the mouth of the Bill Williams River on the Colorado River.

Until the acceptance of this Santa Barbara County record from 2012, the California Birds Record Committee designated Gray Hawk’s occurrence in California as hypothetical on the two unaccepted sight records from Marin County: 16 June 1984 at Bolinas (Roberson 1986) and 10 May 2012 at the Marin Headlands (Pike et al. 2014). True long-distance vagrancy of the Gray Hawk also has been documented with two records from Kansas: a sight record 15–16 April 1990 from Milford Reservoir, Geary County, and of a bird photographed 20–30 October 2005 in a residential area of Wichita, Sedgwick County (www.ksbirds.org/kos/kbrc_summary.htm).

I thank Tony Leukering for initially identifying the hawk to species from my photos and for his great comments on its identification, John Sterling for inviting me to write this paper, and Philip Unitt, Peter LaTourette, Paul Lehman, and John Sterling for their reviews.

LITERATURE CITED

Neotropic Cormorant

Photo by © Martin Meyers of Truckee, California
Neotropic Cormorant (Phalacrocorax brasilianus)
Floyd Lamb Park at Tule Springs, Las Vegas, Clark Co., Nevada, 28 September 2013. The bird remained nearly a year, to 13 July 2014, and was presumably the same individual at this location the previous winter. As outlined in this issue of Western Birds (pp. 120–137) by Martin Meyers, there are now seven records of the Neotropic Cormorant in Nevada, part of a pattern of range expansion and population increase covering much of the southwestern U.S.
Back cover: “Featured Photos” by © Eric B. Culbertson of Carpinteria, California, and John Sterling of Woodland, California: (upper) Juvenile Gray Hawk (*Buteo plagiatus*) at Carpinteria, California, 25 November 2012–16 March 2013, representing the first well-supported record of the species in California. The bird returned, in adult plumage, for two successive winters, 5 December 2013–22 March 2014 and 29 November 2014–2 February 2015 (lower). The Gray Hawk’s range in the U.S. has been expanding gradually since the 1960s.