Western Specialty: Golden-crowned Sparrow

Photo by © Nancy Overholtz of Bishop, California: Golden-crowned Sparrow (Zonotrichia atricapilla), near Nome, Alaska, 9 June 2019. Edward R. Pandolfino and Lily A. Douglas studied variation in the song of the Golden-crowned Sparrow in its winter range, associating the variants with the dialects identified in the species’ breeding range. They found that birds singing the dialect of northern and northwestern Alaska, as at Nome, have been recorded only in the northern part of the winter range, mainly around the Salish Sea. Birds singing the dialect characteristic of south-central Alaska have been recorded farther south, from near Portland, Oregon, to near Santa Barbara, California. Only six examples of variants characteristic of the Canadian portion of the breeding range have been recorded in winter, but all were within California. Thus movement of the Golden-crowned Sparrow seems to fit the pattern of chain migration.
Volume 52, Number 4, 2021

Fall Waterfowl Use of Bridgeport Reservoir, Mono County, California Deborah J. House ... 278

Age and Sex Influence Natal and Breeding Dispersal of Purple Martins Carolyn A. Cook, Glen T. Hvenegaard, Geoffrey L. Holroyd, Hardy Pletz, and Myrna Pearman 296

Using Song Dialects to Assess the Migration Strategy of the Golden-crowned Sparrow Edward R. Pandolfino and Lily A. Douglas 311

A Novel Locality for the Observation of Thousands of Passerine Birds during Spring Migration in Los Angeles County, California Ryan S. Terrill, Christine A. Dean, John Garrett, Daniel J. Maxwell, Lauren Hill, Andrew Farnsworth, Adriaan Dokter, and Morgan W. Tingley ... 322

NOTES

Burrowing Owls Produce Second Brood in Mountain View, California Philip G. Higgins, Debra Chromczak, and Ryan A. Phillips 340

Characteristics of Nests of Belding’s Savannah Sparrow at Estero Punta Banda, Mexico Hiram Rafael Moreno-Higareda, Gorgonio Ruiz-Campos, Manuel Alejandro Carballo Amador, and Horacio de la Cueva ... 345

First Record of the Long-tailed Duck for Coahuila, Mexico Hugo González-Páez, Armando J. Contreras-Balderas, Gorgonio Ruiz-Campos, and Juan A. García-Salas ... 348

First Documented Breeding of the Black-headed Grosbeak in Alaska Zachary M. Pohlen, Callie F. Gesmundo, and Nicholas R. Hajdukovich ... 351

Book Review: Birdpedia Edward R. Pandolfino 355

Thanks to Western Birds’ Reviewers and Associate Editors 356

Index Daniel D. Gibson .. 357

Front cover photo by © Deborah J. House of Bishop, California: Bridgeport Reservoir, Mono County, California, 17 October 2018. Seventeen years of systematic surveys demonstrate the importance of Bridgeport Reservoir as a fall stopover for migrating waterfowl, especially dabbling ducks. Yet the trend in their numbers over this period has been a decline, paralleling the intensification of drought threatening the scattered wetlands of the Great Basin.

Back cover photos by © Ryan S. Terrill of Los Angeles, California: Western Tanager (Piranga ludoviciana) and Yellow-rumped Warbler (Setophaga coronata) as they pass in migration over Bear Divide, San Gabriel Mountains, Los Angeles County, California, on 5 May and 4 April 2021, respectively. Bear Divide is newly revealed as a point of concentration and unparalleled visibility of land birds as they head north in spring migration along the Pacific Flyway.

Western Birds solicits papers that are both useful to and understandable by amateur field ornithologists and also contribute significantly to scientific literature. Send manuscripts to Daniel D. Gibson, P. O. Box 155, Ester, AK 99725; avesalaska@gmail.com. For matters of style consult the Suggestions to Contributors to Western Birds (at https://westernfieldornithologists.org/publications/journal).
FALL WATERFOWL USE OF BRIDGEPORT RESERVOIR, MONO COUNTY, CALIFORNIA

DEBORAH J. HOUSE, Los Angeles Department of Water and Power, 300 Mandich Street, Bishop, California, 93514; Deborah.House@ladwp.com

ABSTRACT: Aerial surveys from 2003 to 2019 documented the abundance of waterfowl at Bridgeport Reservoir in Mono County, California, from September through mid-November. Waterfowl totals at Bridgeport Reservoir averaged 33,106 ± 4050 (standard error) in the fall. Annual peak counts averaged 10,474 ± 1349, ranging from a low of 2583 in 2014 to the highest single-day count of 23,150 in 2005. Bridgeport Reservoir is a man-made water body in the intermountain West that waterfowl use primarily a mid-migration stopover site, with peak numbers occurring in September. The dominant waterfowl species, the Northern Shoveler (Spatula clypeata), Gadwall (Mareca strepera), Mallard (Anas platyrhynchos), Northern Pintail (A. acuta), and Green-winged Teal (A. crecca), showed both unimodal and bimodal migration chronologies. Regional drought, as indicated by the Palmer drought severity index, combined with a downward trend in waterfowl numbers explained 61.4% of annual variation in fall waterfowl totals. These data may allow future assessment of change in waterfowl abundance at Bridgeport Reservoir in the context of local or regional conditions, and as influenced by climate change.

Although developed for water storage to serve municipal, agricultural, or flood-control needs, reservoirs often also provide habitat for waterbirds. Designed to store water for agricultural irrigation, Bridgeport Reservoir is part of the Bridgeport Valley Important Bird Area designated by California Audubon (Cooper 2004). The reservoir lies within the intermountain West portion of the Pacific Flyway, a region where water and wetland resources carry a high value to wildlife, given their scarceness on the landscape. Despite the potential importance of the Bridgeport area, there have been few avian studies of the reservoir proper. Published data on waterfowl use are lacking, and previous data from aerial surveys of waterfowl are limited to counts in October 1996 and September 1997 (J. R. Jehl, unpubl. data).

From 2003 to 2019, I conducted aerial waterfowl surveys from September through mid-November at Bridgeport Reservoir in conjunction with waterfowl surveys of two other Mono County lakes, Mono Lake and Crowley Reservoir. These surveys contributed to the Mono Basin Waterfowl Habitat Restoration Plan (LADWP 1996), with data from Bridgeport Reservoir serv-
ing as a basis for comparison with waterfowl numbers at Mono Lake, 29 km to the south-southeast in the same flyway. In this paper I describe the size, species composition, and migration phenology of fall waterfowl populations at Bridgeport Reservoir. I also investigated regional and local environmental factors influencing annual waterfowl abundance.

SURVEY AREA

Bridgeport Reservoir is located in Bridgeport Valley in northern Mono County, California, at an elevation of 1969 meters (Figure 1). The area has an arid continental climate (Zellmer 1977) with relatively cool, mild summers and cold, snowy winters (Sharpe et al. 2008). Annual precipitation averages 22.8 cm, mostly in the form of snow (Sharpe et al. 2008). By mid-September, average minimum temperatures drop below 0 °C (Western Regional Climate Center, https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca1075). The reservoir’s surface usually freezes over in winter, with ice typically developing by mid- to late November.

Bridgeport Reservoir was completed in 1923 to provide irrigation water to Smith and Mason valleys in Nevada (Sharpe et al. 2008) and currently also supports a recreational fishery, wildlife use, and other recreational activities including birding and hunting. The reservoir is owned and operated by the Walker River Irrigation District, based in Nevada, but the California State Water Resources Control Board controls storage and releases (Horton 1996).

The reservoir covers approximately 12.5 km² and is rather shallow (mean depth 4.6 m, maximum depth 13.3 m; Horne 2003). When at maximum storage, approximately half of the reservoir is less than 3 m deep (Horne 2003). Because of the shallow sloping topography of the southwestern portion of the valley, the reservoir’s surface area varies greatly with the water level.

Bridgeport Reservoir is part of the hydrologically closed Walker River basin, which straddles the California/Nevada border. Several creeks originating from the east slope of the Sierra Nevada drain toward Bridgeport Reservoir. Creek water is diverted for upslope irrigation of rangeland, supporting the valley’s primary land use of cattle grazing. The creeks directly tributary to the reservoir are the East Walker River, Robinson Creek, and Buckeye Creek (Figure 1). Downstream of Bridgeport Reservoir Dam, the East Walker River continues into Nevada, joining the West Walker River, and ultimately discharging into the terminal Walker Lake, Nevada. In Nevada, the Walker River system supports extensive agriculture.

Flood-irrigated pastures border the gently sloping southern and southwestern portion of Bridgeport Reservoir, while Great Basin scrub is dominant along the more steeply sloped north arm and east shore. In shallow areas and creek deltas, submergent aquatic vegetation is abundant, including broad beds of water smartweed (*Persicaria amphibia* var. *stipulacea*). Marsh, dense wetlands, and woody riparian vegetation are lacking in the immediate vicinity of the reservoir and Bridgeport Valley proper. The reservoir is eutrophic because of high nutrient loading and experiences summer blooms of colonial cyanobacteria that form a dense floating scum (Horne 2003).
METHODS

Waterfowl Surveys

I surveyed the waterfowl of Bridgeport Reservoir annually each fall from 2003 to 2019. Six surveys were completed at two-week intervals, starting the first week of September and ending in mid-November. A total of 102 surveys were completed over the 17-year study period.

Surveys were from a fixed-wing four-passenger airplane traveling at approximately 130 km/hr at a height of approximately 60 m above ground
level. Surveys took place in the morning, generally between 10:00 and 11:00 Pacific time, and were completed in approximately 20 minutes. The entire shoreline was circumnavigated twice, with an additional transect made over the open water of the southern end of the reservoir when birds were spread out into the bay and not well viewed during the shoreline flight.

During the flights, observers used a voice recorder to record waterfowl numbers and species composition and transcribed survey data later. Waterfowl were identified to species when possible, or to the lowest identifiable category, e.g., “unidentified teal.” Some closely related species difficult to identify reliably from an aircraft were combined into groups. The “Cinnamon Teal” (Spatula cyanoptera) may include some Blue-winged Teal (S. discors), a species seen in low numbers in Mono County (pers. obs.), and the “Lesser Scaup” (Aythya affinis) could include a few Greater Scaup (A. marila), a species also seen only infrequently in small numbers. Two observers were present on all flights, including one assistant besides myself. Consistency of observers has been high over the length of the study, as I was on all but one flight over the 17-year period, and there was little turnover in second observers.

DATA SUMMARY

Waterfowl Totals

The six survey periods were defined as early September (first week), mid-September, end September (includes the first week of October in some years), mid-October, end October, and mid-November. I generated totals for each survey period by summing all waterfowl (family Anatidae), including those not identified to species, then calculated total annual fall waterfowl abundance by summing the totals for the six survey periods. For each survey period, I calculated the mean, standard error, and low and high counts for the 2003–2019 study period. Descriptive statistics calculated for total fall waterfowl abundance for the duration of the study were annual mean and standard error and high and low totals for each year.

Species Composition

For each species, for the period 2003–2019, I calculated the mean by survey period, total annual mean, and standard error. In addition, I assessed community composition by grouping species into three broader categories: geese and swans, dabbling ducks, and diving ducks. The proportional abundance of each species group was calculated on the basis of totals over all surveys combined.

Migration Chronology

I assessed the intraseasonal pattern of waterfowl abundance at Bridgeport Reservoir by evaluating the mean and standard error of the totals for each survey period, 2003 to 2019, of the six most abundant ducks, the Green-winged Teal (Anas crecca), Gadwall (Mareca strepera), Mallard (A. platyrhynchos), Northern Pintail (A. acuta), Northern Shoveler (Spatula clypeata), and Ruddy Duck (Oxyura jamaicensis). I then calculated the proportion, with its standard error, of each species’ total by survey period with respect to its yearly total. I
used the proportion of the yearly total rather than the actual survey total to standardize for variation from year to year. To interpolate species' abundance between surveys I used a cubic spline, a polynomial function that smooths curves and estimates the values of peaks that may have occurred between surveys (Gilmer et al. 2004).

Variables Influencing Waterfowl Totals

To analyze trends in annual totals with respect to year, local conditions (the reservoir’s surface area), and regional conditions (drought severity), I used multiple linear regression analysis, log10-transforming the numbers to fit the test's assumptions. The length of the shoreline and the availability of various depths of water vary with the reservoir’s level, the exact nature of the relationships being influenced by the basin's topography. As a measure of this variation, I used the reservoir’s surface area in September, estimated by linear regression with the reservoir’s storage volume (km3) the predictor variable and surface area (km2) as the dependent variable. Data on the reservoir’s storage volume were from the Department of Water Resources’ California Data Exchange Center (https://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=BDP). I selected the monthly value closest to the date of the satellite photo from which the volume was estimated each year. Based on imagery from the National Agriculture Imagery Program, values for surface area were obtained by mapping the shoreline in ArcGIS software by ESRI for the years 2005, 2009, 2010, 2012, 2014, 2016, 2018, and 2020 and with Google Earth’s distance-measurement tool for 2006, 2013, and 2019, the years imagery was available through Google Earth. The resulting regression equation was highly predictive of the reservoir’s surface area, given a particular storage volume ($r^2_{adj} = 0.976, p < 0.001$).

I estimated the reservoir’s surface area in September of each year with the regression equation. I then included these predicted values in a multiple regression model to determine the effect of the reservoir’s surface area on annual fall waterfowl totals at Bridgeport.

Regional conditions I assessed by means of the Palmer drought severity index (PDSI) for the western region (California and Nevada). The PDSI is a monthly index that incorporates both air temperature and precipitation data to evaluate the severity of hydrologic drought (Alley 1984, National Center for Atmospheric Research 2020). The combined effects of air temperature and precipitation influence evapotranspiration, which is the major factor controlling water balance in wetland habitats (Zhao and Liu 2016). Thus the PDSI may serve as a surrogate indicator of the extent or availability of wetlands in the region. The PDSI ranges from +10 (extremely wet) to –10 (extremely dry) (National Center for Atmospheric Research 2020). I averaged monthly PDSI values by water year (1 October through 30 September) for the water year immediately preceding each year’s surveys.

I evaluated the model’s performance by examining adjusted values of r^2 (r^2_{adj}), values of probability (p) for the model and individual variables, and the variance-inflation factor for variables.
RESULTS

Waterfowl Totals

From 2003 to 2019, the total number of waterfowl counted at Bridgeport Reservoir each fall (results of the six surveys summed) averaged 33,106 ± 4050 (SE; Table 1). Waterfowl concentrated primarily along the southwest shoreline from Walters Canyon to the East Walker River bay and offshore of the Buckeye Creek inlet (see Figure 1). Waterfowl abundance was highest in 2005 when 83,186 individuals were tallied over the six surveys. The fewest waterfowl were recorded in fall of 2014 when only 13,119 were tallied. The peak count for the year on a single survey averaged 10,474 ± 1349 and ranged from a low of 2583 in 2014 to the highest single-day count of 23,150 at the end of September in 2005.

Species Composition

Of the 23 species of waterfowl recorded at Bridgeport Reservoir in fall, geese and swans averaged 1280 per year, representing approximately 4% of all waterfowl (Table 2). The Snow Goose (Anser caerulescens) has been an infrequent, late-season migrant, seen in 5 of 17 years, with a peak count of 30 on 7 November 2017. The Greater White-fronted Goose (A. albifrons) has also been infrequent, seen between mid-September and the end of October in 3 of 17 years. The Cackling Goose (Branta hutchinsii) was detected only in 2016. The Canada Goose (B. canadensis) was the only species in this group recorded every year and averaged 1263 birds per year. The Tundra Swan (Cygnus columbianus) occurred as a late-season migrant in 12 of 17 years, with a high count of 85 on 14 November 2003.

Seven dabbling duck species (Table 2) averaged 29,789 annually and accounted for 90% of all waterfowl. The most abundant dabblers were the Northern Shoveler, Gadwall, Mallard, Northern Pintail and Green-winged Teal. The Northern Shoveler was the most abundant species overall, averaging 7741 ± 987 per year, constituting over 23% of all waterfowl. The Gadwall was almost equally abundant with 6369 ± 893 per year (19.2%). The yearly fall means for the Mallard, Northern Pintail, and Green-winged Teal were similar, each accounting for 10–12% of all waterfowl. The Cinnamon Teal was an early fall migrant, averaging 229 per year or approximately 1% of dabbling

<table>
<thead>
<tr>
<th>Survey period</th>
<th>Mean</th>
<th>SE</th>
<th>High count</th>
<th>Low count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Sept</td>
<td>6763</td>
<td>899</td>
<td>12,160</td>
<td>2024</td>
</tr>
<tr>
<td>Mid-Sept</td>
<td>8754</td>
<td>1131</td>
<td>17,955</td>
<td>1962</td>
</tr>
<tr>
<td>End Sept</td>
<td>7078</td>
<td>1475</td>
<td>23,150</td>
<td>1633</td>
</tr>
<tr>
<td>Mid-Oct</td>
<td>4286</td>
<td>956</td>
<td>17,355</td>
<td>847</td>
</tr>
<tr>
<td>End Oct</td>
<td>3282</td>
<td>566</td>
<td>10,117</td>
<td>826</td>
</tr>
<tr>
<td>Mid-Nov</td>
<td>2943</td>
<td>462</td>
<td>6141</td>
<td>356</td>
</tr>
<tr>
<td>Peak count</td>
<td>10,475</td>
<td>1349</td>
<td>23,150</td>
<td>2583</td>
</tr>
<tr>
<td>Yearly total</td>
<td>33,106</td>
<td>4050</td>
<td>83,186</td>
<td>13,119</td>
</tr>
</tbody>
</table>
Table 2 Mean Number of Waterfowl by Survey Period, Total Annual Mean, and High Counts at Bridgeport Reservoir, 2003-2019

<table>
<thead>
<tr>
<th>Species</th>
<th>Early Sep</th>
<th>Mid-Sep</th>
<th>End Sep</th>
<th>Mid-Oct</th>
<th>End Oct</th>
<th>Mid-Nov</th>
<th>Annual mean</th>
<th>SE(^a)</th>
<th>Peak count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geese and swans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow Goose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser caerulescens</td>
<td><1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater White-fronted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goose Anser albifrons</td>
<td>1</td>
<td><1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cackling Goose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branta hutchinsii</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada Goose</td>
<td>253</td>
<td>176</td>
<td>197</td>
<td>190</td>
<td>154</td>
<td>292</td>
<td>1263</td>
<td>198</td>
<td>940</td>
</tr>
<tr>
<td>Tundra Swan</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>8</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cygnus columbianus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dabblers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinnamon Teal</td>
<td>154</td>
<td>57</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>229</td>
<td>67</td>
<td>671</td>
</tr>
<tr>
<td>Spatula cyanoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Shoveler</td>
<td>2864</td>
<td>2560</td>
<td>1481</td>
<td>412</td>
<td>203</td>
<td>58</td>
<td>7741</td>
<td>987</td>
<td>8115</td>
</tr>
<tr>
<td>Spatula clypeata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadwall</td>
<td>1483</td>
<td>2107</td>
<td>1606</td>
<td>434</td>
<td>362</td>
<td>6369</td>
<td>893</td>
<td>5700</td>
<td></td>
</tr>
<tr>
<td>Mareca strepera</td>
<td>15</td>
<td>22</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>66</td>
<td>25</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>American Wigeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mareca americana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>435</td>
<td>517</td>
<td>1102</td>
<td>816</td>
<td>782</td>
<td>538</td>
<td>4237</td>
<td>865</td>
<td>6605</td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pintail</td>
<td>154</td>
<td>759</td>
<td>993</td>
<td>1183</td>
<td>622</td>
<td>354</td>
<td>4173</td>
<td>699</td>
<td>6000</td>
</tr>
<tr>
<td>Anas acuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green-winged Teal</td>
<td>562</td>
<td>614</td>
<td>768</td>
<td>473</td>
<td>523</td>
<td>658</td>
<td>3624</td>
<td>677</td>
<td>3600</td>
</tr>
<tr>
<td>Anas crecca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified teal</td>
<td>757</td>
<td>1375</td>
<td>504</td>
<td>300</td>
<td>197</td>
<td>165</td>
<td>3352</td>
<td>823</td>
<td>5550</td>
</tr>
<tr>
<td>Divers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canvasback</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aythya valisineria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redhead</td>
<td>4</td>
<td>12</td>
<td>19</td>
<td>11</td>
<td>19</td>
<td>7</td>
<td>72</td>
<td>20</td>
<td>155</td>
</tr>
<tr>
<td>Aythya americana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring-necked Duck</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>16</td>
<td>4</td>
<td>77</td>
<td>109</td>
<td>75</td>
<td>1150</td>
</tr>
<tr>
<td>Aythya collaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesser Scaup</td>
<td><1</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>44</td>
<td>11</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aythya affinis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-winged Scoter</td>
<td></td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanitta deglandi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bufflehead</td>
<td><1</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td>64</td>
<td>105</td>
<td>194</td>
<td>50</td>
<td>810</td>
</tr>
<tr>
<td>Bucephala albeola</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Goldeneye</td>
<td><1</td>
<td><1</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucephala clangula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hooded Merganser</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophodytes cullatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Merganser</td>
<td>21</td>
<td>16</td>
<td>17</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>93</td>
<td>16</td>
<td>93</td>
</tr>
<tr>
<td>Mergus merganser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-breasted Merganser</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergus serrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruddy Duck</td>
<td>73</td>
<td>228</td>
<td>344</td>
<td>227</td>
<td>313</td>
<td>326</td>
<td>1513</td>
<td>231</td>
<td>1600</td>
</tr>
<tr>
<td>Oxyura jamaicensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified diving duck</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Standard error.
ducks. The American Wigeon (*Mareca americana*) has averaged fewer than 100 birds per year, with a peak count of 220 in 2003.

Diving ducks were the most species-rich group, but although nine species were observed (Table 2), diving ducks as a whole accounted for only 6% of all waterfowl. Their species richness was low early in the season until most species arrived in mid-October. The Ruddy Duck was most abundant of the divers, averaging 1513 ± 230 per year. The Redhead (*Aythya americana*), Ring-necked Duck (*A. collaris*), Bufflehead (*Bucephala albeola*), and Common Merganser (*Mergus merganser*) also occurred regularly but each accounted for <1% of all waterfowl over the study period. The Bufflehead was the second most numerous diver, averaging 194 ± 50 annually. Although sometimes present early in the fall season, it was most consistently recorded in higher numbers after mid-October. The high of 810 Bufflehead was recorded on 13 November 2019. The Canvasback (*A. valisineria*), Lesser Scaup, and Common Goldeneye (*B. clangula*) were detected regularly after mid-October, with high counts of the Canvasback (15) recorded on 14 November 2003, of the Lesser Scaup (137) on 27 October 2017, and of the Common Goldeneye (42) on 14 November 2018. Species detected in only one year were the White-winged Scoter (*Melanitta deglandi*; 1), Hooded Merganser (*Lophodytes cucullatus*; 10), and Red-breasted Merganser (*Mergus serrator*; 1).

Migration Chronology

From early September to mid-November, the total number of waterfowl observed at Bridgeport Reservoir rose and fell (Figure 2). Early-season (Sep-
September) totals were significantly higher than later in the fall (October through mid-November). Seasonal totals were typically highest in mid-September, although some of the highest counts occurred in late September. The standard errors indicate that total waterfowl counts were most variable during the mid- and end of September periods. In two of the last six years, however, seasonal counts peaked in late fall. These late fall peaks were in mid-November 2014 and the end of October 2017.

Species Chronology

The Green-winged Teal’s pattern of abundance was bimodal (Figure 3a). In any one year, approximately 60% of the seasonal population had been recorded by the end of September. The long-term average count through the month of September ranged from 562 to 768. Numbers decreased in October, followed by a second smaller peak in mid-November that averaged 658 birds.

The Gadwall showed a unimodal pattern of migration early in the season (Figure 3b). By mid-September, 60% of the yearly fall population was recorded. The long-term average seasonal peak of 2107 occurred in mid-September. Numbers dropped rapidly after mid-September, and from the end of October to mid-November, Gadwall averaged 433 or fewer.

The Mallard was a mid- to late-season migrant (Figure 3c), with populations building through September to a seasonal peak averaging 1102 in mid-September. A moderate but progressive decline in use was observed following the mid-September peak such that by mid-November, numbers averaged 537. The Mallard was one of the more abundant late-season species at Bridgeport.

The Northern Pintail’s pattern of abundance was unimodal, and its numbers peaked in mid-season (Figure 3d). A significant proportion of the annual fall population had often arrived by mid-September, lingering through the end of October. Peak numbers occurred from the end of September through mid-October, with the highest average number of 1183 in mid-October.

The Northern Shoveler was the most abundant early-season migrant at Bridgeport (Figure 3e). Its migration chronology was somewhat similar to the Gadwall’s with numbers peaking early in the season. Most of the annual fall population was recorded by mid-September, and the highest average count, of 2864, was in early September. Given that the high count generally occurred on the first survey, it is possible that in some years the annual peak preceded the first week of September. By mid-October, average numbers dropped to 412, and by mid-November, numbers averaged fewer than 100.

The Ruddy Duck had a bimodal pattern of abundance (Figure 3f). Total numbers were low in early September, then rose to a small peak averaging 344 and approximately 20% of the annual fall population at the end of September. A second and larger annual fall peak representing almost 30% of the annual fall population occurred at the end of October.

Variables Influencing Waterfowl Totals

The estimated extent of Bridgeport Reservoir averaged 5.3 km², ranging from a low of 2.5 km² in September 2014 to a high of 10.4 km² in September 2017. The extent of surface water was weakly related to waterfowl totals ($r_{adj}^2 = 0.252, p = 0.051$), but because of multicollinearity with the PDSI and the model’s resulting instability, I excluded this variable from the model.
The best-fit model encompassed the variables PDSI and year. These two variables combined explained 61.4% of the variability in annual waterfowl totals at Bridgeport Reservoir ($r^2_{adj} = 0.614$, $p < 0.001$). Over the 17-year study period, the annual PDSI for California and Nevada ranged from –6.2 (extreme drought) to 2.9 (moist). The region experienced 7 years of severe to extreme drought (PDSI ≤ –3.0), two of moderate drought (PDSI –2.9 to –2.0), six normal years (PDSI –1.9 to 1.9), and two moist years (PDSI 2.0 to 2.9).

Figure 3. Migration phenology of the six most abundant species of dabbling ducks at Bridgeport Reservoir. Values represent the proportion of the species' annual fall totals present during each survey period.
The severity of drought, as indicated by PDSI in California and Nevada for the water year immediately prior to the survey year, influenced waterfowl totals strongly (Figure 4). This relationship was positive, indicating increased numbers as drought severity lessened and moisture conditions in the region improved, and decreased numbers during periods of drought.

Waterfowl totals were negatively correlated with year, indicating a trend of decline over the study period (Figure 5). There appears to be a cyclic pattern to annual waterfowl totals, however; since 2008, the peaks and troughs of total numbers have been lower than prior to 2008.

DISCUSSION

Bridgeport Reservoir is primarily a mid-migration stopover site for waterfowl in fall, as evidenced by high early-fall use through the month of September, followed by significantly lower numbers October through mid-November. Fall waterfowl use of Bridgeport Reservoir is unlike that at many other waterfowl sites in California in that use is highest in September. Lingering local breeders may contribute substantially to the fall numbers only in the case of the resident Canada Goose, which in some years can number several hundred in mid-summer. Otherwise, numbers of locally breeding ducks numbers appear to be insignificant compared to totals present in September (pers. obs.).

Fall waterfowl totals at Bridgeport Reservoir peak earlier than at many other sites in the intermountain West. At Lake Abert in eastern Oregon,
Northern Shoveler numbers peak in mid- to late September, slightly later than observed at Bridgeport (East Cascade Audubon Society, http://bit.ly/2s3Kwgt). Total waterfowl numbers at Summer Lake, also in eastern Oregon, have been highest from late September through mid-October (Oregon Department of Fish and Wildlife 2020). Peak fall numbers of all ducks, as well as single-species counts for the Northern Shoveler, Gadwall, and Northern Pintail at Stillwater National Wildlife Refuge, Nevada, are in October (Bundy 2002). At Owens Lake in Inyo County, California, fall waterfowl numbers have been highest in October (Los Angeles Department of Water and Power, unpubl. data). Waterfowl use of Bridgeport in winter is much less than in early fall (pers. obs.). Although winter-hardy species such as the Mallard and Canada Goose overwinter on lakes and rivers of the intermountain West including Bridgeport Reservoir, waterfowl largely migrate out of the region with its harsh weather and freezing temperatures (Intermountain West Joint Venture 2013). The seasonal composition and abundance of waterfowl observed at Bridgeport Reservoir may reflect, in part, its location within the intermountain West and associated climate patterns including temperatures below freezing as early as September. This pattern of early fall departure may also indicate a depletion of high-energy foods sought by migrating waterfowl.

Waterfowl abundance at Bridgeport Reservoir is high relative to the size of the reservoir, and as compared to the other key waterfowl sites in Mono County—Crowley Reservoir and Mono Lake—where comparable aerial surveys were conducted over the same time period. Crowley Reservoir, which is almost twice as large as Bridgeport Reservoir at 34.2 km², has averaged 47,172

Figure 5. Trend in annual waterfowl totals, 2003–2019, log₁₀ transformed.
waterfowl annually over the same time period, or approximately 40% more waterfowl than at Bridgeport (unpubl. data). Waterfowl totals at Mono Lake, a saline lake covering 181 km², almost 10 times larger than Bridgeport, have averaged 24,731 (unpubl. data), or 25% less than at Bridgeport. Grant Lake Reservoir, also in Mono County and similar in size to Bridgeport Reservoir, supports few waterfowl (pers. obs., Lin and Jehl 1996).

Dabbling ducks are the most abundant waterfowl at Bridgeport Reservoir in fall, while geese, swans, and divers have constituted a small proportion of the overall numbers. Although Bridgeport Reservoir is potentially along a migration route for some portion of the western population of the Snow Goose, its use of Bridgeport has been low and sporadic. Likewise, Tundra Swan use was low and sporadic, although the western population is known to move from stopover locations in the intermountain West, including Great Salt Lake and Stillwater National Wildlife Refuge in Nevada to the north of Bridgeport, to wintering sites in California's Central Valley (Moermond and Spindler 1997), and wintering Tundra Swans are regular at Crowley Reservoir, approximately 80 km southeast of Bridgeport, arriving as early as the end of October. The majority of southbound Snow Geese and Tundra Swans wintering in the Central Valley cross west over the Sierra Nevada well to the north of Bridgeport Reservoir (F. Hall pers. comm.). Snow Geese also winter in the interior of California south of Bridgeport, including at Owens Lake (Inyo County), in Indian Wells Valley (Kern County), and in the Imperial Valley (Imperial County). The majority of waterfowl wintering in the Imperial Valley originate from central Canada and the northern Great Plains (Patten et al. 2003) and take a migratory path different from that taken by the majority of waterfowl wintering in cismontane areas of California (Bellrose 1980). Snow Geese wintering at Owens Lake and in Indian Wells Valley may originate from central Canada and the northern Great Plains as well. Thus Bridgeport Reservoir may lie outside the major migration routes Snow Geese and Tundra Swans follow, or the specific vegetation and food resources at Bridgeport may not make it attractive for a stopover.

At Bridgeport, the migration chronologies of the dominant species varied from primarily early in the season (e.g., Northern Shoveler and Gadwall) to mid-season (Northern Pintail) to mid-to-late season (Ruddy Duck and Mallard). In addition, both unimodal (Northern Shoveler, Gadwall, and Northern Pintail) and bimodal (Green-winged Teal, Mallard, and Ruddy Duck) seasonal patterns were observed. Bimodal patterns within a species may reflect different geographical source populations responsible for the early versus late pulse in numbers. The species for which bimodal patterns were observed are also typically among the most abundant species of waterfowl wintering in Mono County (pers. obs.). Early-season numbers of some species, particularly the Gadwall, presumably include small numbers of lingering local breeders.

Regional drought appears to influence waterfowl totals at Bridgeport strongly. Drought depresses waterfowl reproduction by reducing the availability of wetlands, but determining factors responsible for the effect of drought on waterfowl totals at any particular site in migration may be more complex. These factors may be influenced by the drought’s severity and length at both local and regional scales, and the source population’s reproductive dynamics.
With respect to migrating birds, drought has the potential to concentrate bird use in areas of suitable conditions, leading to a local increase in numbers, to decrease survival by eliminating resources along the migratory route, or to alter migration patterns, which could increase or decrease numbers. At Bridgeport Reservoir, the data do not suggest a concentration of use at this site in response to drought, as annual waterfowl use decreased as regional rainfall decreased. Drought may be influencing waterfowl use of Bridgeport Reservoir by altering migration patterns, depressing source populations, or affecting local conditions including food resources. Several studies have shown strong relationships between drought, breeding waterfowl populations, and habitat conditions (e.g., Sorenson et al. 1998, Krapu et al. 1983), thus providing a mechanism by which source populations are limited. Under the climate scenario predicted for the western U.S. of decreased precipitation, and increased temperatures reducing the effectiveness of precipitation, long-term drying is anticipated. Locally, dry periods are getting drier, and wet periods shorter (House and Honda 2018), resulting in less time for habitats and populations to recover from the consequences of dry periods. Periodic drying of wetlands can be beneficial in terms of increasing productivity, but long-term drought can lead to loss and reduction of the wetlands waterfowl use. In light of the response to regional drought, the declining trend in waterfowl numbers seen during this study could be due in part to recent changes in climate. Finally, although a relationship between reservoir level (which could influence the quantity or quality of the available habitat) and fall waterfowl numbers was not evident in this study, further investigation into the influence of reservoir level on habitat conditions may provide more insight.

Several factors are suspected to contribute to fall waterfowl abundance at Bridgeport Reservoir, including topography, available food resources, adjacent land use, and land-ownership patterns. The topography of the southern and southwestern shoreline of the reservoir results in ideal foraging conditions for dabbling ducks and geese. The gently sloping topography and the input of fresh water from the East Walker River and Robinson and Buckeye creeks combine to create extensive mudflats and shallow feeding areas along the southern and southwestern shoreline. Depending on the reservoir's level, in some years submergent and aquatic vegetation at Bridgeport is abundant, contributing to favorable foraging habitat (Fredrickson and Reid 1988). At reduced reservoir levels, the submergent vegetation, including smartweed, becomes exposed (pers. obs.), rendering seeds less available to foraging waterfowl. Similarly sized Grant Lake demonstrates how topography and surrounding land use can influence waterfowl use of a reservoir, as it is deeper, only has one perennial water source, is surrounded by upland vegetation, not irrigated pasture or meadow, and supports only small numbers of waterfowl.

Adjacent land use helps to sustain the abundance of fall waterfowl at Bridgeport Reservoir. Although cattle grazing can alter the physical structure of ecosystems, nutrient cycling, and species composition and cover (Fleishner 1994), this land use has helped to maintain open space surrounding Bridgeport Reservoir and has resulted in the persistence of meadows adjacent to it.

Fluctuating water levels at Bridgeport periodically inundate adjacent flood-irrigated pastures, and this process may be mimicking natural or man-
The abundance of water smartweed along the southern shoreline of Bridgeport Reservoir in some years attests to the functioning of this area as a moist-soil wetland. The seeds of smartweeds are widely recognized for their value as waterfowl food (Martin and Uhler 1939, Fredrickson and Reid 1988), and smartweeds also support populations of diverse invertebrates (Nelms 2007), thus enhancing the abundance of waterfowl during fall migration at Bridgeport Reservoir.

In fall, migrating waterfowl accumulate energy reserves for long-distance flight and to withstand winter conditions that may include reduced food supply or severe weather (Davidson and Rothwell 1993). The accumulation of fat is of prime importance to waterfowl in fall. At this season, waterfowl increase their use of disturbance-free refuges (Madsen 1998, Evans and Day 2002). The southern and southwest portion of Bridgeport Reservoir’s shore favored by waterfowl has limited human access not only because these areas are quite muddy but because adjacent private property limits access. Likewise, waterfowl hunting pressure is low, except for the opening day and weekend of hunting season (the third Saturday in October), and, because of difficult access and limited cover, most hunting in the valley is restricted to the creeks and ditches, as opposed to the reservoir (Tim Taylor, California Department of Fish and Wildlife, pers. comm). The combined forces of land ownership and land use keep disturbance low in the areas of Bridgeport Reservoir where waterfowl concentrate to feed and rest and may contribute to waterfowl use in the fall.

Knowledge of species’ movement patterns is fundamental to habitat management and conservation planning. Chronologies of waterfowl migration have been described for broad geographic areas (e.g., Bellrose 1980), but quantitative information is available only for localized areas (Baar et al. 2008).

Patterns of waterfowl migration have been observed to change over time (Lehikoinen and Jaatinen 2011, Reese and Weterings 2018), so the chronology data I present here may be useful for assessing waterfowl response to regional or local changes in conditions, including those induced by climate change.

A change in land use away from agricultural grazing lands to development is a potential threat to the nature and productivity of Bridgeport Valley. Most of the area immediately surrounding Bridgeport Reservoir and more than half of the total extent of Bridgeport Valley (19,341 hectares) are privately owned (Mono County Planning Department 2000). A small portion has been placed into conservation easements (https://www.eslt.org/preserved-lands/bridgeport-valley/). Land-use changes could alter water inputs to the reservoir, access, or the level of disturbance to wildlife including migratory waterfowl.

Changes to Bridgeport Reservoir and its habitat value for waterfowl could also occur as a result of the Walker Basin Restoration Program. The primary purpose of the Walker Basin Restoration Program is to restore and maintain Walker Lake in western Nevada, and to protect agricultural, environmental, and habitat interests in the Walker River basin (National Fish and Wildlife Foundation, https://www.nfwf.org/programs/walker-basin-restoration-program). Walker Lake is one of three desert terminal lakes in the United States
that supports a fishery, but a decrease in the lake's level and a subsequent increase in total dissolved solids have resulted in significant ecological changes (Collopy and Thomas 2010). To provide more inflow to Walker Lake, rights to surface water are being acquired from willing sellers in the watershed. Ciotti et al. (2014) cited reduced reservoir levels, reduced subsurface water flow, and a loss of flow in Robinson Creek as possible effects on Bridgeport Valley as a result of water transfers. A reduction in the level of Bridgeport Reservoir could degrade waterfowl habitat by reducing the extent of shallow flooded areas along the shoreline where the birds feed, and interrupting the connectivity of flooded pastureland to wetland habitats and open water.

Because of the general aridity of the intermountain West, the value of wetlands within the region is disproportionate to their extent (McKinstry et al. 2004), and areas with appropriate conditions tend to concentrate waterfowl, particularly during migration. Water resources and wetlands of the intermountain West have been profoundly altered, and those within Bridgeport Valley are no exception. Despite these alterations, Bridgeport Reservoir has been a locally important stopover site for migratory waterfowl in fall.

ACKNOWLEDGMENTS

I thank my Western Birds reviewers and Sarah Bryson, Jon L. Dunn, and Chris Howard for reviewing earlier drafts of this manuscript, providing supportive and helpful comments and edits. Biologists Chris Allen, Bill Deane, and Annette Henry, with the Los Angeles Department of Water and Power, assisted with aerial surveys.

LITERATURE CITED

Davidson, N. C., and Rothwell, P. I. 1993. Disturbance to waterfowl on estuaries:

Accepted 4 August 2021
AGE AND SEX INFLUENCE NATAL AND BREEDING DISPERSAL OF PURPLE MARTINS

CAROLYN A. COOK, University of Alberta—Augustana Campus, 4901-46 Avenue, Camrose, Alberta T4V2R3, Canada; aironshiroi@gmail.com

GLEN T. HVENEGAARD, University of Alberta—Augustana Campus, 4901-46 Avenue, Camrose, Alberta T4V2R3, Canada; gth@ualberta.ca (corresponding author)

GEOFFREY L. HOLROYD, Beaverhill Bird Observatory, Beaver County, Alberta T5J2N5, Canada; geoffholroyd@gmail.com

HARDY PLETZ, Beaverhill Bird Observatory, Beaver County, Alberta T5J2N5, Canada

MYRNA PEARMAN, Ellis Bird Farm, Lacombe County, Alberta T4L1W7, Canada; myrna.pearman@gmail.com

ABSTRACT: Dispersal patterns deepen our understanding of population dynamics. Dispersal by all age and sex classes enhances a species’ ability to respond to environmental changes, such as in habitat availability, artificial nest sites, and climate. The migration dynamics of the eastern subspecies of the Purple Martin (Progne subis subis) are well known, but we know less about its patterns of annual dispersal. We compared the frequency, distance, and direction of dispersal by each age/sex cohort of martins in central Alberta, at the northwestern limit of their breeding range. We used two datasets: (1) adult martins banded in central Alberta as nestlings and encountered during the summers of 2017 and 2018, and (2) records of encounters of banded martins in Canada from 1935 to 2016 from the Canadian Wildlife Service’s Bird Banding Office. In Alberta, 36% of birds dispersed from natal sites (by an average distance of 24 km), most commonly to the northeast. Across Canada, 29% of birds dispersed (by an average distance of 183 km), most commonly to the east and northeast. In Alberta, martins at least two years old dispersed less frequently than yearlings since some older martins returned to their natal site after first breeding elsewhere. Dispersal distances of after-second-year martins, which represent natal plus breeding dispersal, were greater than those of second-year birds, which represent natal dispersal alone. Thus some martins continue to disperse after their second year and do not maintain complete fidelity to a breeding site, which is different from our current understanding.

Dispersal refers to the distance and direction an organism moves from where it originated to where it breeds in subsequent years (MacDonald 2003). Dispersal behavior shapes the geographical distribution, population structure, and population dynamics of any species (Walters 2000). There are two major categories of dispersal from one year to the next. Natal dispersal is defined as movement from the site where a bird fledges to where it first breeds, while breeding dispersal is any change in subsequent locations of breeding (Greenwood and Harvey 1982, Colbert et al. 2001). Species in which site fidelity or philopatry are strong return to their place of fledging to breed each year following their seasonal migration (Förschler et al. 2010), so their distances of natal dispersal are low. Dispersal is different from post-fledging wandering by young, in which fledglings or juveniles move from site to site before their first migration (Miller et al. 2001). Dispersal also differs from migration, the regular seasonal movement of animals between their breeding and nonbreeding ranges, in that dispersal does not include the migration route (Winkler et al. 2016). In this paper, we examine the frequency, distance,
and direction of dispersal of the eastern subspecies of the Purple Martin (*Progne subis subis*) in central Alberta and across Canada.

Walters (2000) called for more research on dispersal to help in understanding and modeling population dynamics and structure. Dispersal can vary by sex and age. This variation can be important in analysis of apparent survival rates that are based on capture–mark–recapture studies which, in birds, are typically done by banding individuals and searching for them in subsequent years. If dispersal rates and distances vary by age and sex, apparent survival rates calculated from recaptures or resightings will be skewed (Stutchbury et al. 2009). In addition, a good understanding of dispersal may help in conservation of wildlife populations affected by climate change and human development. For example, dispersal patterns can indicate future range expansions or contractions. Similarly, dispersal among subpopulations can help maintain a metapopulation (Esler 2000), but net dispersal from a subpopulation could contribute to the decline of that subpopulation. Moreover, understanding dispersal patterns can provide insights into the evolution and adaptations of migrants (Rappole 2013). Drivers of dispersal differ both between and within species (Greenwood and Harvey 1982). Ultimately, dispersal is an important life-history characteristic that affects species’ persistence and evolution (Colbert et al. 2001).

In many though not all species, younger birds disperse more often than older birds (Greenwood and Harvey 1982). Moreover, Rappole (2013) noted that adults of many species force dispersal of younger birds soon after the young birds arrive at breeding sites. Greenwood and Harvey (1982) showed that among a wide variety of birds, although not some waterfowl, females tend to disperse more than males (Alison 1977). Rappole (2013) suggested that return rates for females are lower than for males because of lower female survivorship and greater female dispersal combined.

The Purple Martin, North America's largest swallow, is a colonial aerial insectivore. Primitively, martins nested primarily in tree cavities, though, over time, they became habituated to nesting in human-made structures (Tautin et al. 2009). Today, the eastern subspecies relies heavily on the provision and maintenance of suitable nest boxes (Brown and Tarof 2013). This article is concerned with dispersal in the eastern subspecies only.

Previous studies have found that rates of Purple Martin dispersal are low (Morton and Patterson 1983, Stutchbury et al. 2009, Zelt et al. 2012). The limited dispersal could restrict the species’ ability to respond to habitat and climate changes. In a long-term study of a small area in Pennsylvania, the martin's natal fidelity was 84% for females and 87% for males; breeding fidelity was 91% for females and 94% for males (Stutchbury et al. 2009).

Past studies also showed distances of martins’ dispersal from both their birth sites and the sites of their successful clutches to be short. Among the few studies, the most common dispersal distances were less than 50 km; distances of 80 km or farther were unusual, and of >300 km were rare (Hill 2003, Ray and Schoenhals 2011). The frequency distribution of dispersal distances is skewed, with many shorter dispersals and few longer dispersals. Hill (2003) reported dispersal distances averaging 13.6 km (range 7–607 km) and that 96% of banded martins bred within 60 km of where they hatched at sites in Pennsylvania, Ohio, and Illinois. In Texas, 86% of banded martins encountered were within 80 km of their natal colony, with the longest dis-
persal distance being 422 km, by a martin of unknown sex and age (Ray and Schoenhals 2011). Other reports of long-distance dispersal are 928 km for a male of unknown age from its original nest to a breeding colony (Houston and Houston 2011), 2060 km for a male of unknown age from its natal site to a nesting site five years later (Chambers 2011), and 2635 km for a bird of unknown sex and age from its natal site to a nesting colony. The longer dispersal distances in band-encounter studies are due, in part, to the larger study area (Greenwood and Harvey 1982).

Results from studies of dispersal directions are mixed, including southward and eastward for martins in Alberta (Finlay 1975) and no trend in Pennsylvania and Ohio (Hill 2003). Ray and Schoenhals (2011) speculated that the availability of nest boxes, particularly in less occupied directions, can aid martins’ range expansion, giving them more opportunities to colonize new sites.

Comparisons can be made with studies of other species’ dispersal. Dispersal rates range from 50% for adult small passerines to 10% for long-lived species like gulls (Rappole 2013). For the well-studied Tree Swallow (Tachycineta bicolor), Hosner and Winkler (2007) found that the percentage of individuals that dispersed less than 13.6 km varied from about 90% in New York to about 50% from band recoveries across the USA. In Saskatchewan, 20% of breeding Tree Swallows studied by Shutler and Clark (2003) had been banded locally as nestlings; thus 80% of breeders had dispersed from elsewhere. In New York, Winkler et al. (2004) found that older female Tree Swallows were less likely to disperse than younger females. More generally, females disperse more frequently than do males in the Barn Swallow (Hirundo rustica; Schaub and von Hirschheydt 2009) and Tree Swallow (Shutler and Clark 2003). Female Tree Swallows are more likely to disperse if their nests fail than if they succeed (Hosner and Winkler 2007). With respect to breeding dispersal, Winkler et al. (2004) found that 14% of female Tree Swallows, but only 4% of males, moved between successive breeding sites. In contrast, among Barn Swallows in Spain and Denmark, females are less likely to disperse than are males (Balbontin et al. 2009).

In our study we investigated how Purple Martin dispersal, specifically its frequency, distance, and direction, varies by age/sex cohort in central Alberta and across Canada. We predicted that second-year male martins should disperse farther and more frequently than other age/sex classes because older males arrive and establish nesting territories earlier than do younger males and all females (Brown and Tarof 2013). From the high degree of site fidelity found in previous studies, we predicted that natal dispersal should account for any dispersal patterns of all age/sex classes. Since there is little information on directional preferences for dispersal, we hypothesized that birds should disperse in all directions to promote stability in subpopulations. An alternate hypothesis is that martins should disperse north with warming temperatures brought on by climate change.

METHODS

We used a multi-scale sampling strategy (after Hosner and Winkler 2007) to compare data from a local area with national data. While we expected dispersal distances based on the cross-Canada data to be larger than those
based on the Alberta data, we wanted to determine whether the two scales’
patterns for frequency, short/long distances, and directions were consistent.

Our local 10,000-km² study area in central Alberta extended from the
Ellis Bird Farm (52.390° N, 113.611° W) 130 km north to Islet Lake (53.452°
N, 112.825° W) and from Daysland (52.865° N, 112.261° W) 80 km west
to Wetaskiwin (52.969° N, 113.366° W). We selected eight sites that had a
history of housing martin colonies and were the focus of previous banding
of nestlings, plus three sites without banding. Banding efforts at or near the
former sites increased the likelihood that we could encounter banded birds
in later years. For two seasons in early July of 2017 and 2018, our team of four
to six people visited each site to search for banded martins.

During the nesting season we captured banded martins in one of two
ways. With the first method, we observed all four sides of the square martin
houses simultaneously; two observers watched from opposite sides from a
distance of 10–15 m for about 30 minutes. We used telescopes and binoculars
to identify banded birds entering and exiting compartments and recorded the
compartment number, suspected sex, and age of the bird by its plumage. After
the target birds had left the house, we lowered it to equip compartments with
traps. These traps consisted of a piece of white plastic puck board with two
holes drilled into opposite corners, screwed above the existing entrance hole.
A washer on either side of the puck board ensured that the puck board would
effectively seal the entrance hole after a firm tug of an attached monofilament
line tied to the second hole. We strung the line, weighted with a hexagonal
nut, through a fencing staple hammered into the wooden compartment to
help prevent it from entangling or scaring birds. Once we returned the house
to its position at the top of the pole, catchers sat 5–20 m away to wait for the
target bird to enter the compartment. At any one time we set up one to four
compartment traps. Once the target bird safely entered the compartment,
an observer pulled on the fishing line to close the trap door. We lowered the
house, carefully removed the bird from the compartment, and transferred
it to a cotton bag. For each bird, we recorded its age as second year (SY) or
after second year (ASY), sex (visual comparisons with sources such as Stokes
et al. 1997), and band number. We tried to capture all banded birds so that
the sample was representative of the age/sex cohorts in each colony. After
taking other measurements (e.g., weight, wing, tail, and tarsus length), we
released the bird.

With the second method, we mass-trapped martins at the Ellis Bird Farm.
On the morning of trap day, we attached a white, wooden trap door above
the entrance hole of each compartment of each martin house (10 houses with
8–12 compartments per house) with a loose-fitting screw. For each trap, we
strung a monofilament line from the top corner of this door down the pole to
a central location at the bottom of the pole. We added tension on each line to
raise the trap door above the entrance hole. After dusk, at 23:00, when we were
confident that most or all of the adult martins were in their compartments to
roost for the night, we simultaneously cut the monofilament lines at all of the
nesting poles, releasing the trap doors to fall and cover the entrance holes.
We banded each captured bird and recorded its age, sex, and band number
before returning it to its original compartment. Before local sunrise at 05:00,
we removed trap doors so the birds could exit.
Under both methods, we also recorded the location, house number, compartment number, date, and time of capture. Overall, we captured 161 previously banded birds. The Patuxent Wildlife Research Center’s Bird Banding Laboratory provided information about the bird’s original banding, including band number, location, and sex. We compared this information with similar details on the bird at the time of recapture.

We also obtained Canadian records of past encounters (1935–2016) with banded martins from the Canadian Wildlife Service’s Bird Banding Office. We included only encounters from May to July in years subsequent to the year of banding, i.e., those representing dispersal. We did not include records from our central Alberta study in this analysis of Canada-wide dispersal. Staff at the Ellis Bird Farm also provided records of encounters that were not part of Canada’s Bird Banding Office database. We defined an encounter as handling of a live banded bird, recovery of a banded bird found dead, or reading and reporting a band number on a live bird that was not handled (Gustafson et al. 1997). We had no control over the proportion of birds in each age/sex cohort.

For analysis of datasets, we recorded the age of each bird (SY or ASY) by comparing its year of banding to its year of encounter. We recorded its sex as male, female, or unknown, as identified in the original banding records or through visual assessment. From both datasets, we identified a dispersal when the banding location was different from the encounter location. We calculated dispersal distance and direction from the coordinates provided by the banding office, measuring distances (in km) in Google Earth. For dispersal direction, we used the eight cardinal and intercardinal compass directions (N, NE, E, SE, S, SW, W, NW). To account for post-fledging wandering, we excluded any cases of fledglings banded and encountered in the same year.

In the central Alberta dataset, we excluded any cases where the bird’s sex was unknown, leaving 153 records for further analyses (25 SY males, 27 SY females, 52 ASY males, and 49 ASY females). Using SPSS 25.0 (IBM, Armonk, NY), we conducted a one-way ANOVA test to look for differences of dispersal distance in relation to age/sex cohorts. Post hoc Tukey’s honestly significant difference (HSD) was used to identify differences among age/sex cohorts. We used chi-squared tests to evaluate differences in frequencies and direction of dispersal by age/sex cohort.

In the cross-Canada dataset, after excluding records of birds banded and encountered west of the Rocky Mountains in British Columbia, we ended up with a total of 397 records. The majority of these records were incomplete, as 90% lacked a verified sex, thus reducing our dataset to 38 records with known sex (2 SY males, 1 SY female, 10 ASY males, and 25 ASY females). The higher rate of unknown sex was probably due to the birds’ deteriorated condition—most encounters in this sample were of martins found dead—and the lack of general public knowledge of plumages. Because the sample size was small, we used a Mann–Whitney nonparametric test to evaluate differences between age/sex cohorts in dispersal distance. We used this test rather than a Kruskal–Wallis nonparametric test because essentially only two cohorts, ASY males and ASY females, were represented in the cross-Canada dataset. Again we used chi-squared tests to assess differences in frequencies and direction of dispersal by age/sex cohort.

In both datasets, we based descriptive tests of average distance and
direction of dispersal exclusively on dispersing birds. We set the significance thresholds at $P < 0.05$. We report the statistical details only for tests yielding differences that were significant.

RESULTS

Within our central Alberta dataset ($n = 153$), 33% of the encountered martins were one-year-old birds and 67% were older; the mean age was 2.0 years (range 1–8); 50% were male and 50% were female. Overall, 36% of the birds dispersed from the sites where they were banded originally. Among these dispersers ($n = 55$), the mean dispersal distance was 23.7 km (range 4–82 km; Figure 1) and the most common direction was northeast (51%; Figure 2). For each sex, we can describe the characteristics of natal dispersal.
for SY birds, but because of the limited sample size we can describe only the characteristics of natal and breeding dispersal combined for ASY birds.

Of the dispersing martins \((n = 55)\), 47\% were SY with males \((n = 14)\) and females \((n = 12)\) represented similarly. Older martins constituted 53\% of the sample; ASY males \((n = 22)\) outnumbering females \((n = 7)\). Frequencies of dispersal of the age/sex cohorts differed significantly \((\chi^2 = 16.112, df = 3, P = 0.001, \text{Table 1})\). Of the birds recaptured where banded \((n = 98)\), SY birds (26\%) were less frequent than ASY birds (74\%), and males (42\%) were less frequent than females (58\%; Table 1).

The average distance of natal dispersal for SY birds (sexes combined) was 16.8 km (range 4–56 km), whereas for ASY birds (sexes combined) it was 29.9 km (range 5–82 km). For both age cohorts, females’ average dispersal distance was greater than males’ (Table 2). The bird that dispersed farthest was an ASY male displaced 82 km to the northeast.

Dispersal distance of age/sex cohorts differed significantly (one-way ANOVA, \(P = 0.006, F = 4.699, df = 3\)). Post hoc Tukey’s HSD test revealed that the significance was between the means of SY males and ASY females. We found no significance between age/sex cohorts in direction of dispersal (Figure 2).

In our cross-Canada dataset \((n = 38)\), 8\% of the banded birds encountered were SY and 92\% were ASY; regarding sex, 32\% were male, 26\% were female, and 42\% were of unknown sex. All dispersing martins \((n = 11)\) in this sample

Table 1 Numbers of Encounters of Banded Purple Martins with Respect to Dispersal and Age/Sex Cohort

<table>
<thead>
<tr>
<th>Dispersal and age</th>
<th>Central Alberta dataset</th>
<th>Cross-Canada dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Dispersed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SY</td>
<td>14 (09.0)</td>
<td>12 (09.7)</td>
</tr>
<tr>
<td>ASY</td>
<td>22 (18.7)</td>
<td>7 (17.6)</td>
</tr>
<tr>
<td>At natal colony (no dispersal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SY</td>
<td>11 (16.0)</td>
<td>15 (17.3)</td>
</tr>
<tr>
<td>ASY</td>
<td>30 (33.3)</td>
<td>42 (31.4)</td>
</tr>
</tbody>
</table>

Values in brackets indicate values expected from a chi-squared crosstabs test.

Table 2 Averages and Ranges of Distances of Dispersal (km) from Natal Sites of Purple Martins by Age/Sex Cohort

<table>
<thead>
<tr>
<th>Age</th>
<th>Central Alberta dataset ((n = 55))</th>
<th>Cross-Canada dataset ((n = 11))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>SY</td>
<td>10.1 (4–23)(^a)</td>
<td>24.6 (4–56)(^ab)</td>
</tr>
<tr>
<td>ASY</td>
<td>26.7 (5–82)(^ab)</td>
<td>39.8 (8–69)(^b)</td>
</tr>
</tbody>
</table>

\(^{a,b}\)Cases with different letters indicate differences significant according to Tukey’s HSD post hoc test.
were ASY; of these, 6 were males and 5 were females (Table 1). Of the 35 ASY birds, 11 individuals (31%) dispersed and 23 (69%) did not disperse. Of the nondispersing birds ($n = 27$), many more were ASY (89%) than SY (11%) and females (78%) predominated over males (22%; Table 1). The average dispersal distance for ASY birds (males and females combined) was 183.1 km ($n = 11$, range 3–1023 km, Figure 3). Of the ASY birds, females had the greater average dispersal distance and dispersal range (Table 2). The most common directions of dispersal were east and northeast (Figure 4). Of all encounters, the bird that dispersed the farthest was an ASY female displaced 1023 km to the southeast. Because of the incompleteness of the cross-Canada dataset and small sample sizes, we did not use statistics to compare the age/sex categories in relation to distance and direction of dispersal.

Figure 3. Proportion of encounters of banded Purple Martins of each age/sex cohort by distance of dispersal (km) from colonies in the cross-Canada dataset ($n = 38$).

Figure 4. Proportion of encounters of banded Purple Martins of each age/sex cohort by direction of dispersal from colonies in the cross-Canada dataset ($n = 11$).
DISCUSSION

Overall, the rates of dispersal of the Purple Martin in our samples (36% for central Alberta and 29% for all of Canada east of the Rocky Mountains) were in the mid-range of the rates reported for the Tree Swallow (Hosner and Winkler 2007, Shutler and Clark (2003) and in Rappole’s (2013) review. Dispersal patterns vary considerably among and within bird species (Sutherland et al. 2000, Rappole 2013). Some studies of martins have not distinguished natal and breeding dispersal. All ages combined, 36% of the martins in our Alberta study area dispersed from their natal site where they were banded. This is slightly more than the 24% reported in a subsample of martins in west Texas, based on breeding within a 30-mile and 50-mile radius of their natal site (Ray and Schoenhals 2001).

Differences in rates of dispersal of each age and sex class in our Alberta study indicate that fidelity has a pattern more complex than previously described for this species. Our results gave only weak support for our prediction that SY male martins should disperse at frequencies greater than other age/sex classes; the frequency of dispersal of SY males, SY females, and ASY males was greater than that of ASY females.

In agreement with our prediction that natal dispersal should account for any patterns of dispersal by age/sex class, 50% of SY martins of both sexes in our study dispersed from their natal colony, but only 29% of ASY martins had dispersed from their natal colony in their second or subsequent breeding season. Provided that conditions in the Alberta study were similar from year to year, these numbers indicate that about 20% of martins return to their natal colony in their second season after spending their first season elsewhere. This difference is most pronounced in females, of which only 14% of those older than one year are not at their natal colony. For male ASY martins, 40% continued to nest away from their natal colony. Some of those martins that dispersed as yearlings continue to disperse, since the distances of dispersal of ASY martins are greater than those of SY martins. In summary, 50% of martins dispersed in their first year, but in year two and subsequently, the sum of natal and breeding dispersal is less than natal dispersal alone. Thus some martins return to their natal site in their second and subsequent breeding seasons.

This pattern of fidelity could be explained by the age/sex-specific timing of the martins’ return to nest sites. The sequence of the return to breeding colonies is that martins >3 years old arrive first and those 1 year old arrive last, with males arriving before females (Morton and Derrickson 1990, Tarof et al. 2011). Therefore, SY martins are less likely to find suitable nest sites available and are forced to disperse to vacant sites elsewhere, as has been shown in other species (Greenwood and Harvey 1982). However, we found that 20–35% of martins return to their natal sites in later years and secure nest sites at their natal colony, which they were not able to do as yearlings. The pattern was not included in the analysis of the martin’s annual survival by Stutchbury et al. (2009) but will affect estimates of survival.

In both our central Alberta and Canada-wide datasets, encounters of ASY martins exceed those of SY martins. This pattern is not surprising since the category SY represents only a one-year cohort while ASY includes the
remaining annual cohorts. The central Alberta dataset had an even balance of encounters between the sexes, while the Canada-wide dataset had more encounters of females than of males. While the Alberta data were from live-trapped martins, the Canada-wide data were mostly from martins found dead by the public, presumably at nesting sites. Hill (2003) and Stutchbury et al. (2009) found that because of the high energy expenditures and stresses of laying eggs, female martins tend to have shorter life spans. In particular, SY females have an apparent probability of survival lower than that of SY males (Stutchbury et al. 2009), which could lead to more females found dead in the Canada-wide sample at breeding sites. The difference in recovery rates between our Alberta sample and the Canada-wide encounters implies that females are more likely than males to die during the breeding season.

We found that male Purple Martins (both age cohorts combined) were more likely to disperse than were females, as have other studies (Hill 2003, Ray and Schoenhals 2011). Hill (2003) reported that female martins tend to prefer experienced males, which can result in SY males not mating at their natal sites and choosing to disperse. A possible explanation for fewer females dispersing than males is the “martin hog theory,” the concept that some large colonies attract more SY females than they produce (Morton and Stutchbury 1997, Hill 2003). This pattern reduces the dispersal of SY females to unoccupied sites and is an example of conspecific cueing. Conspecific cueing is an individual assessing habitat quality by the presence of other individuals (Nordell and Valone 2017). The pattern of male martins dispersing more than females (Hill 2003, Ray and Shoenhals 2011) may result from competition for mates. If females are the limiting factor (by choosing to stay close by in hopes of attracting an older male), then younger males would need to disperse to find available breeding females.

Contrary to our prediction that SY male martins should disperse farther than other age/sex classes, we found that the mean distance of dispersal of ASY females was greater than that of SY males, as in the Tree Swallow (Winkler et al. 2005).

Of course, the distances of dispersal we recorded varied with the size of the study area. Our cross-Canada dataset included encounters from all of southern Canada east of the Rocky Mountains, but our Alberta dataset limited the maximum distance to 148 km, the longest diagonal in our rectangular study area. Estimates of dispersal distances will affect analysis of annual survival, such as that of Stutchbury et al. (2009), the radius of whose study area was only 50 km. In the Tree Swallow, Shutler and Clark (2003) found that breeding dispersal of females averaged farther than that of males, but distance of natal dispersal did not vary by sex. Hosner and Winkler (2007) reported that one-year-old Tree Swallows dispersed farther than older adults, but distances of natal dispersal did not differ by sex.

Contrary to our initial prediction that martins should disperse in all directions equally, the dominant directions in both datasets were east and northeast. Our alternate hypothesis that martins should disperse north with warming temperatures was partially supported. Ray and Schoenhals (2011) suggested that the martin's dispersal can be directed to previously unoccupied areas by providing nesting structures. This strategy could support martins
dispersing northward into new habitats that become available through climate change and are suitable with regard to other requirements such as food.

Some limitations of our study should be considered. First, as in any study of dispersal, our local central Alberta study area was limited in extent. We were not able to encounter banded birds outside of the study area, and we were not able to measure mortality in successive seasons (Greenwood and Harvey 1982). Second, given the privacy concerns of some bird banders (who did not report exact locations of banding to us), some banding locations are expressed only as the coordinates of the center of blocks measuring 10 minutes on a side (https://www.pwrc.usgs.gov/BBL/MANUAL/loc.cfm); thus in central Alberta the exact location can vary by 5 km (https://stevemorse.org/nearest/distance.php). Third, since the effort at banding across our study area varied from year to year, rates of subsequent encounters likely varied as well. Last, we did not record data on other variables that can influence sex-biased dispersal, such as colony size, social behavior, density (Shutler and Clark 2003, Förschler et al. 2010, Steifetten and Dale 2012), plumage color, body size (Sutherland et al. 2000), ectoparasite load (Brown and Brown 1992, Saino et al. 2014), feeding guild (Sutherland et al. 2000), and breeding success (Greenwood and Harvey 1982, Shutler and Clark 2003, Winkler et al. 2004, Schaub and von Hirschheydt 2009).

In the future, researchers can use new technologies, such as the Motus Wildlife Tracking System (https://motus.org), geolocators, and geotags, to examine patterns of dispersal throughout the breeding season before and after migration, rather than at only two points in time. For example, a dense array of Motus stations could allow an investigation of pre-breeding movements between colonies of martins of all ages and sexes (i.e., scouting of future nest sites). Future research could also investigate other factors affecting patterns of dispersal, including juvenile survivorship (Miller et al. 2001, Tarof et al. 2011), arrival times after migration (Nordell and Valone 2017), breeding success (Shutler and Clark 2003, Winkler et al. 2004), and post-fledging wandering (Morton and Patterson 1983, Miller et al. 2001, Hill 2003, Stutchbury et al. 2009). Last, future research should investigate the benefits and costs of dispersal (e.g., reproductive success and lifespan) over the lifetimes of individual martins (Balbontin et al. 2009, Schaub and von Hirschheydt 2009). Such investigations are relevant to many other species that could be affected by climate change and have a largely “eastern” distribution, but with ranges extending into the West.

CONCLUSIONS

The continued dispersal of martins ≥2 years old should facilitate range expansion as needed because of climate change or other factors. Since nesting success is typically higher for these older birds, in general and in martins in particular (Stutchbury et al. 2009), we should expect that their chance of dispersing successfully and establishing new colonies is greater. Future estimates of annual survival should include the frequency of birds returning to breed in their natal colony at an age of ≥2 years, and studies of dispersal should encompass larger areas to account for dispersal over longer distances.

The frequency and distances of martin dispersal we recorded are greater
than those reported in other studies of eastern populations of the species. Why? Dispersal is likely tied to the degree of stability in the breeding habitats. Prior to European contact, martins nested in natural cavities in trees and cliffs as well as in gourds provided by Indigenous Peoples (Bent 1942, Taverner 1945). While the cliff sites should have offered stability from year to year, the tree sites are in large, typically dead trees that remain standing for a limited time. Thus martins should be adapted to seek new nest sites when needed.

External factors could be key to the Purple Martin’s future. First, with climate change forcing temperature patterns northward, we should expect range expansions in a similar direction. Patterns of dispersal can be an indication of range expansions (Duckworth and Badyaev 2007). We found most dispersals toward the northeast and east, with north being consistent with climate change in Alberta and Canada (Romero-Lankao et al. 2014). Changing prey availability in response to climate change is a concern for martin conservation since martins do not adjust their migration schedule in response to increased temperatures (Fraser et al. 2013).

Second, landlords (people who manage martin nest boxes) play a critical role in the success of martin colonies. If human-made nest boxes are a limiting factor, then the direction, proximity, and management of these nest boxes might influence dispersal patterns and subsequent range expansion or recolonization. Nest boxes provided to the northeast and east within 80 km of existing colonies at the edge of the species’ breeding range may aid in changing the direction of dispersal over time. Landlords’ efforts to manage martin colonies can affect nest-box occupancy (Anderson and Hvengaard 2021) and the number of birds that survive to disperse in later years (Raleigh et al. 2019). Such conservation efforts are important because according to the results of the Breeding Bird Survey, 1996–2019, Purple Martin numbers are declining across North America (https://www.mbr-pwrc.usgs.gov/) and the eastern population relies almost completely on human-provided nest boxes.

Third, the declines in aerial insectivores in general, and the Purple Martin in particular, are concentrated in the northeastern part of their ranges (Nebel et al. 2010). Our results suggest that these declines are not directly affected by dispersal but by other factors (Spiller and Dettmers 2019). However, since all age classes of the Purple Martin disperse, the species retains the capability of adapting to changing environments and new opportunities for nesting. It is important to continue to monitor patterns of dispersal in bird populations to account for changes in movement ecology and provide better scientific support for conservation programs.

ACKNOWLEDGMENTS

We thank the many staff and volunteers of the Beaverhill Bird Observatory and Ellis Bird Farm who helped with recapturing martins. We acknowledge the years of effort by Hardy Pletz in banding thousands of nestling Purple Martins in central Alberta. We also thank Britt Anderson, Carson Hvengaard, Garrett Rawleigh, and Kate Corrigan for providing helpful feedback on earlier versions of this paper. Thanks to staff at the Breeding Bird Survey office (and the many bird surveyors) who provided historical data. Thanks to Bob Buskas, Merv Duchercherer, Allen Hay, Rod Ross, John and Rose Scott, Tom and Evva Tomaszewski, Marvin Traptow, Phil
and Helen Trefry, Frank Lee, and the Sherwood Park Fish and Game Association, who kindly allowed us to encounter martins on their properties.

LITERATURE CITED

NATAL AND BREEDING DISPERSAL OF PURPLE MARTINS

Accepted 13 July 2021
USING SONG DIALECTS TO ASSESS THE MIGRATION STRATEGY OF THE GOLDEN-CROWNED SPARROW

EDWARD R. PANDOLFINO, 1328 49th Street, Sacramento, California 95819; erpfomca@aol.com

ABSTRACT: Most techniques used to study migration of wild birds require capture for banding or for attachment and/or recovery of tags or transmitters. We took advantage of the fact that the Golden-crowned Sparrow (Zonotrichia atricapilla) sings in winter, combined with published data on the distribution of its distinct song dialects in the breeding range, to assess its migration strategy and migratory connectivity by means of these dialects. Using recordings of the Golden-crowned Sparrow's song across much of its winter range, we categorized these birds by song type to identify their likely origin in some subset of the breeding range. This method allows examination of migration without the need to capture birds. Our results fit best with a pattern of chain migration, with the northernmost breeders wintering in the northernmost part of the winter range, and the southerly breeders wintering farther south. The results suggest strong migratory connectivity between segments of the breeding and winter ranges, though our small sample size makes it difficult to draw firm conclusions on connectivity.

The patterns of migration of long-distance migrants have been traditionally characterized as one of two types—chain migration or leapfrog migration (Berthold 2001, Newton 2008). Chain migration is characterized by the most northerly breeding populations of a species wintering in the most northerly portions of the winter range and the more southerly breeders wintering to the south. In leapfrog migration, the most northerly breeders winter farthest south, leaping over the southern breeders, which winter farther north. While chain migration seems the more straightforward and efficient strategy, leapfrog migration has been confirmed among many species. Swarth (1920), using specimens, is credited as the first to document leapfrog migration of various subspecies within the Sooty (unalashcensis) subspecies group of the Fox Sparrow (Passerella iliaca). Since then, leapfrog migration has been demonstrated in many different taxa including numerous species of shorebirds (Salomonsen 1955, Boland 1990, Drent and Piersma 1990, Alves et al. 2012, Duijns et al. 2012), Bulwer's Petrel (Bulweria bulwerii; Ramos et al. 2015), Golden Eagle (Aquila chrysaetos; Nelson et al. 2015), American Kestrel (Falco sparverius; Hobson et al. 2009), Western Yellow Wagtail (Motacilla flava; Bell 1996), Gambel's White-crowned Sparrow (Zonotrichia leucophrys gambelii; Lisovski et al. 2019), and Wilson's Warbler (Cardellina pusilla; Kelly et al. 2002). Bredis et al. (2020) examined the migration strategies of 23 transequatorial migrants of the Old World and found leapfrog migration the dominant strategy.

More recent data from techniques such as tagging birds with geolocators have demonstrated that migration is much more variable and nuanced than previously appreciated (McKinnon et al. 2013). For example, many species, especially among those breeding in western North America, undergo a molt
migration (Pyle et al. 2009, 2018) in which they move first from the breed-
ing area to an intermediate location to complete molt before continuing to
their winter range. Reverse migration (Nilsson and Sjöberg 2016), involving
movement in counter-intuitive directions, also occurs frequently. In some
species, post-breeding migration is a prolonged affair, with some individuals
spending more time in transit than on the winter grounds (Wolfe and Johnson
2015). Satellite tracking of Ferruginous Hawks (Buteo regalis) revealed that
some populations made enormous post-breeding movements, in some cases
resulting in migrations three to four times longer than the distance between
breeding and wintering locations (Watson et al. 2018).

Hypotheses to account for the seemingly counterintuitive nature of leap-
frog migration fall into three main categories. The “competition hypothesis”
(Salomonsen 1955, Pienkowski et al. 1985, Holmgren and Lundberg 1993)
proposes that more southerly breeders of some species may simply out-
compete the northern breeders on the wintering grounds by virtue of their
physical or behavioral attributes or because of their prior occupancy of those
areas, forcing the northern breeders to migrate farther to find available winter
habitats. The other two hypotheses both assume that winter conditions in the
more southerly section of the winter range are superior by virtue of milder
winters, and that conditions in the northern breeding range permit those
breeders to take advantage of those more favorable southern winter condi-
tions. The “spring predictability hypothesis” (Alerstam and Högestedt 1980)
suggests that the more predictable timing of conditions ideal for breeding
in the far north allows those breeders to make a more direct, continuous
migration north in the spring than the southerly breeders that may be forced
to interrupt their spring migration if conditions in their breeding range are
not ideal. The “time-allocation hypothesis” (Greenberg 1980) is based on the
breeding season being much shorter in the north, forcing those breeders to
spend more time on the winter grounds. Spending a longer period in their
winter range leads them to benefit from the use of more productive southerly
wintering areas. All three hypotheses have their proponents, and the observa-
tion of Boland (1990:284) holds true today, “at present, there is no consensus
as to why leapfrog migration occurs.”

As we understand the migration strategies used by more species, we may
come closer to understanding what drives the adoption of one strategy over
the other. In particular, knowing the migration strategies of closely related
species that share similar breeding and winter ranges should help to focus
on the key factors that determine which strategy is best for which species.
Two sparrow taxa, the Gambel’s White-crowned Sparrow and the Sooty Fox
Sparrow, migrate in the leapfrog pattern and broadly overlap in range, both
breeding in Alaska and western Canada and wintering from southwestern
Canada south into northern Mexico (Dunn and Alderfer 2017). Another
sparrow, the Golden-crowned (Z. atricapilla), also occupies similar ranges
and is a congener of the White-crowned Sparrow. Gambel’s White-crowned
Sparrows and Golden-crowned Sparrows also overlap broadly in winter habi-
tat and often winter in mixed flocks. Therefore, we decided to investigate the
the Golden-crowned Sparrow’s migration strategy, to determine if that species
also migrates in the leapfrog pattern or in some variation on that strategy.

We approached this question by taking advantage of Shizuka et al. (2016)
having mapped the song dialects in the Golden-crowned Sparrow’s breeding range in detail, plus its tendency to sing through the winter (Kelly 1968). Thus, assuming that wintering Golden-crowned Sparrows sing the same song they sing in their breeding range, we should be able to map the winter ranges of the dialects identified by Shizuka et al. (2016) and assess the extent to which birds breeding in specific subsets of the breeding range winter in specific subsets of the winter range, the concept termed “migratory connectivity.” Furthermore, provided that connectivity between breeding and winter locations is strong, the high degree of winter site fidelity of the Golden-crowned Sparrow (Mewaldt and Farner 1957, Seavy et al. 2012, Cormier et al. 2016) should increase the likelihood that wintering birds’ song types can be mapped into discrete geographic regions. Understanding migratory connectivity is important if conservation efforts for a migratory species are to be focused on the appropriate area.

METHODS

We used winter song recordings from our own collections, as well as from the Macaulay Library (www.macaulaylibrary.org) and Xeno-canto (www.xeno-canto.org). We only used recordings made from November through February to avoid recordings from birds still in migration. This criterion limited the number of suitable recordings available because, while this species sings frequently in October and March, the frequency of song decreases markedly in winter (Kelly 1968, pers. obs.). Table 1 lists the 38 recordings that met our criteria.

To assign winter songs to the song types identified by Shizuka et al. (2016), we examined spectrograms to assess specific elements or combinations of elements that characterize each song type. Shizuka et al. (2016) found that 90% of all breeding individuals they recorded sang one of five song types. Therefore, we assigned winter songs to one of those five song types. Songs that could not be clearly assigned to one of those five types we designated as “other.”

Characteristics Defining Song Types

Typical examples of each of the four major song types we found in our samples are shown in Figure 1. Note that we did not encounter any examples of song type 4 in our set of winter recordings.

Song type 1: All Golden-crowned Sparrow songs start with a descending whistle, but only song type 1 starts with two descending whistles. The second whistle is followed by one or more short whistles at the same pitch as the end of the second descending whistle.

Song type 2: This song type is characterized by two whistles following the descending whistle, the first of which is on the same pitch as the end of the descending whistle.

Song type 3: In this song type the descending whistle is followed by a whistle at a pitch lower than the end of the descending whistle, then another whistle at a pitch intermediate between the end of the descending whistle and the first whistle, and then a short trill at the same pitch as the last whistle.

Song type 4: This includes three short whistles all at the same pitch as the end of the descending whistle, followed by a trill at a lower pitch.
Table 1 Recordings of Wintering Golden-crowned Sparrows

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Song type</th>
<th>Date</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Recordist</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml281908681</td>
<td>1</td>
<td>21 Nov</td>
<td>49.242</td>
<td>-123.112</td>
<td>Neill Vanhinsberg</td>
</tr>
<tr>
<td>ml80124441</td>
<td>1</td>
<td>25 Dec</td>
<td>48.667</td>
<td>-122.325</td>
<td>Shane Sater</td>
</tr>
<tr>
<td>ml188444351</td>
<td>1</td>
<td>17 Nov</td>
<td>48.641</td>
<td>-123.448</td>
<td>Jody Wells</td>
</tr>
<tr>
<td>xc41864</td>
<td>1</td>
<td>26 Dec</td>
<td>48.578</td>
<td>-122.540</td>
<td>Tayler Brooks</td>
</tr>
<tr>
<td>ml212346641</td>
<td>1</td>
<td>28 Feb</td>
<td>48.498</td>
<td>-123.395</td>
<td>Carl Hughes</td>
</tr>
<tr>
<td>ml199981081</td>
<td>1</td>
<td>17 Jan</td>
<td>48.498</td>
<td>-123.395</td>
<td>Carl Hughes</td>
</tr>
<tr>
<td>ml141633631</td>
<td>1</td>
<td>19 Feb</td>
<td>48.491</td>
<td>-123.394</td>
<td>Daniel Donnecke</td>
</tr>
<tr>
<td>xc159804</td>
<td>other</td>
<td>12 Nov</td>
<td>48.386</td>
<td>-123.514</td>
<td>Ian Cruickshank</td>
</tr>
<tr>
<td>xc153785</td>
<td>1</td>
<td>9 Nov</td>
<td>48.361</td>
<td>-123.542</td>
<td>Ian Cruickshank</td>
</tr>
<tr>
<td>ml127786091</td>
<td>2</td>
<td>23 Nov</td>
<td>45.617</td>
<td>-123.162</td>
<td>Oliver Burton</td>
</tr>
<tr>
<td>xc481149-52</td>
<td>2</td>
<td>14 Dec</td>
<td>45.565</td>
<td>-122.698</td>
<td>Thomas Magarian</td>
</tr>
<tr>
<td>ml173424721</td>
<td>1</td>
<td>21 Nov</td>
<td>43.396</td>
<td>-123.345</td>
<td>Joseph Mooney</td>
</tr>
<tr>
<td>ml40873151</td>
<td>3</td>
<td>22 Nov</td>
<td>39.387</td>
<td>-122.050</td>
<td>Ed Pandolfino</td>
</tr>
<tr>
<td>ml283141541</td>
<td>3</td>
<td>24 Nov</td>
<td>39.148</td>
<td>-123.174</td>
<td>Bryan McIntosh</td>
</tr>
<tr>
<td>xc662998</td>
<td>2</td>
<td>1 Nov</td>
<td>38.936</td>
<td>-121.332</td>
<td>Ed Pandolfino</td>
</tr>
<tr>
<td>xc662999</td>
<td>2</td>
<td>1 Nov</td>
<td>38.884</td>
<td>-121.194</td>
<td>Ed Pandolfino</td>
</tr>
<tr>
<td>xc663000</td>
<td>5</td>
<td>6 Dec</td>
<td>38.850</td>
<td>-121.208</td>
<td>Ed Pandolfino</td>
</tr>
<tr>
<td>xc65301-03</td>
<td>2</td>
<td>4 Nov</td>
<td>38.570</td>
<td>-121.762</td>
<td>Steve Hampton</td>
</tr>
<tr>
<td>xc347901</td>
<td>2</td>
<td>25 Dec</td>
<td>38.569</td>
<td>-123.371</td>
<td>Jim Holmes</td>
</tr>
<tr>
<td>ml43500411</td>
<td>2</td>
<td>25 Dec</td>
<td>38.566</td>
<td>-123.381</td>
<td>James Holmes</td>
</tr>
<tr>
<td>ml281114321</td>
<td>2</td>
<td>5 Nov</td>
<td>38.464</td>
<td>-122.708</td>
<td>Teresa & Miles Tufli</td>
</tr>
<tr>
<td>ml307879351</td>
<td>2</td>
<td>2 Nov</td>
<td>38.445</td>
<td>-122.816</td>
<td>Bob Hasenick</td>
</tr>
<tr>
<td>ml223909621</td>
<td>2</td>
<td>1 Dec</td>
<td>38.430</td>
<td>-122.657</td>
<td>Will Anderson</td>
</tr>
<tr>
<td>ml284068211</td>
<td>2</td>
<td>23 Nov</td>
<td>38.247</td>
<td>-122.906</td>
<td>Connor Cochrane</td>
</tr>
<tr>
<td>ml218240101</td>
<td>2</td>
<td>7 Nov</td>
<td>38.043</td>
<td>-122.799</td>
<td>Teresa & Miles Tufli</td>
</tr>
<tr>
<td>xc600009</td>
<td>2</td>
<td>2 Nov</td>
<td>37.912</td>
<td>-122.707</td>
<td>Ed Pandolfino</td>
</tr>
<tr>
<td>ml310971881</td>
<td>2</td>
<td>16 Feb</td>
<td>37.867</td>
<td>-122.310</td>
<td>Teale Fristoe</td>
</tr>
<tr>
<td>ml288643601</td>
<td>2</td>
<td>23 Nov</td>
<td>37.827</td>
<td>-121.203</td>
<td>Steven Hunter</td>
</tr>
<tr>
<td>ml293752871</td>
<td>2</td>
<td>18 Dec</td>
<td>37.539</td>
<td>-121.825</td>
<td>Derek Heins</td>
</tr>
<tr>
<td>ml193012701</td>
<td>2</td>
<td>13 Dec</td>
<td>37.327</td>
<td>-122.082</td>
<td>V. Langdon-Lassagne</td>
</tr>
<tr>
<td>ml192706281</td>
<td>2</td>
<td>11 Dec</td>
<td>37.236</td>
<td>-121.881</td>
<td>Garrett Lau</td>
</tr>
<tr>
<td>ml285955441</td>
<td>2</td>
<td>29 Nov</td>
<td>37.170</td>
<td>-121.736</td>
<td>Michelle Thurber</td>
</tr>
<tr>
<td>ml300227011</td>
<td>5</td>
<td>20 Jan</td>
<td>36.425</td>
<td>-121.233</td>
<td>Paul Fenwick</td>
</tr>
<tr>
<td>xc645157</td>
<td>2</td>
<td>14 Feb</td>
<td>35.555</td>
<td>-121.094</td>
<td>Thomas Graves</td>
</tr>
<tr>
<td>ml279251891</td>
<td>5</td>
<td>11 Nov</td>
<td>34.928</td>
<td>-119.908</td>
<td>Anonymous</td>
</tr>
<tr>
<td>ml212116621</td>
<td>other</td>
<td>26 Feb</td>
<td>34.818</td>
<td>-119.709</td>
<td>Anonymous</td>
</tr>
<tr>
<td>ml133972091</td>
<td>2</td>
<td>8 Jan</td>
<td>34.432</td>
<td>-119.555</td>
<td>John Callender</td>
</tr>
<tr>
<td>xc395966</td>
<td>5</td>
<td>13 Dec</td>
<td>34.195</td>
<td>-118.120</td>
<td>Lance Benner</td>
</tr>
</tbody>
</table>

*a*ml, Macaulay Library; *xc*, Xeno-canto.
Song type 5: This song type is very similar to type 4, except that the ending trill is at the same pitch as the three short whistles.

Distribution of the Song Types in the Breeding Range

Shizuka et al. (2016) found song type 1 only at the extreme northern edge of this species’ breeding range, on the Seward Peninsula and in the Brooks Range of northern Alaska. Song type 2 was found along the Gulf of Alaska, while song type 3 was widespread through the eastern and southern parts of the breeding range, from southwestern Yukon Territory south through most of coastal and inland British Columbia. Song type 4 was the rarest of the five major song types identified by Shizuka et al. (2016), recorded principally in inland northern British Columbia. Most recordings of song type 5 were from coastal central British Columbia, with a few from inland northern British Columbia.

RESULTS

The distribution of winter song types we analyzed did not conform to the Golden-crowned Sparrow migrating in a leapfrog pattern (Figure 2). Song type 1 recordings were found only at or near the northern limit of the winter range. Song type 2 was the variation most frequently encountered in
winter, with examples from northern Oregon to southern California. Nearly all the songs recorded in the San Francisco Bay area and central California were of type 2. We identified only two recordings as song type 3, both from north-central California. Of the four recordings of song type 5, three were from southern California.

These winter song recordings show a pattern generally consistent with chain migration. The song type of the most northerly breeders (type 1) was found only in the northern part of the winter range, while song type 5, which Shizuka et al. (2016) found mainly in the southern portions of the breeding range, occurred only in the southern parts of the winter range. We obtained
no recordings of song type 4. The preponderance of song type 2 in our sample is likely a reflection of those Gulf of Alaska breeders being common in central California in winter, combined with the high concentration of birders and birding effort in the greater San Francisco Bay area, plus the Golden-crowned Sparrow’s relatively high abundance in those same areas.

The two song types we encountered most frequently (1 and 2), showed some geographic clustering. Eight of the nine winter recordings of song type 1 were from extreme southwestern British Columbia or northwestern Washington, and 17 of the 21 examples of song type 2 were from central California, between latitudes 37.2° and 38.9° N.

DISCUSSION

Despite the small sample size, our results appear to rule out leapfrog migration as a general strategy for the Golden-crowned Sparrow. The two song types Shizuka et al. (2016) found most geographically concentrated within the breeding range (1 and 2) both showed a winter pattern best associated with chain migration. That is, song type 1 (birds breeding in northern and northwestern Alaska) was encountered mainly in the northernmost part of the winter range, whereas song type 2 (birds breeding around the Gulf of Alaska) was concentrated in the central part of the winter range.

Our findings are consistent with data from geolocator-tagged birds (Seavy et al 2012, Cormier et al. 2016). These authors tagged wintering Golden-crowned Sparrows near Bolinas north of San Francisco (Marin County) and in inland central California (Placer County). Because those two locations are at similar latitudes, the results of their work do not shed light on this species’ migration strategy, though they do allow us to test the consistency of our findings with these independent data. We obtained winter song recordings from the same general locations of those authors’ study. Birds from north of San Francisco sang songs of type 2, and the geolocator data showed those birds breeding around the Gulf of Alaska (Seavy et al. 2012), where that song type is expected. Birds we recorded in inland central California sang songs of types 2, 3, or 5. Geolocator data from Cormier et al. (2016) showed most of their birds that wintered in inland central California were breeding in southern Yukon or northern inland British Columbia, where song types 3, 4, and 5 are expected. However, one of those tagged birds bred near the Gulf of Alaska, where song type 2 predominates. The fact that we did not encounter more examples of song type 3 in inland central California may be due to the sampling by Cormier et al. (2016) being highly localized. These authors tagged birds at a single location in the Sierra Nevada foothills near the eastern edge of the species’ winter range. This could also reflect that at this scale song types do not allow reliable assessment of location of breeding. Many more samples of winter song are needed to clarify the winter ranges of each dialect population at a finer scale.

Seavy et al. (2012) and Cormier et al. (2016) found a strong degree of migratory connectivity between breeding and wintering locations for the birds at their two sampling locations. Our results appear generally consistent with their observations, at least for birds singing songs of types 1 and 2, in that we found the preponderance of recordings of those birds in relatively
discrete winter locations. We did not find enough examples of the other song types to draw any conclusions about migratory connectivity for those dialect populations.

It is particularly interesting that Lisovski et al. (2019) found that the Gambel's White-crowned Sparrow, a close relative of the Golden-crowned Sparrow and a taxon that shares overlapping breeding and winter ranges and similar habitat preferences, migrates in the leapfrog pattern. However, their data are not conclusive. They used a combination of banding, stable-isotope, and geolocator data and found that only the stable-isotope data suggested leapfrog migration. The banding data were compromised by having only three individuals with clear breeding date recoveries. All four of their geolocator-tagged birds wintered at a single site in central California. Of those four, two bred in southwestern Alaska and the other two in northeastern Alaska. Data from more birds of this taxon tagged from a wider range of latitudes could confirm their use of leapfrog migration. This would offer an intriguing basis for speculation about why these taxa use different migration strategies.

The evidence for leapfrog migration in the Sooty Fox Sparrow subspecies is more compelling (Swarth 1920, Bell 1997), though geolocator data from a small sample of birds representing a subset of such sparrows did not corroborate it (Fraser et al. 2018). The winter ranges of this segment of the Fox Sparrow and the Golden-crowned Sparrow are nearly identical. However, the breeding ranges differ substantially. The Sooty Fox Sparrows breed along the coasts of southern Alaska and British Columbia, all areas of relatively wet, mild climate. The Golden-crowned Sparrow's breeding range extends well north and east of this and encompasses a much wider range of climate and habitat types (Norment et al. 1998). Its winter behavior and habitat preferences are also different, with the Fox Sparrow tending to be solitary in winter and found in shady areas with dense understory (Weckstein et al. 2002). Golden-crowned Sparrows are gregarious in winter and use a variety of more open, brushy habitats (Norment et al. 1998, pers. obs.). Bell (1997) concluded that leapfrog migration in these Fox Sparrow subspecies could be explained by ideal winter conditions occurring later in the season in California, causing the early-breeding southern populations to truncate their southward migration but allowing the later-breeding northern birds to continue south to the most favorable locations. It seems that those same reasons should drive the Golden-crowned Sparrow to adopt a similar leapfrog migration, but our results are not consistent with that. Perhaps the contrasting winter habitat preference of the Golden-crowned Sparrow is responsible for the difference in migration strategy. In any case, a direct comparison with the Gambel's White-crowned Sparrow, should that species be confirmed as a leapfrog migrant, would provide a much better basis for assessing factors resulting in a different type of migration strategy.

Our use of winter song dialects to assess migration strategy offers some advantages over other methods. It does not require the capture or recapture of birds and can benefit from the rapidly increasing number of recordings being archived. It does require that the breeding-season dialects be discernable, documented, and well-mapped, and that the species sings in winter. Indeed, DeWolfe and Baptista (1995) used this method to investigate migration of the Puget Sound White-crowned Sparrow (Z. l. pugetensis). They found that
wintering flocks were composed of birds singing various dialects, and this subspecies did not appear to demonstrate leapfrog migration.

DeWolfe et al. (1974) and Nelson (1998) both examined variation in songs of the Gambel's White-crowned Sparrow at a few locations and found little evidence of regional dialects. Subsequently, Chilton et al. (2002) reviewed songs of this sparrow over a much broader range and did find distinct regional dialects. There are numerous recordings of Gambel's White-crowned Sparrow song throughout its winter range. Therefore, application of this song-dialect approach to the Gambel's White-crowned Sparrow, if it confirms leapfrog migration in this subspecies, may yield important clues about the basis for selection of different migration strategies by these two *Zonotrichia* sparrows.

Wider implementation of this approach, of song dialects as a tool to study bird migration on a broader scale and for more species, is dependent on access to more recordings, from all seasons. With more and more access to recording devices (even a smart phone can work well), the potential for community science to make important contributions grows. Archives such as the Macaulay Library (www.macaulaylibrary.org), which maintains all recordings uploaded to www.eBird.org, and Xeno-canto (www.xeno-canto.org), make it easy to upload and access recordings. We encourage everyone to record and upload recordings of bird vocalizations as often as possible.

ACKNOWLEDGMENTS

This work would not have been possible without the excellent archives maintained by the Macaulay Library of the Cornell Lab of Ornithology and Xeno-canto. We are indebted to the recordists who contributed the recordings used in this paper, including Will Anderson, Lance Benner, Tayler Brooks, Oliver Burton, John Callender, Connor Cochrane, Ian Cruickshank, Daniel Donnecke, Paul Fenwick, Teale Fristoe, Thomas Graves, Steve Hampton, Bob Hasenick, Derek Heins, Jim Holmes, Carl Hughes, Steven Hunter, V. Langdon-Lassagne, Garrett Lau, Thomas Magarian, Bryan McIntosh, Joseph Mooney, Shane Sater, Michelle Thurbur, Teresa & Miles Tuffli, Neill Vanhinsberg, and Jody Wells. Reviews by Ken Able and Nate Seavy included suggestions for reorganization, expansion, and revisions of the manuscript that significantly improved the final product.

The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

LITERATURE CITED

Accepted 22 September 2021
A NOVEL LOCALITY FOR THE OBSERVATION OF THOUSANDS OF PASSERINE BIRDS DURING SPRING MIGRATION IN LOS ANGELES COUNTY, CALIFORNIA

RYAN S. TERRILL, Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd., Los Angeles, California 90041; ornithoterrill@gmail.com

CHRISTINE A. DEAN, 1415 N. Coronado St., Los Angeles, California 90026

JOHN GARRETT, Center for Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods, Ithaca, New York 14850

DANIEL J. MAXWELL, Vesper Biological LLC, 3600 S. Harbor Blvd. PMB 523, Oxnard, California 93035

LAUREN HILL, 4419 Sunset Dr., Los Angeles, California 90027

ANDREW FARNSWORTH, Center for Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods, Ithaca, New York 14850

ADRIAAN M. DOKTER Center for Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods, Ithaca, New York 14850

MORGAN W. TINGLEY, Ecology & Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Dr. S #951606, Los Angeles, California 90095

ABSTRACT: Avian migration is a spectacular phenomenon, representing the annual movements of billions of birds globally. Because the greatest diversity and numbers of birds migrate at night, opportunities to observe active migration are rare. At a number of localities in North America, however, observers can quantify movements of many typically nocturnal migrants during daylight where they continue after dawn. Such locations have provided much information about species-specific phenology, status, and orientation during migration. Localities where morning flights of land birds can be observed are unevenly distributed, however, and are little reported along the Pacific coast. Here we describe a novel location for the observation of spectacular morning flights of nocturnal migrants during spring migration at Bear Divide, in the western San Gabriel Mountains, Los Angeles County, California. In two years of informal surveys at the site, we have recorded at least one morning with an estimated ~13,500 individual birds passing. Our preliminary analyses suggest that the peak of a species’ migration at Bear Divide is correlated with the latitude of a species’ breeding, being later in the spring as that latitude increases. Our data from Bear Divide provide an independent perspective on migration as quantified by local radar. Further work at this locality may help inform our knowledge of migration phenology and population trends.

Morning flight is the phenomenon of migrating birds, generally nocturnal migrants, continuing migration into daylight hours. Morning flight has been hypothesized to involve mainly correction for displacement when birds find themselves flying over water (Gauthreaux 1978, Wiedner et al. 1992, Yaukey 2010, Archibald et al. 2017) or a continuation of nocturnal flight (Bingman 1980) when birds do not encounter a locality suitable for stopover before dawn. When birds are displaced by wind, they often use the morning hours to reorient their migration (Horton et al. 2016). Reorientation of nocturnal migrants during the early morning may occur as the mainland becomes vis-
A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES

ible or through orientation with the rising sun (Moore 1986). Morning flights are fairly well known in the eastern United States, especially at locations like Cape May, New Jersey, Taddousac Dunes, Quebec, and Lake Pontchartrain, Louisiana. Less well known are sites of visible morning flight in the western United States. One such location is Butterbredt Spring in eastern Kern County, California, where large numbers of migrating birds can be observed in morning flight in the spring. This flight is inland and not due to reorientation over water; rather, it is thought that these birds are “funneled” by a canyon oriented northwest–southeast and a lack of arboreal habitat in which to forage (Heindel 1991).

Observations of morning flight can illuminate what we know about avian migration (Van Doren et al. 2015). Studies of morning flight have provided vital information on the timing of passage (Heindel 1991, Sokolov et al. 1998, Archibald et al. 2017), status of species (Heindel 1991), orientation (Gauthreaux 1978, Bingman 1980, Archibald et al. 2017), and the interactions of weather and climate with avian migration (Pyle et al. 1993, Hüppop and Hüppop 2003, Swanson and Palmer 2009). Because of the dearth of reported localities of visible morning flight along the Pacific Flyway, much remains to be learned about migration of land birds in this region. For example, the large-scale movements of a few western birds, including the Phainopepla (Phainopepla nitens; Baldassarre et al. 2019), Black Swift (Cypseloides niger; Beason et al. 2012), and Wilson’s Warbler (Cardellina pusilla; Ruegg et al. 2014), have been clarified only recently by spatial tracking and genomic methods. Field observations of birds in migration can supplement these methods to provide a more complete view into avian movements. In addition to field observation, recent advances in the processing of radar data (Sheldon et al. 2013, Van Doren and Horton 2018, Lin et al. 2019) allow for detailed observations of migration incidental to monitoring of weather by radar (La Sorte et al. 2015, Farnsworth et al. 2016).

On 11 May 2016, Maxwell observed hundreds of migrant land birds moving through a small saddle in the western San Gabriel Mountains in Los Angeles County, California. This location is just west of the Bear Divide Vista picnic area and is often called simply “Bear Divide.” Hilly chaparral, with some nearby conifers, characterizes this area, and montane species such as the Mountain Quail (Oreortyx pictus) are common, as are birds breeding in chaparral such as the Wrentit (Chamaea fasciata), Rufous-crowned Sparrow (Aimophila ruficeps), and California Thrasher (Toxostoma redivivum). Bear Divide is a low pass, at 514 m above sea level. It is very narrow, with the surrounding hills quickly rising above 820 m (Figure 1). This topography appears to funnel birds that are flying north through this narrow gap, where they often fly within 1–2 m of the ground as they move over the pass.

After the initial discovery of visible morning flight at this site, we, in collaboration with other observers, informally surveyed the morning movement of birds there during spring 2019 and 2020.

METHODS

Observation began on most mornings 10–15 minutes before sunrise. In general, one to five observers were present, although on a few days we
assembled a larger group, especially in 2020. In all, 15,871 observer-hours were logged over 27 days between 27 March and 25 May. Effort was concentrated mostly on counting birds at the western saddle, but on occasions we observed at the picnic area, near the fire station, and along adjacent trails and fire breaks. In general, observation was completed between 08:30 and 10:00 Pacific Standard Time, depending on conditions. Most observation took place on days of favorable weather, and little to no observation was carried out on days when visibility was limited by fog or low clouds. We used current weather predictions, along with maps of forecast and live migration from https://birdcast.info (Van Doren and Horton 2018, Dokter et al. 2019), a product of the Cornell Lab of Ornithology, Colorado State University, and University of Massachusetts, Amherst, that, among other research efforts, applies data from weather-surveillance radar to predict and characterize bird migration in the contiguous United States.

The enormous number of birds moving through the study area at times proved challenging to count and identify. On slower days, we attempted to count and identify as many individuals as possible. On the more active days, we made intermittent 1- or 5-minute point counts of all birds, with one observer attempting to count every individual bird moving through the divide during the period but without attempting to identify the birds. On these
days, we began a new point count either at 30-minute intervals or whenever magnitude of the movement seemed to change. We then extrapolated these numbers through the beginning of the next count period. For identification, we attempted to track species composition, including nonspecific identifications such as “passerine sp.,” warbler sp.,” or “hummingbird sp.” by relative abundance, and then extrapolated all of these categories to the total by multiplying our estimated percent abundance by the count total. Observers identified species in the field or from photographs.

We used the birds’ dates of passage at Bear Divide to test the hypothesis that species breeding at higher latitudes migrate through Bear Divide later in the spring by using a hierarchical linear regression in a Bayesian context. We modeled individual records of migrating birds, representing the ordinal day of passage for individual \(i \) as a Gaussian random variable with mean \(\mu_i \) and standard deviation \(\sigma_i \). We further defined the expected date of passage for each individual as \(\mu_i = \beta_{0,j} + \beta_1 \times \text{lat}_i \), where \(\beta_{0,j} \) is a random intercept for each species \(j \) drawn from a hierarchical normal distribution, \(\beta_1 \) is a slope, and \(\text{lat}_i \) represents the latitude (in degrees) of breeding of individual \(i \) of species \(j \). Since the exact latitude of breeding for each individual was unknown, yet the breeding range of each species is well documented, we treated \(\text{lat}_i \) as a random variable drawn from a uniform distribution bounded by the 95% quantile of latitudes of breeding for each species \(j \). To define this range of latitudes, we extracted records for July from the full database at https://www.ebird.org. We then filtered out subspecies unlikely to occur, including resident Mexican subspecies of Vaux’s Swift (Chaetura vauxi), eastern subspecies of Wilson’s, Nashville (Leothlypis ruficapilla), and Orange-crowned (L. celata) Warblers, and eastern populations of the Chipping Sparrow (Spizella pallens) and Yellow Warbler (Setophaga petechia). Although the Myrtle Warbler (S. coronata coronata) undoubtedly occurs at Bear Divide, the vast majority of Yellow-rumped Warblers appear to be Audubon’s (S. c. auduboni), so we excluded the breeding range of S. c. coronata from the analysis of breeding ranges. To ensure that fitted relationships of \(\beta_1 \) were not overly sensitive to eBird’s filtering, we repeated the analysis but recalculated 95% quantiles while retaining all eBird records for each species for July.

We fit our model to the data with JAGS (Plummer 2003) using the statistical programming language R, version 3.5.3 (R Core Team 2019) and the package “R2jags” (Sù and Yajima 2014). We used vague priors (i.e., normal with \(\mu = 0, \tau = 0.001 \)). We ran three chains of 10,000 iterations thinned by 10 with a burn-in of 5000, yielding a posterior sample of 3000 across all chains. We checked convergence visually with traceplots and confirmed it with a Gelman–Rubin statistic <1.1 (Gelman 2004). To assess the model’s fit, we calculated the marginal \(R^2 \) of the fixed effects, following Nakagawa and Schielzeth (2013).

We also used our data set to compare observed migration at Bear Divide with bird migration recorded at nearby weather stations. For detailed methods for analyzing radar data, see Dokter et al. (2011, 2019). Briefly, the National Oceanic and Atmospheric Administration (NOAA) and Amazon Web Services Cloud provide and host, respectively, the archive of the Next Generation Weather Radar (NEXRAD; Ansari et al. 2018). The NEXRAD network contains 143 WSR-88D stations recording weather data by radar in
the contiguous United States, and this sensor network incidentally records
data on bird migration as well as data describing meteorological phenomena
(Horton et al. 2016, Van Doren and Horton 2018, Dokter et al. 2019). We
used established methods (Dokter et al. 2011) to extract vertical profiles of
the density, speed, and direction of nocturnally migrating birds, using the
rain-segmentation model MistNet to remove meteorological scattering (Lin
et al. 2019). We calculated profiles for three radar stations, KSOX in the Santa
Ana Mountains 97 km southeast of Bear Divide, KEYZ at Edwards Air Force
Base 81 km northeast of Bear Divide, and KVTX in Los Angeles County,
48 km west-northwest of Bear Divide. We examined the predictive value of
each, then compared the total individuals estimated in each morning’s flight
to the cumulative migration traffic per night (in numbers per kilometer) and
migration traffic rate (in numbers per kilometer per hour), integrated over
the altitude column from ~923 to 4000 m above sea level. Because KSOX
provided the most predictive data, we restricted further analyses to data from
that station only. Note that coverage below 923 m at KSOX is below the actual
radar antenna—the station is 923 m above sea level. We used a linear regres-
sion to examine the relationships between total cumulative migration traffic
per night and the total number of birds we estimated during morning flight
at Bear Divide. Because the count data included outliers with large numbers
of birds on a few days, we also ran a linear regression with log-normalized
count data.

RESULTS

During the springs of 2019 and 2020, we recorded ~44,900 birds passing
through Bear Divide. Peak passage occurred in late April (Figure 2), but
substantial migration lasted at least from mid-March to late May. In general,
migration was concentrated within the first 2–3 hours of the morning. Species
composition clearly changed over the course of the spring (Figure 3). Appen-
dix 1 lists details by species. We stress here that these results are preliminary,
as effort was neither consistent nor standardized.

Species that breed at higher latitudes migrated through Bear Divide at later
dates. On average, for every 1° of latitude of breeding range, a bird passed
through 0.57 days later (95% credible interval: 0.54–0.60). The general sign
and magnitude of this relationship still held (95% credible interval: 0.16–0.25)
even without exclusionary filtering of June–July occurrence records for
subspecies and subsets of species that clearly do not migrate through this
portion of southern California. For the former model, the effect of latitude
of breeding alone explained half of the variance in passage date (posterior
mean of Nakagawa’s marginal $R^2 = 0.50$).

We found a significant but barely predictive correlation between dawn
flight counts at Bear Divide and movement observed at the KSOX radar, as
interpreted by cumulative migration traffic per night, over the air column
from 2000 to 3000 m above ground level ($p < 0.001$, adjusted $R^2 = 0.066$) (Fig-
ures 4 and 5). Fits to the data by hour were similar, being closest from about
22:00 to 02:00 Pacific Standard Time (Figure 6). Much of the stochasticity
not explained by the linear model arose from nights (mornings?) with large
movements of birds at Bear Divide that were not evident on the radar. This
A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES

may be due to migrant birds accumulating in the Los Angeles basin to the northwest of the radar station in the Santa Ana Mountains, between the radar site and Bear Divide itself. When the count data were log-normalized, the correlation decreased somewhat (adjusted $R^2 = 0.02$), though the relationship remained significant ($p < 0.01$).

DISCUSSION

The magnitude of visible migration at Bear Divide makes it unique along the Pacific coastal flyway, so far as is known. The local topography seems to funnel migrating land birds through a narrow pass, where they often fly low. This site has already provided opportunity for both public engagement and scientific study of spring migration in coastal California. In general, the largest passage of birds occurs from mid-April to early May, though visits from March to June have been productive. Species composition varies substantially through the spring. Some groups of birds or species, such as raptors, thrushes, and flycatchers, seem to be underrepresented at Bear Divide in comparison to other sites in California where migration has been observed. However, some

![Figure 2. Total number of birds observed by day at Bear Divide during spring migration 2019 and 2020. In addition, we also counted in 2016 on 11, 17, and 19 May.](image-url)
individual days have seen notable passages of both thrushes and flycatchers; further study may reveal that these families use Bear Divide more than we have observed. The weather associated with passage of migrant birds may vary by location and season, but the most important predictors for the magnitude of spring migration are air temperature, surface pressure, and meridional wind (Van Doren and Horton 2018). We have also noticed that wind from the north can improve visibility of birds, as it appears to cause birds to fly closer to the ground and thus closer to observers. This behavior may reduce the amount of time birds spend flying into headwinds as they cross Bear Divide.

We found some, but rather little, predictive value in the raw radar data for forecasting the magnitude of visible migration at Bear Divide. This is likely due to the movement of birds at Bear Divide being largely dependent on local weather. Low clouds or fog in the Los Angeles basin or San Gabriel Mountains may cause birds to not move through Bear Divide, even if conditions were favorable for migration elsewhere the previous night. Much more research is needed into the relationship between radar detection and point estimates, particularly the likely complicated relationship between weather and buildup of migrants over multiple days. For example, the days of greatest movement at Bear Divide followed several days of apparently bad weather.
A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES

for migration with few birds. Such weather may cause birds to accumulate in the Los Angeles basin, then all move at once when the weather becomes favorable. This effect would cause large movements of birds at Bear Divide without associated peaks in radar data at more distant sites.

Each species' seasonal status at Bear Divide is idiosyncratic, with a unique median passage date and degree of temporal clustering. We found that some of this difference in seasonality is explained by latitude of breeding range, with species that breed farther north migrating later in the spring. This parallels results found within Wilson's Warbler (Ruegg et al. 2014), in which populations breeding farther north migrate in spring at later dates. This result is in contrast to Hagan et al. (1991), who found the winter range, and not the breeding range, predicts timing of spring migration. We did not compare species by winter range because the coverage of the winter ranges of many of these species in eBird is very heterogeneous, and in the tropics such data can be strongly biased toward sites popular for ecotourism. Other sources of data on winter ranges, such as specimen collections, are at least as patchy.

The rather limited time we have spent at Bear Divide has already yielded important data. Because this site is so productive, with more systematic effort it could provide profound insight into the migration of land birds along the Pacific Flyway. We encourage other observers to undertake similar surveys of passing land birds at any site of visible dawn flight.
Figure 5. The relationship between total migration traffic detected by radar at the KSOX weather radar station in the Santa Ana Mountains, summed over each night, and total number of migrant birds counted in a morning at Bear Divide. Each point represents one night of migration, with migration traffic the previous night represented on the x axis, and total birds observed at Bear Divide the next morning on the y axis; the blue line represents correlation by linear regression; gray shading represents the 95% confidence interval. A weak ($R^2 = 0.066$) but significant ($p < 0.001$) relationship indicates that radar traffic does predict movement somewhat at Bear Divide, but that we still have much to learn about where these birds are coming from and when they are moving toward Bear Divide.

Acknowledgments

John McCormack and Jon Feenstra contributed greatly to this project with financial, intellectual, and logistical support. The Pasadena Audubon Society has provided funds for continuing surveys at Bear Divide. Luke Tiller, David Bell, and Lance Benner provided logistical and fundraising support. Matt Brady, Corey Husic, Deven Kammerichs-Berke, David Mull, Kelsey Reckling, Dessi Sieburth, Jessica Oswald Terrill, Becky Turley, and Steve Turley contributed valuable observations and counts of birds at Bear Divide. This article is dedicated to the memory of Don
Figure 6. Relationships between hourly migration traffic (birds per cubic kilometer per hour) detected by radar at the KSOX weather radar station in the Santa Ana Mountains (x axes) and total number of birds counted in a morning at Bear Divide (y axes). Each point represents the total number of birds seen at Bear Divide the morning after the radar observation on the Y axis, and the migration traffic rate by hour, if detected that hour, on the x axis; blue lines represent correlation by linear regression; gray shading represents 95% confidence intervals. Migration traffic was recorded in the 06:00 hour on only 5 days, so the number of points per graph varies, aside from points being overprinted. Positive relationships indicate a predictive capability of the radar for that hour for bird movement observed at Bear Divide, and these correlations were most significant for the early morning hours.
White, a regular and enthusiastic volunteer and counter at Bear Divide, who tragically lost his life recently. We will always remember his enthusiasm, kind heart, and daily delivery of doughnuts.

LITERATURE CITED

and compensate when they must. Sci. Rep. 6(21249); https://doi.org/10.1038/srep21249.

Appendix I Birds Recorded at Bear Divide, San Gabriel Mountains, Spring Migration, 2016–2020

Canada Goose (*Branta canadensis*), total 17, 13 Apr–2 May; high count 7, 2 May 2020.

California Quail (*Callipepla californica*), total 56, 27 Mar–21 May; high count 5, 11 May 2016.

Band-tailed Pigeon (*Patagioenas fasciata*), total 128, 27 Mar–21 May; high count 10, 20 May 2019. It is unclear whether this species is a passage migrant or whether the individuals observed moving through the divide are making only local movements through the San Gabriel Mountains. Many observations of this species at Bear Divide are of birds flying south, implying local movement rather than migration.

Eurasian Collared-Dove (*Streptopelia decaocto*), total 5, 13 Apr–1 May; high count 3, 1 May 2019.

Mourning Dove (*Zenaida macroura*), total 78, 27 Mar–25 May; high count 7, 2 May 2019. As with the Band-tailed Pigeon, the extent to which these individuals represent local movements or migration is unclear.

Vaux's Swift (*Chaetura vauxi*), total 202, 13 Apr–2 May; high count 68, 2 May 2019. This species appears to be a major component of nonpasserine flight at Bear Divide in mid- to late April. Flights larger than the recorded high count seem likely.

Chimney Swift (*Chaetura pelagica*)/Vaux’s Swift, 1, 2 May 2019.

White-throated Swift (*Aeronautes saxatalis*), total 73, 15 Apr–21 May; high count 13, 15 May 2019.

Black-chinned Hummingbird (*Archilochus alexandri*), total 26, 13 Apr–20 May; high count 13, 13 Apr 19. Many hummingbirds passing Bear Divide are not identifiable, but adult males of this species may be distinguished in flight by the distinctive sound made by their wings (Feo and Clark 2010). Individuals later in the spring may be local breeders (Garrett and Dunn 1981).

Anna’s Hummingbird (*Calypte anna*), total 39, 13 Apr–25 May; high count 21, 26 Apr 2020. Like those of other hummingbirds and local residents, this species’ identification in flight and categorization of status are problematic.

Costa’s Hummingbird (*Calypte costae*), total 43, 13 Apr–25 May; high count 5, 2 May 2019. A common breeder at Bear Divide, this species may also occur as a migrant.

Rufous Hummingbird (*Selasphorus rufus*), total 36, 27 Mar–15 May; high count 17, 13 Apr 2019. Many *Selasphorus* hummingbirds pass through Bear Divide unidentified. Because Allen’s Hummingbird (*S. sasin*) is very rare on the north slope of the San Gabriel Mountains (Clark 2017) and we have not confirmed it at Bear Divide, the vast majority of *Selasphorus* hummingbirds at this site are likely to be Rufous.

Rufous/Allen’s Hummingbird, total 15, 22 Apr–19 May; high count 4, 5 May 2020. Unidentified hummingbird, total 81, 7 Apr–19 May; high count 40, 24 Apr 2020.

Western Sandpiper (*Calidris mauri*), 11, 23 Apr 2020.

Turkey Vulture (*Cathartes aura*), total 14, 23 Apr–25 May; high count 4, 25 May 2019. The extent to which these birds are migrants or local residents is unclear.

Sharp-shinned Hawk (*Accipiter striatus*), 1, 27 Mar 2020, Raptors in general seem to be sparse at Bear Divide, possibly because our effort has been slight in the afternoon when more raptors are likely to be aloft. More work is needed to ascertain whether raptors use this area for migration.

Cooper’s Hawk (*Accipiter cooperii*), total 2, 24 Apr, 2 May.
Swainson’s Hawk (*Buteo swainsoni*), 1, 27 Mar 2020.
Red-tailed Hawk (*Buteo jamaicensis*), 21, 4 Apr–21 May; high count 2, 1 May 2019 and 2 May 2020.

Lewis’s Woodpecker (*Melanerpes lewis*), total 2, 29 Apr 2020. One bird moving through Bear Divide appeared to be a passage migrant.

Acorn Woodpecker (*Melanerpes formicivorus*), total 47, 7 Apr–21 May; high count 9, 1 May 2019. These birds may be a mix of local residents and passage migrants. On some mornings, we have observed numbers of Acorn Woodpeckers flying north with other migrating birds.

Downy Woodpecker (*Dryobates pubescens*), total 2, 22 and 26 Apr. Although the species is considered to be resident throughout its southern California range (Garrett and Dunn 1981), both Downy Woodpeckers that we observed appeared to be moving through the pass; we did not detect this species as a local resident on any other days.

Nuttall’s Woodpecker (*Dryobates nuttallii*), total 2, 1 and 17 May.
Hairy Woodpecker (*Dryobates villosus*), total 4, 28 Apr–20 May; high count 1.
Northern Flicker (*Colaptes auratus*), total 9, 7 Apr–21 May, high count 1.

Unidentified woodpecker, total 3, 15–29 Apr, high count 1.

American Kestrel (*Falco sparverius*), 1, 2 May 2020.

Western Wood-Pewee (*Contopus sordidulus*), total 30, 22 Apr–25 May; high count 5, 2 May 2020. Fairly common passage migrant.

A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES
Warbling Vireo (*Vireo gilvus*), total 1492, 7 Apr–21 May; high count 608, 26 Apr 2020. Very common, some days one of the more common species.

Vireo sp., total 139, 23–29 Apr; high count 135, 23 Apr 2020.

Steller’s Jay (*Cyanocitta stelleri*), total 4, 26 Apr–2 May; high count 2, 26 Apr 2020.

California Scrub-Jay (*Aphelocoma californica*), total 78, 27 Mar–21 May; high count 6, 7 Apr 2019.

Common Raven (*Corvus corax*), total 90, 27 Mar–25 May; high count 13, 1 May 2019.

Mountain Chickadee (*Poecile gambeli*), 1, 24 Apr 2020.

Oak Titmouse (*Baeolophus inornatus*), total 6, 7 Apr–17 May; high count 3, 7 Apr 2019.

Northern Rough-winged Swallow (*Stelgidopteryx serripennis*), total 14, 15 Apr–19 May; high count 4, 22 Apr 2020. In general, swallow movements at Bear Divide appear limited to small numbers, possibly because our observations focused on the early morning and did not cover the full day.

Tree Swallow (*Tachycineta bicolor*), total 10, 27 Mar 2020.

Violet-green Swallow (*Tachycineta thalassina*), total 24, 15 Apr–20 May; high count 6, 2 May 2019.

Barn Swallow (*Hirundo rustica*), total 22, 15 Apr–19 May; high count 5, 22 Apr 2020.

Cliff Swallow (*Petrochelidon pyrrhonota*), total 16, 15 Apr–2 May; high count 8, 22 Apr 2020.

Wrentit (*Chamaea fasciata*), total 61, 27 Mar–25 May; high count 5, 17 May 2016.

Ruby-crowned Kinglet (*Corthylio calendula*), total 7, 7 Apr–2 May; high count 2, 7 Apr 2019.

Red-breasted Nuthatch (*Sitta canadensis*), total 4, 24 Apr–2 May; high count 1.

White-breasted Nuthatch (*Sitta carolinensis*), total 6, 2–19 May; high count 4, 19 May 2016.

Blue-gray Gnatcatcher (*Polioptila caerulea*), total 20, 13 Apr–20 May; high count 3, 29 Apr 2020.

Rock Wren (*Salpinctes obsoletus*), total 6, 23 Apr–20 May; high count 1.

Canyon Wren (*Catherpes mexicanus*), total 3, 7 Apr–19 May, high count 1.

House Wren (*Troglodytes aedon*), total 16, 27 Mar–19 May; high count 4, 7 Apr 2019.

European Starling (*Sturnus vulgaris*), total 19, 15 Apr–21 May; high count 3, 23 Apr 2020.

California Thrasher (*Toxostoma redivivum*), total 31, 27 Mar–25 May; high count 4, 17 May 2016.

Northern Mockingbird (*Mimus polyglottos*), total 6, 22 Apr–5 May; high count 1.

Western Bluebird (*Sialia mexicana*), total 47, 27 Mar–21 May; high count 6, 27 Mar 2020.

Townsend’s Solitaire (*Myadestes townsendi*), total 5, 27 Mar–29 Apr; high count 2, 23 Apr 2020. It is unclear whether these individuals were local birds moving short distances or true migrants moving longer distances.

Swainson’s Thrush (*Catharus ustulatus*), total 52, 26 Apr–21 May; high count 24, 2 May 2020. *Catharus* thrushes seem less numerous than expected at Bear Divide, though this may be due to their more nocturnal migratory habits. Recording of night flight calls at this location would provide more insight into the abundance of thrushes in this area as spring migrants.

Hermit Thrush (*Catharus guttatus*), total 12, 15–26 Apr; high count 8, 23 Apr 2020.

Catharus sp., total 9, 28–29 Apr; high count 7, 28 Apr 2020.

A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES

Cedar Waxwing (*Bombycilla cedrorum*), total 207, 27 Mar–21 May; high count 45, 11 May 2016.

Phainopepla (*Phainopepla nitens*), 165, 22 Apr–21 May; high count 40, 11 May 2016. A regular migrant, especially in May. This species has been shown to make regular long-distance movements throughout western North America (Baldassarre et al. 2019), and our observations corroborate this result. These individuals may be moving between desert and woodland breeding areas.

American Pipit (*Anthus rubescens*), 1, 23 Apr 2020.

House Finch (*Haemorhous mexicanus*), total 158, 27 Mar–21 May; high count 20, 26 Apr 2020.

American Goldfinch (*Spinus tristis*), total 14, 22–23 Apr; high count 10, 22 Apr 2020.

Chipping Sparrow (*Spizella passerina*), total 146, 7 Apr–15 May; high count 60, 22 Apr 2020.

Brewer’s Sparrow (*Spizella breweri*), 1, 24 Apr 2020.

Black-chinned Sparrow (*Spizella atr蓖gularis*), total 49, 4 Apr–25 May; high count 4, 8 May 2019.

Lark Sparrow (*Chondestes grammacus*), total 59, 27 Mar–21 May; high count 6, 7 Apr 2019.

Fox Sparrow (*Passerella iliaca*), total 3, 4–23 Apr; high count 1.

Orange-crowned Warbler (*Leiothlypis celata*), total 641, 13 Apr–11 May; high count 200, 22 Apr 2020. Common migrant, mainly mid- to late April.
Figure 7. Four of the most numerous spring migrants passing over Bear Divide: (A) Townsend’s Warbler (Setophaga townsendi), 2 May 2019; (B) Wilson’s Warbler (Cardellina pusilla), 12 May 2021; (C) Black-headed Grosbeak (Pheucticus melanocephalus), 19 May 2021; (D) Lazuli Bunting (Passerina amoena), 29 April 2020.
A CONCENTRATION POINT OF SPRING MIGRATION NEAR LOS ANGELES

Nashville Warbler (*Leiothlypis ruficapilla*), total 1352, 4 Apr–2 May; high count 400, 22 Apr 2020. Abundant migrant mid- to late April.

MacGillivray's Warbler (*Geothlypis tolmiei*), total 11, 13 Apr–5 May; high count 2, 13 Apr 2019. Most individuals of this species were observed in vegetation, not flying over the divide like other warblers. Its skulking habits suggest that many stay under cover at Bear Divide and go undetected.

Common Yellowthroat (*Geothlypis trichas*), total 3, 13 Apr–2 May; high count 1.

Yellow Warbler (*Setophaga petechia*), total 715, 13 Apr–25 May; high count 230, 26 Apr 2020. This species appears to be relatively scarce at dawn flight locations along the immediate coast (Paul Lehman pers. comm.) and more common inland at sites like Butterbredt Spring (Heindel 1991). The relative abundance of the Yellow Warbler at Bear Divide, especially in early May, hints at the site being connected to inland, rather than coastal, migratory movements.

Yellow-rumped Warbler (*Setophaga coronata auduboni*), total 237, 27 Mar–2 May; high count 141, 13 Apr 2019. Common migrant late March and early April, uncommon through early May.

Yellow-rumped Warbler (subspecies uncertain), total 787, 27 Mar–2 May; high count 300, 22 Apr 2020.

Black-throated Gray Warbler (*Setophaga nigrescens*), total 1380, 4 Apr–11 May; high count 380, 26 Apr 2020. Fairly common migrant in April and early May; peak passage occurs slightly before that of Townsend's Warbler.

Townsend's Warbler (*Setophaga townsendi*); Figure 7, 2087, 13 Apr–21 May; high count 760, 26 Apr 2020. Despite wintering locally, this species is a rather late migrant, with the main peak well after that of the Black-throated Gray Warbler, consistent with Townsend's more northerly breeding range.

Hermit Warbler (*Setophaga occidentalis*), total 1570, 13 Apr–21 May; high count 608, 26 Apr 2020. Fairly common migrant in April and early May

Townsend’s × Hermit Warbler (hybrid), total 2, 22 Apr, 5 May. Two individuals with clearly intermediate characters were well photographed, suggesting that this hybrid may be more common within the large numbers of poorly seen warblers moving across the divide.

Wilson's Warbler (*Cardellina pusilla*); Figure 7, total 4954, 27 Mar–21 May; high count 1920, 23 Apr 2020. The most abundant migrant at Bear Divide, both in total numbers and on most individual days from mid-April to mid-March. Ruegg et al. (2014) found that in the West, southerly breeding populations move through migratory sites earlier in the spring, followed later by more northerly breeding populations.

Unidentified warbler, total 14,272, 4 Apr–25 May; high count 7436, 23 Apr 2020.

Summer Tanager (*Piranga rubra*), 1, 20 May 2019. A rare local breeder (*P. r. cooperi*) that also occurs regularly as a migrant to California at this time (*P. r. rubra*); we do not know from which population this individual originated.

Western Tanager (*Piranga ludoviciana*), total 3004, 13 Apr–21 May; high count 800, 22 Apr 2020. Abundant migrant at the divide through much of the period of spring movement.

Blue Grosbeak (*Passerina caerulea*); Figure 7, total 5, 26 Apr–5 May; high count 1. Rare.

Unidentified passerine, total 3927, 4 Apr–14 May; high count 1487, 23 Apr 2020.
NOTES

BURROWING OWLS PRODUCE SECOND BROOD IN MOUNTAIN VIEW, CALIFORNIA

PHILIP G. HIGGINS, Talon Ecological Research Group, 105 N. 1st Street #424, San Jose, California 95103; philip.higgins@talonecological.org

DEBRA CHROMCZAK, 4569 Branciforte Drive, Santa Cruz, California 95065; DChromcz@pacbell.net

RYAN A. PHILLIPS, Talon Ecological Research Group, 105 N. 1st Street #424, San Jose, California 95103; ryan.phillips@talonecological.org

Western Burrowing Owls (*Athene cunicularia hypugaea*) are capable of laying up to 12 eggs in a single clutch (Haug et al. 1993). If the first nest attempted in a season fails, the female often lays a replacement clutch (Thomsen 1971, Wedgewood 1976). But rearing of a second brood after the fledging of a first brood (double brooding) is uncommon in this species (Millsap and Bear 1990, Gervais and Rosenberg 1999).

In 2020, after 23 years of continuous monitoring of Burrowing Owls nesting around the southern periphery of San Francisco Bay at Shoreline Regional Wildlife Area in Mountain View, Santa Clara County, California, we confirmed double brooding for the first time. The Burrowing Owls were being supplementally fed with mice to assess whether such feeding during the breeding season increases their reproductive success; this experiment may have resulted in the double brood. However, this instance of double brooding occurred three years after supplemental feeding commenced.

Shoreline Regional Wildlife Area is a closed landfill, posing management issues for a species such as the Burrowing Owl because the decomposition of the trash causes the ground to subside. The subsequent repairs of the cap of clay sealing the landfill destroy California Ground Squirrel (*Otospermophilus beecheyi*) burrows that are critical for the owls’ survival (Haug et al. 1993). To mitigate for the continuing loss of squirrel burrows, we install artificial burrows consisting of an irrigation valve box for the nest chamber and a 6-foot-long flexible drainage pipe to simulate the burrow tunnel. These artificial burrows have proven very successful. During the 2020 breeding season, six of the eight breeding pairs at Shoreline successfully nested in artificial burrows.

The pair of Burrowing Owls that double brooded in 2020 used two different nests. Every breeding season, we have observed some pairs at our study sites abandon a nest after 28–30 days of an unsuccessful attempt, then move to a new nest burrow, renest, and successfully produce nestlings. From our field observations of nesting materials and decoration at the burrow entrance, food delivery by the male to the female, and the female remaining underground for several weeks, we presumed the female in these failed first nests was incubating eggs.

In 2017, we started a supplemental-feeding study in which we fed Burrowing Owl pairs at two of our four study sites, to allow for comparison of the success of supplementally fed pairs and unfed pairs. The sites other than Shoreline Regional Wildlife Area are the Ames Research Center at Moffett Field, the San Jose–Santa Clara regional wastewater facility in Alviso, and the Warm Springs Unit of Don Edwards San Francisco Bay National Wildlife Refuge, all around the south end of San Francisco Bay (Table 1). The Burrowing Owl pairs were fed with fourteen dead mice, over two feedings per week, for the duration of the breeding season, April to August of each year. On the basis of the initial success of the supplemental-feeding study (100% nest success and largest number of chicks fledged since 2004) and the Burrowing Owl's continuing decline in the region, we decided to supplementally...
feed all breeding Burrowing Owls in 2019. Results include the largest brood in over 22 years at one site and a 100% nest-success rate at another site, which we had never observed prior to the supplemental-feeding study. Therefore, it is possible that supplemental feeding stimulated this double brooding.

Since 2012, we have banded each captured owl with a U.S. Geological Survey band on the right leg and pop-riveted an Acraft colored band bearing a unique alphanumeric code on the left leg, allowing us to distinguish resident, migratory, and supplemented/relocated owls. We surveyed the colony at Shoreline Regional Wildlife Area weekly, year round, collecting data on pair formation, longevity, breeding success, and patterns of movement within the colony and to additional sites in Santa Clara County and adjacent counties. At least monthly, we used binoculars, spotting scopes, or a long-lens camera to identify individuals by resighting the color and code on their Acraft bands. Motion-activated cameras, banding, and trapping with one-way-door bubble traps or bow nets during the breeding season allowed for identification of banded owls and recording of biometric data.

The successful pair that double brooded had been banded previously, allowing us to assess their breeding success over several years. The life history of this pair, female 5C (red-over-blue) and male 7R (red-over-blue), is as follows. In June 2014, we banded 7R as a fledgling at Shoreline from a brood of two young. From 2015 to 2018, remaining at Shoreline, he paired up with a different female each breeding season. In 2015 and 2017, no young were produced. In 2016, male 7R formed an incestuous relationship with his mother 6U (red-over-blue) and produced four young. From 2018 to 2020, male 7R paired up with female 5C and successfully produced young for three consecutive seasons. In June 2018, we banded female 5C as an adult at Shoreline. The pair fledged six young in 2018 and six young in 2019, both years nesting in a complex of artificial burrows (#245).

In 2020, 7R and 5C paired up for the third consecutive season, this time using a different artificial burrow complex (#246), 68 meters from #245, first raising three young. Young were first observed on 18 May outside the entrance of #246, where a motion-activated camera photographed three fledglings on 19 May (Figure 1). On

Table 1
Numbers of Burrowing Owls Monitored around South San Francisco Bay

<table>
<thead>
<tr>
<th>Site</th>
<th>Study period</th>
<th>Total number of adults</th>
<th>Total number of breeding females/pairs</th>
<th>Minimum number of breeding females/pairs in a year</th>
<th>Maximum number of breeding females/pairs in a year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>1087</td>
<td>520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
26 May, we observed both adults at burrow location #245 where they had nested during 2019. By 27 May, the adults had moved their young to burrow #245. On 28 May, we banded two of the three fledglings from nest #246 at location #245.

On 3 June, we observed nest decoration, nesting material, and one adult at artificial burrow complex #243, a distance of 55 meters from location #245. Then, on 23 July, both banded adults and a single nestling were observed at nest #243; the motion-activated camera photographed one young approximately 14 days old there on 24 July (Figure 2). On 3 August, we banded a 24-day-old fledgling. On 17

Figure 1. Female 5C with her three nestlings (14–22 days old) at nest #246 on 19 May 2020.

Figure 2. Second brood observed on 24 July 2020 with male 7R and unbanded nestling at nest #243.
August, we observed that male 7R and the banded fledgling, approximately 38 days old, had relocated a distance of 116 meters and returned to nest #246 (Figure 3). That only one young fledged in the second brood compared to three young in the first brood is a difference consistent with other studies of double brooding that have found the second brood tends to be smaller. Catlin and Rosenberg (2007) found a trend of decreasing clutch size with successive renesting attempts of Burrowing Owls in California.

Dietary limitations can impair the Burrowing Owl’s reproductive success (Wellicoine et al. 2013, Haley and Rosenberg 2013). On the basis of pellet analysis and remains of prey collected at burrows, including those at Shoreline Regional Wildlife Area, Trulio and Higgins (2012) found that 98% of the diet of Burrowing Owls in the south San Francisco Bay area consisted of invertebrates, the Dermaptera being the order of insects most frequently recorded, representing 48.6% of all prey items by total number.

A diet low in rodents can depress the Burrowing Owl’s reproductive success (Haley 2002, York et al. 2002, Rosenberg and Haley 2004). This situation, plus the Burrowing Owl usually catching only one prey item at a time, may be reducing the owls’ reproductive success at Shoreline. Hence the purpose of the supplemental feeding study is to increase productivity. Preliminary results of the continuing supplemental-feeding study have been positive, with fed pairs producing twice as many young as unfed pairs. Haley (2002) also reported an increase in productivity of supplementally fed Burrowing Owls, and Wellicome (1992) reported supplementally fed females to lay more eggs and hatch more young than did those not supplementally fed.

We thank the Santa Clara Valley Habitat Agency for funding our Burrowing Owl monitoring and research projects and continued support of Burrowing Owl conservation. We also thank the city of Mountain View Community Services Department and Public Works Department, the U.S. Fish and Wildlife Service, and the California Department of Fish and Wildlife.
LITERATURE CITED

Accepted 16 August 2021
CHARACTERISTICS OF NESTS OF BELDING’S SAVANNAH SPARROW AT ESTERO PUNTA BANDA, MÉXICO

HIRAM RAFAEL MORENO-HIGAREDA, GORGONIO RUIZ-CAMPOS, MANUEL ALEJANDRO CARBALLO AMADOR, Facultad de Ciencias, Posgrado en Manejo de Ecosistemas de Zonas Áridas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, Ensenada, Baja California México, 22860; moreno.hiram@uabc.edu.mx; gruiz@uabc.edu.mx; alejandro.carballo@uabc.edu.mx

HORACIO DE LA CUEVA, Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. Carretera Ensenada Tijuana 3918, Zona Playitas, Ensenada BC, 22860; cuevas@cicese.mx (corresponding author)

Belding’s Sparrow (Passerculus sandwichensis beldingi) is one of the 17 currently recognized subspecies of the Savannah Sparrow (Wheelwright and Rising 2008). It can be found in saltmarshes from Point Conception, California, to the estuary of Arroyo El Rosario, Baja California (Van Denburgh 1924, Zembal et al. 1988, Wheelwright and Rising 2008) and since 1974 has been designated as endangered by the California Department of Fish and Wildlife. Bradley (1994) suggested that this subspecies is largely isolated, with a low capability for dispersal, and Powell and Collier (1998) found no movement in or out of a marsh on San Diego Bay isolated by only 0.5 km from the next nearest marsh.

Here we describe the nests and habitat of Belding’s Sparrow at Estero Punta Banda, Ramsar site no. 1604 (31° 44’N, 116° 37’W), in Baja California, México. This is a wetland with 300 ha of salt marshes on the Pacific coast, 13 km south of Ensenada. From May to July of 2017, 2018, and 2019, Moreno-higareda monitored Belding’s Sparrow nests at Estero Punta Banda from 06:30 to 10:30 every third day during the reproductive season for a total of 120 hours/year over 30 days/year, covering 13 of 72 ha (18%) of the marsh available for nesting. Although around San Diego Belding’s Sparrow begins nesting as early as 15 March (Unitt 2004, egg collections in the Western Foundation of Vertebrate Zoology, Camarillo, California), we found no evidence of nests before May; neither did we observe young of the year during our first observations. Our search efforts follow the dates reported by Zembal et al. (1988) and local nesting dates obtained from casual observations since 2014.

All nests found were on mounds above high tide levels, helping guide our searches. During this study we found 36 nests: three in 2017, 14 in 2018, and 19 in 2019. Overall, five nests were lost to high tides. Massey (1979) and Powell and Collier (1998) reported that these birds prefer to nest in middle and high marshes, building their nests in vegetation whose base may be flooded at high tide. The availability of high marsh that is currently rarely if ever flooded could prove critical to Belding’s Sparrow in the future as sea levels are on the rise worldwide. At present we have no detailed maps of the highest points around Estero Punta Banda that could become the only suitable nesting habitat.

In Estero Punta Banda, where the most dominant and conspicuous plants are the pickleweeds Salicornia pacifica and S. bigelovii and the cordgrass Spartina foliosa (Delgadillo et al. 1992), nests were also built near saltwort (Batis maritima), Western Marsh Rosemary (Limonium californicum), Marsh Jaumea (Jaumea carnosa), Estuary Seablite (Suaeda esteroa), and Salt Marsh Bird’s Beak (Chloropyron maritimum maritimum). No nests were recorded near or in a plant foreign to the salt marsh. Most invasive plants are above the higher marsh, and their cover in the marsh area is <
3%. Notably, Belding’s Sparrows used the same nesting sites from year to year, at the same spot. Whether the same pairs reoccupy nesting sites or the sites are determined and limited by their availability above the level of the high tide are questions to be answered in the future. On the San Benito Islands, Salinas-Ortiz et al. (2015) found nests of Savannah Sparrows of subspecies *s. sanctorum* reoccupied for a second time during the same reproductive season.

All nests found at Estero Punta Banda were consistently wineglass-shaped and built with dry material from the native grasses, desert saltgrass (*Distichlis spicata*) and California cordgrass (*Spartina foliosa*). Nests have a thick exterior layer attached to the various supporting plants. The nests’ inner lining was of thinner material, forming a small disc at the bottom. Marbled Godwit (*Limosa fedoa*) feathers lined one nest, and other species’ feathers were found in other nests (Figure 1). Salinas-Ortiz et al. (2015) reported gull feathers in the nests in the San Benito Islands; both subspecies used materials readily available locally. We found no human-made material in the nests at Estero Punta Banda (e.g., no synthetic fibers). All nests were placed between 5 and 18 cm from the ground. The mean exterior diameter was close to 7 cm, similar to that of Savannah Sparrow nests reported by Dixon (1972) for the Bay of Fundy, New Brunswick. Salinas-Ortiz et al. (2015) reported a mean internal diameter of 6.48 cm for three nests of *P. s. sanctorum* archived at the Universidad Autónoma de Baja California, Ensenada.

The nest characteristics are shared with subspecies *alaudinus*, found north of Point Conception to Humboldt Bay (Wheelwright and Rising 2008) and with sub-

Figure 1. Sequence of construction of a Belding’s Sparrow nest at Estero Punta Banda. (1) Small disk used as the base for the whole nest. Over this, a wineglass-shaped nest is interwoven with nearby vegetation, and (2) lined with feathers, here Marbled Godwit (*Limosa fedoa*), but other species’ feathers have been observed. (3) The eggs are laid in the shadow of dwarf saltwort (*Salicornia bigelovii*), and the nest is woven with blades of desert saltgrass (*Distichlis spicata*) and California cordgrass (*Spartina foliosa*). This nest had a diameter of 9 cm and was 20 cm above the ground.

Photos by Hiram Moreno-Higareda
species *rostratus* from the Colorado River delta. This last subspecies uses Palmer’s grass (*Distichlis palmeri*), abundant in the area, but its nests lack an inner lining (Bancroft 1927). Dixon (1972) mentioned that Savannah Sparrow nests in the Bay of Fundy contained “a few feathers.”

At Estero Punta Banda, the Belding’s Sparrow lays one to four eggs; the mean clutch size is 3.06 ± 0.05 [s.d.] eggs. The incubation period is 13 days; chicks stay in the nest 7–11 days. Only females incubate, regulating nest temperature (Davis et al. 1984); chick care in this subspecies is biparental.

Publications on nesting habits for the subspecies in California are abundant: Bradley (1973), Massey (1979), Zembal et al. (1988), Powell (1993), and Powell and Collier (1998), but we found no published literature for Baja California, México.

LITERATURE CITED

Accepted 7 August 2021
FIRST RECORD OF THE LONG-TAILED DUCK FOR COAHUILA, MEXICO

HUGO GONZÁLEZ-PÁEZ, Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Nuevo León, 66451, México; hugo.gzz.paez@gmail.com

ARMANDO J. CONTRERAS-BALDERAS, Cerro de la Conformidad 115, Las Puentes, Sector 2, C.P. 66460, San Nicolás de los Garza, Nuevo León, México; ajcb1951@gmail.com

GORGONIO RUIZ-CAMPOS, Colección Ornitológica, Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada–Tijuana No. 3917, Colonia Playitas, C.P. 22860, Ensenada, Baja California, México; U.S. mailing address: PMB 064, P.O. Box 189003, Coronado, California 92178; gruiz@uabc.edu.mx

JUAN A. GARCÍA-SALAS, Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Nuevo León, 66451, México

The Long-tailed Duck (Clangula hyemalis) is a distinctive sea duck that breeds on high arctic coasts and tundra of both the eastern and western hemispheres. In North America, it winters south along the Pacific coast to California and along the Atlantic coast to northern Florida. In the interior of the continent, it winters regularly in large numbers on the Great Lakes (AOU 1998, Robertson and Savard 2002). The species occurs in migration or winter in all states of the continental U.S., including south to the Gulf of Mexico from Florida to Texas, and across the interior of the border states of Texas, New Mexico, Arizona, and California, where rare but annual in occurrence (AOU 1998, https://eBird.org).

The Long-tailed Duck was historically known in Mexico only from coastal areas in the northwest, primarily in the Gulf of California, where first reported in 1926 (Huey 1927). In the gulf it was historically rare, but records extend south to Sinaloa and Jalisco (Howell and Webb 1995); Mexico’s first and still only specimen (an unsexed juvenile, number 4777 deposited in Humboldt State University Museum, Arcata, California) was collected on 27 December 1979, 15 km southwest of Guamúchil, Sinaloa (Kramer 1982). Russell and Monson (1998) and Erickson et al. (2001) added four additional records for the states of Sonora and Baja California through the 1990s, and Erickson et al. (2013) added a record from Bahía de los Ángeles, Baja California, in 2006. Over the past two decades, however, reports have increased considerably in that region; since 2000, there have been at least 14 records along both coasts of the Baja California Peninsula south to Loreto, where photographed 24–28 December 2017 (https://ebird.org/checklist/S41326540), representing the first well-supported record for Baja California Sur. Furthermore, seven records in eBird since the 1990s in coastal Sonora south to Bahía Santa Rosa, Isla Tiburón (Rojas-Soto et al. 2002) include observations of groups of up to six birds (at Golfo Santa Clara; https://ebird.org/checklist/S82628948).

During field work in northern Coahuila on 23 November 2013, we photographed a winter-plumaged female Long-tailed Duck (Figure 1). The site (28° 05’ 02.3” N, 101° 37’ 45.9” W; elevation 505 m) was a small pluvial lake (45 m long and 13 m wide) located along state highway 20, 25 km north-northwest of the town of Melchor Múquiz. The duck was initially seen feeding close to shore, but as we approached it swam out to the center of the puddle. Other waterbirds there were two Greater Scaup (Aythya marila) and a Pied-billed Grebe (Podilymbus podiceps). The previous records of the Long-tailed Duck nearest our sighting are of single individuals
photographed in the Rio Grande valley at Laredo, Texas, 17 December 2016 (https://ebird.org/checklist/S33057392) and in the trans-Pecos region of Texas at Marathon 7 December 2013 (https://ebird.org/checklist/S15883753). Also, according to the records taken from eBird, from 1972 to 9 August 2021, there were 11,260 observations of the species between the USA and Mexico; all of those between latitudes of 26° and 31° N represent occurrences during fall migration and winter. Mexico and Texas together account for 2633 sightings; of these, 567 are from Mexico and the border counties of Texas. Therefore, we consider that our record does not represent a vagrant or accidental; more field studies are required in order to define the regularity of this species in Mexico.

To the best of our knowledge, this constitutes the first record of the Long-tailed Duck for the state of Coahuila. In addition, it appears to be the first record for anywhere in interior Mexico and the easternmost record for the country and the first located in the Atlantic drainage.

We thank reviewers Mark Lockwood and especially Sartor O. Williams III for their corrections and useful suggestions for the manuscript.

LITERATURE CITED

NOTES

Accepted 17 August 2021
FIRST DOCUMENTED BREEDING OF THE BLACK-HEADED GROSBEAK IN ALASKA

ZACHARY M. POHLEN, U.S. Fish and Wildlife Service, Migratory Bird Management, 1011 East Tudor Road, Anchorage, Alaska 99503; zachary_pohlen@fws.gov
CALLIE F. GESMUNDO, U.S. Fish and Wildlife Service, Migratory Bird Management, 1011 East Tudor Road, Anchorage, Alaska 99503
NICHOLAS R. HAJDUKOVICH, 229 Iditarod Avenue, Fairbanks, Alaska 99701

The Black-headed Grosbeak (Pheucticus melanocephalus) breeds regularly across much of western North America from Oaxaca north to southern British Columbia and from the Pacific coast to central Nebraska (Ortega and Hill 2010). The northern limit of the species’ range has expanded steadily in British Columbia since the 1940s (Campbell et al. 2001, Martell 2015). Here we report the first documented instance of the Black-headed Grosbeak breeding in Alaska.

During a six-day trip exploring the lower reaches of the Stikine River and its tributaries, we discovered two adult male Black-headed Grosbeaks and a lone fledgling on 28 June 2020 (Figure 1). All sightings occurred within 8 km of the international border. We detected the first adult male 1.2 km west of the Alaska–British Columbia border along the banks of the Kikahe River in a woodland dominated by alder (Alnus sp.) and willow (Salix sp.) with widely spaced mature Sitka spruce (Picea sitchensis). We found the second adult male 3.6 km from this location on the north side of the Stikine River in a dense Alnus–Salix thicket with dispersed mature spruce along Guerin Slough. Farther downriver we found a fledgling 1.5 m above the bank and 5 m above the river in a dense thicket of Alnus, Salix, and salmonberry (Rubus spectabilis) overhanging the Ketili River (56.6783° N, 131.9565° W; Figure 2). The fledgling remained motionless while giving an incessant “phee-oo” call, which is characteristic of juveniles from just before fledging to independence (Ortega and Hill 2010; Figure 3). We watched the bird for 30 min waiting for a food delivery, but no deliveries were observed. The flight feathers of both the wing and tail were still growing, indicating that the bird was not yet capable of sustained flight and that the nest was likely nearby. While distinguishing the juvenile Black-headed from the juvenile Rose-breasted Grosbeak (P. ludovicianus) can be difficult, the rufous-orange breast, faint to no streaking on the central breast feathers, and very fine streaking along the flanks point to the Black-headed.

The first sighting of a Black-headed Grosbeak in Alaska was at Middleton Island in late September 1981 (Gibson 1982), followed by a singing male along the Stikine River on 30 June 1996 (Tobish 1996). Since 1996, the species has been a rare visitant to southeast Alaska with records annual since 2001 (Tobish 2003, 2011, https://eBird.org). The Black-headed Grosbeak is listed as rare (annual or possibly annual in small numbers) in the 27th edition of the Checklist of Alaska Birds (Gibson et al. 2021). Along the Stikine River, Black-headed Grosbeaks were recorded by the North American Breeding Bird Survey (Pardieck et al. 2020) in 4 of 15 years dating back to 1998. The only Alaska specimen (Univ. Alaska Museum) was collected in September 1996 at Petersburg (Gibson and Kessel 1997), 40 km northwest of the mouth of the Stikine. Extralimital records in summer extend as far north as Anchorage, in fall as far west and north as Kodiak Island, Shageluk, and St. Lawrence Island (Tobish 2002, 2006, 2017).

While the Black-headed Grosbeak’s range has expanded northward and the species now occurs more regularly in Alaska, it had not been recorded breeding in the state. A similar pattern of range expansion without subsequent breeding records also occurred in coastal British Columbia (Campbell et al. 2001). Prior to our discovery,
Figure 1. Locations of sightings of adult and fledgling Black-headed Grosbeaks along the Stikine River in 2020 and of adult carrying nest material in 2015, in context of the species' breeding range (Fink et al. 2020).

Figure 2. Fledgling Black-headed Grosbeak (*Pheucticus melanocephalus*) along the Stikine River in southeast Alaska on 28 June 2020. This photograph represents the first documentation of breeding of the Black-headed Grosbeak in Alaska.

Photo by Zachary Pohlen
nest building had been observed ~12 km away in adjacent British Columbia, where a female was seen carrying the hair of a moose (*Alces alces*) in 2015 (B. Sampson, https://ebird.org/checklist/S23777545).

This first record of the Black-headed Grosbeak breeding in Alaska provides a marker for this species’ possible continued range expansion in the state. Occurrences north of the species’ normal breeding range have been recorded increasingly since the late 1940s in British Columbia and since 1980s in Alaska. These, along with our observation, parallel northward range expansions experienced by other species due to climate change (Parmesan and Yohe 2003). The major rivers of southeast Alaska were likely sites for a first breeding attempt. For many species, these rivers, of which the Stikine is the largest, act as routes of unencumbered dispersal between interior Canada and coastal Alaska (Johnson et al. 2008). It is also possible that increased ornithological coverage in these large remote river systems could yield more first breeding records for Alaska of other inland breeding species.

We thank the many individuals—including M. Cady, E. Clark, J. Johnson, A. Lang, J. Levison, A. Piston, D. Rak, and D. Sonneborn—who provided logistical insights on traversing the Stikine River. We also thank S. C. Heinl, D. R. Ruthrauff, and D. D. Gibson for comments and suggestions that improved the manuscript.

LITERATURE CITED

Accepted 6 October 2021
BOOK REVIEW

Having spent parts of my life in the worlds of academic biochemistry, the medical device business, and ornithology, I know only too well how much those who dwell in these fields love to use jargon. In some cases, the jargon provides a more succinct way to describe an observation (it is easier to say that the Common Nighthawk is largely crepuscular than to say it is most active in the twilight of evening and early morning). On the other hand, if you saw a Bald Eagle steal a fish from an Osprey, you are just showing off if you insist, in polite conversation, on saying that the eagle kleptoparasitized the Osprey. Use of such terms can create a barrier to those just getting interested in birds and ornithology. Leahy’s earlier tomes, The Birdwatcher’s Companion (1982) and The Birdwatcher’s Companion to North American Birdlife (2004), provided a source for those of all levels of interest to translate our ornithological jargon into plain English. These books also provided a fairly exhaustive treatment of many aspects of the field, including the history and personalities that shaped ornithology in North America. In many ways, one can consider Birdpedia a “sampler” from those larger books. Indeed, in his preface Leahy refers to this book as a “teaser,” with the intent to turn a “nagging curiosity into a compelling fascination … with the natural world.” In this sense, the target reader is likely someone who birds and is becoming more interested in understanding the world of birds more broadly and deeply.

This is not to say that even one relatively steeped in ornithology might not learn some new things from this book. Did you know that most hawks and owls tend to be left-handed (or, rather, “left-footed”)? However, Birdpedia is likely to be of more value to someone listening to birders refer to “caching,” or “brood parasitism,” and wanting to understand these terms. And yes, the book defines crepuscular and kleptoparasitism, though the latter is buried under the term “piracy” in this alphabetically arranged format (an index would have been a very useful addition). Birdpedia goes beyond defining terms and explains many aspects of avian behavior, elegantly summarizing the most recent findings in many areas of ethology. In spite of the condensed form of this book, Leahy gives outstanding and surprisingly thorough reviews of aspects of bird navigation and evolution.

I enjoyed his short bios of important names in ornithological history, including some often overlooked contributors such as Florence Merriam Bailey. And I was very pleased to see that Leahy and I are in full agreement that Alexander Wilson is “even more deserving than Audubon of the title of Father of American Ornithology.”

While understanding that the book’s intent is to give one just a taste, I still often found myself perplexed by what was included and what was omitted. For example, Leahy defines contour feathers, down, filoplumes, and vibrissae, but nowhere could I find definitions of even more commonly used terms for plumage such as primaries, secondaries, tertials, or rectrices.

All in all, while it isn’t for everyone, I recommend Birdpedia for those who are finding themselves with a growing interest in, and curiosity about, ornithology. I think that may describe many WFO members, or those who might find themselves on the gift lists of WFO members.

Edward R. Pandolfino

Western Birds 52:355, 2021
THANKS TO WESTERN BIRDS’ REVIEWERS AND ASSOCIATE EDITORS

I’m deeply grateful to our associate editors Kenneth P. Able, Matthew J. Baumann, Daniel S. Cooper, Douglas W. Faulkner, Kimball L. Garrett, Daniel D. Gibson, Robert E. Gill Jr., Daniel R. Ruthrauff, Christopher W. Swarth, and Ryan S. Terrill for offering their expertise, functioning as additional reviewers of the manuscripts whose reviews they coordinate, as well as frequently serving as peer reviewers of additional manuscripts. The journal could not function without them. Thank you as well to book review editor Catherine P. Waters, photo editor Peter LaTourrette, graphics manager Virginia P. Johnson, and assistant editor Daniel D. Gibson for their help with the myriad tasks necessary to sustain the quality of our journal. And special thanks to webmaster/designer/typographer Timothy W. Brittain, who this year took on extra work needed to increase Western Birds’ accessibility and visibility on the Internet. The evolution of the information age imposes ever more unfunded mandates with which WFO must keep up. So I thank the members of WFO for your continuing support as we adapt on the fly.

Philip Unitt
Acanthis flammea, 13
Accipiter cooperii, 334
striatus, 334
Acrocephalus paludicola, 264
sorghophilus, 264
Actitis macularius, 94–111
Aeolus acadicus, 168–172
funeris, 12
Aeronautes saxatalis, 334
Agapornis roseicollis, 128
tricolor, 207–221
Aimophila ruficeps, 323, 337
Airola, Daniel A., Douglas, Lily A., and
Airola, Layla, Yellow-billed Mag-
pie Population Status and Habitat
Characteristics in Urban Sacramento,
California, 222–239
Amber, Skip, Florian, Christine, Olnes,
Justin, MacDonald, John, and Hart-
man, Therese, Sagebrush Soundscape
and the Effects of Gas-Field Sounds on
Greater Sage-Grouse, 23–46
Ammospiza leconteii, 15
Anas acuta, 278–294
crececa, 124, 129, 192, 278–294
cyanoptera, 281, 284
diazi, 190, 191, 192, 194
discors, 281
platyrhynchos, 192, 278–294
Ani, Groove-billed, 129, 194
annectens, Passerella iliaca, 149
Anser albifrons, 278–294
anser, 266
cœruleosans, 278–294
Anthus rubescens, 337
Antigone canadensis, 131, 160
Antrostomus cinnamomeus, 129
Aphelocoma californica, 336
Aquila chrysaetos, 311
Ara militaris, 144–145
Archilochus alexandri, 78, 194, 334
colubris, 4, 131
Ardea alba, 198
Ardenna pacifica, 6
Arenaria interpres, 94–111, 132
melanocephala, 124, 132
Asio otus, 170
Athene cunicularia, 340–344
auduboni, Setophaga coronata, 322–339
Avocet, American, 94–111, 174
Aythya affinis, 278–294
american, 278–294
collaris, 278–294
ferina, 4
marila, 281, 348
valisineria, 278–294
Bacelo phus inornatus, 336
Bartramia longicauda, 5, 132, 195
Basileut us lachrymosa, 144
Baumann, Matthew J., see Williamson, J.
L., see also Fine, J.
Becard, Rose-throated, 136
beldingi, Passerulus sandwichensis,
345–347
Benson, Thomas A., House, Deborah J.,
McCaskie, Guy, Rinkert, Alex M.,
Searcy, Adam J., and Terrill, Ryan S.,
The 45th Annual Report of the Califor-
nia Bird Records Committee, 2–22
Bittern, Least, 217
Blackbird, Brewer’s, 337
Red-winged, 337
Rusty, 15, 140, 145, 192, 204
Tricolored, 207–221
Black Hawk, Common, 12, 19
Bluebird, Western, 336
Bluetail, Red-flanked, 13
Bobolink, 140
Bobwhite, Northern, 128
Bombycilla cedrorum, 336
Booby, Blue-footed, 136
Masked, 6
Masked/Nazca, 8
Nazca, 6–8
Red-footed, 8–9
Brachyramphus perix, 5
Brant, 128–129
Branta bernicla, 128–129
canadensis, 174, 278–294
hutchinsii, 278–294
breweri, Spizella breweri, 252
brewstleri, Vireo swainsoni, 240–251
Browning, M. Ralph, Toward Clarifying
the Wyoming Ranges of the Vireo
gilvus Complex, 240–251
INDEX

Bubo scandiacus, 128
virginianus, 170
Bucephala albeola, 278–294
americana, 278–294
Bufflehead, 278–294
Bulweria bulwerii, 311
bulwerii/fallax, 19
Bunting, Lazuli, 322–339
Snow, 15
Bushtit, 336
Buteo jamaicensis, 80–81, 334
regalis, 312
swainsoni, 334
Buteogallus anthracinus, 12, 19
Calidris acuminata, 124, 132
alba, 94–111
alpina, 94–111
bairdii, 94–111
canutus, 94–111, 132
fuscicollis, 132
mauri, 94–111, 334
melanotos, 94–111
minuta, 5
minutilla, 94–111
pugnax, 94–111, 132
pusilla, 94–111
ruficollis, 5
Callipepla californica, 112–123, 128, 334
gambeli, 113, 114
Calypte anna, 58–67, 76–79, 334
costae, 334
caniceps, Junco hyemalis, 271, 273
Canvasback, 278–294
Caracara, Crested, 198
Caracara cheriway, 198
Carballo Amador, Manuel Alejandro, see Moreno-H., H. R.
Cardellina canadensis, 124, 144, 205
pusilla, 311, 322–339
rubrifrons, 19
Carlisle, Heidi Ware, see Pollock, J. J., see also Robinson, B. W.
Catbird, Gray, 199
Cathartes aura, 334
Catharus aurantirostris, 128
guttatus, 336
minimus, 128
ustulatus, 336
Catherpes mexicanus, 336
celata, Leiothlypis celata, 157
Centrocercus urophasianus, 23–46, 128
Chaetura pelagica, 129–131, 334
vauxi, 322–339
Chagonon, Bethany, see Senner, S.
Chamaea fasciata, 323, 336
Charadrius hiaticulit, 4
nivosus, 94–111
semipalmatus, 94–111
vociferus, 94–111, 174
Chat, Yellow-breasted, 337
Chickadee, Black-capped, 137
Mountain, 336
chicken, domestic, 119
chilcatensis, Passerella iliaca, 149
Chondestes grammacus, 271, 337
Chroicocephalus ridibundus, 5
Chromczak, Debra, see Higgins, P. G.
Chukar, 128
cismontanus, Junco hyemalis, 271
Cistothorus palustris, 217
Clangula hyemalis, 348–350
clarkae, Cistothorus palustris, 217
Colaptes auratus, 335
Colinus virginianus, 128
Collared-Dove, Eurasian, 128, 334
Columba livia, 128
Columbina passerina, 192, 194
talpacoti, 4
Condor, California, 128
Contopus cooperi, 335
pertinax, 12
sordidulus, 12, 335
virens, 145
Contreras-Balderas, Armando J., see González-P., H.
Cook, Carolyn A., Hvenegaard, Glen T., Holroyd, Geoffrey L., Pletz, Hardy, and Pearman, Myrna, Age and Sex Influence Natal and Breeding Dispersal of Purple Martins, 296–310
Coot, American, 174
Coragyps atratus, 9
Cornett, James W., Apparent Commensalism of a Red-tailed Hawk and Badger, 80–81
coronata, Setophaga coronata, 325
Corthylio calendula, 336
Corvus brachyrhynchos, 336
corax, 336
Coturnicops noveboracensis, 128
Cowbird, Bronzed, 191–192, 204
Brown-headed, 68–75, 337
Crane, Common, 124, 131
Hooded, 160–164
INDEX

Sandhill, 131, 160
crecca, Anas crecca, 124, 129, 192
Crotaphaga sulcirostris, 129, 194
Crow, American, 336
Curlew, Long-billed, 94–111
Cyanocitta cristata, 12, 199 stelleri, 336
Cyanocorax sanblasianus, 128
Cygnus atratus stelleri, 336
buccinator, 129, 266–268
columbianus, 278–294
olor, 266
Cynanthus latirostris, 4, 194
Cypseloides niger, 129, 323

Dean, Christine A., see Terrill, R. S.
DeCicco, Lucas H., A Contact Zone between Coastal and Interior Fox Sparrows in South-Central Alaska, 148–159
de la Cueva, Horacio, see Erickson, R. A., see also Moreno-H., H. R.
Delehanty, David J., see Miller, P. C.
de León-Girón, Gonzalo, see Gaona-Melo, T.
Dendrocygna bicolor, 128
diazi, Anas platyrhynchos, 192
Dickcissel, 205
Dokter, Adriaan M., see Terrill, R. S.
Dolichonyx oryzivorus domesticus, Gallus gallus, 119
dorsalis, Junco hyemalis, 271–275
Douglas, Lily A., see Airola, D. A., see also Pandolfini, E. R.
Dove, Common Ground, 192, 194
Eurasian Collared-, 128, 334
Mourning, 334
Ruddy Ground, 4
Dowitcher, Long-billed, 94–111
Short-billed, 94–111
Dryobates nuttallii, 335
pubescens, 335
villosus, 335
Dryocopus pileatus, 128
Duck, Fulvous Whistling-, 128
Long-tailed, 348–350
Mexican, 190, 191, 192, 194
Ring-necked, 278–294
Ruddy, 278–294
Dumetella carolinensis, 199
Dunlin, 94–111

Eagle, Golden, 311
Egret, Great, 198
Egretta tricolor, 9

Eider, Common, 4
King, 4
Empidonax difficilis, 335
flaviventris, 12
hammondi, 145, 335
minimus, 136, 145
oberholseri, 335
traillii, 335
virescens, 128
wrightii, 335
Engle, Janice, see Robinson, B. W.
Erickson, Richard A., de la Cueva, Horacio, and Zamora-Hernández, Enrique D., Requiem for the Tricolored Blackbird in Mexico?, 207–221

Eudocimus albus, 144
rubra, 128
Euphagus carolinus, 15, 140, 145, 192, 204
cyanecephalus, 337
Euphitlotes neoxenus, 136
Falco rusticolus, 12
sparverius, 311, 335
Farnsworth, Andrew, see Terrill, R. S.
Finch, Black Rosy-, 124, 140
Gray-crowned Rosy-, 124, 140
House, 337
Purple, 337
Fine, Jodhan, VanBuskirk, Raymond L., Parlapiano, Jack B., and Baumann, Matthew J., First Record of the European Golden-Plover (Pluvialis apricaria) in New Mexico with Notes on Age, Provenance, and Pluvialis Molt, 183–187
Flicker, Northern, 335
Florian, Christine, see Ambrose, S.
Flycatcher, Acadian, 128
Ash-throated, 322–339
Dusky, 335
Dusky-capped, 198–199
Gray, 335
Great Crested, 12
Hammond’s, 145, 335
Least, 136, 145
Olive-sided, 335
Pacific-slope, 335
Sulphur-bellied, 12
Willow, 335
Yellow-bellied, 12
Fregata ariz, 134
magnificens, 134
minor, 128
Frigatebird, Great, 128, 134
INDEX

Lesser, 134
Magnificent, 134
Frost, Gerald V., see Stuyck, C. M.
Fulica americana, 174

Gadwall, 278–294
Gallinago delicata, 94–111
Gallinule, Purple, 131
Gallus gallus, 119, 120
gambelii, Zonotrichia leucophrys, 271, 311, 337
Gannet, Northern, 19
Gaona-Melo, Tonatiuh, de León-Girón, Gonzalo, Ruiz-Campos, Gorgonio, Rodríguez-Hernández, Irak, and Unitt, Philip, First Specimen of the Northern Saw-whet Owl from Baja California, Mexico, with Data on Its Abundance in the Sierra San Pedro Mártir, 168–172
García-Salas, Juan A., see González-P., h.
Garrett, John, see Terrill, R. S.

Gavia adamsii, 47–57
arctica, 6
immer, 47–57
pacifica, 47–57
stellata, 47–57, 195–198
Gee, Jennifer M., see Roth, A. M.
Geothlypis formosa, 18, 141
philadelphia, 18, 204
tolmiei, 339
trichas, 339
Gesmundo, Callie F., see Pohlen, Z. M.
gilvus, Vireo gilvus, 241
Gnatcatcher, Blue-gray, 336
Godwit, Bar-tailed, 5
Hudsonian, 5
Marbled, 94–111, 346
Goldeneye, Common, 278–294
Golden-Plover, American, 131–132
European, 183–187
Pacific, 183–187, 194
Goldfinch, American, 337
Lawrence’s, 337
Lesser, 337
González-Páez, Hugo, Contreras-Balderas, Armando J., Ruiz-Campos, Gorgonio, and García-Salas, Juan A., First Record of the Long-tailed Duck for Coahuila, Mexico, 348–350

Goose, Cackling, 278–294
Canada, 174, 278–294
Graylag, 266
Greater White-fronted, 278–294
Snow, 278–294
Gorman, P. Ross, Do Nutcrackers Use Automobiles as Nutcrackers?, 87–89
Grackle, Common, 15–18, 140
Grasshopper Warbler, Middendorff’s, 261–265
Pallas’s, 261–265
Styan’s, 264
Grebe, Clark’s, 173–177
Great Crested, 173
Horned, 173
Least, 129, 173
Pied-billed, 174, 348
Western, 173–177
Grosbeak, Black-headed, 322–339, 351–354
Blue, 339
Rose-breasted, 351
Yellow, 144
Ground Dove, Common, 192, 194
Ruddy, 4
Grouse, Greater Sage-, 23–46, 128
Grus grus, 124, 131
monacha, 160–164
Gull, Black-headed, 5
Black-tailed, 5
Iceland, 133
Laughing, 133
Lesser Black-backed, 124, 133
Mew, 133
Slaty-backed, 5–6
Western, 195
Yellow-footed, 195
Gymnogyps californianus, 128
Gyrfalcon, 12

Haematopus bachmani, 128
Haemorhous mexicanus, 337
purpureus, 337
Hajdukovich, Nicholas R., see Pohlen, Z. M.
Hartman, Therese, see Ambrose, S.
Hawk, Common Black, 12, 19
Cooper’s, 334
Ferruginous, 312
Red-tailed, 80–81, 334
Sharp-shinned, 334
Swainson’s, 334
Hayes, Heather M., see Pollock, J. J., see also Robinson, B. W.
Heinl, Steven C., see Lang, A. J.
INDEX

Helmitheros vermivorum, 18, 191, 204
Helopsaltes certhiola, 261–265
 ochotensis, 261–265
 pleskei, 264
 pryeri, 264
Herons, Tricolored, 9
Higgins, Philip G., Chromczak, Debra, and Phillips, Ryan A., Burrowing Owls Produce Second Brood in Mountain View, California, 340–344
Hill, Lauren, see Terrill, R. S.
Himantopus mexicanus, 94–111, 174
Hirundo rustica, 298, 336
Holroyd, Geoffrey L., see Cook, C. A.
House, Deborah J., Fall Waterfowl Use of Bridgeport Reservoir, Mono County, California, 278–296; see also Benson, T. A.
Hummingbird, Allen's, 334
 Anna's, 58–67, 76–79, 334
 Black-chinned, 4, 194
 Broad-billed, 4, 194
 Costa's, 334
 Ruby-throated, 4, 131
 Rufous, 334
 Violet-crowned, 19
Hvenegaard, Glen T., see Cook, C. A.
Hydroprogne caspia, 174
 hyemalis, Junco hyemalis, 271–275
Hylocichla mustelina, 13, 137, 199
 hypugaea, Athene cunicularia, 340–344
Ibis, Glossy, 9, 136, 198
 Glossy × White-faced, 198
 Scarlet, 128
 White, 144
 White-faced, 136, 217
Icteria virens, 337
 bullockii, 145, 322–339
 cucullatus, 337
 pustulatus, 140, 145
Ictinia mississippiensis, 9, 191, 198
Iglecia, Monica, see Senner, S.
iilaca, Passerella iliaca, 148–159
insularis, Passerella iliaca, 149
Ixobrychus exilis, 217
Jacana, Northern, 124, 132, 144
Jacana spinosa, 124, 132, 144
Jaeger, Long-tailed, 133
 Parasitic, 132, 195
 Pomarine, 132
Jay, Blue, 12, 199
 California Scrub-, 336
San Blas, 128
Steller's, 336
Jeffers, Jenni, see Senner, S.
Junco, Dark-eyed, 256, 271, 274, 337
 Gray-headed, 271, 273
 Oregon, 271
 Pink-sided, 271
 Red-backed, 271–275
 Slate-colored, 271
 White-winged, 271
 Yellow-eyed, 271, 274
Junco caniceps, 271
 hyemalis, 256, 271–275, 337
 phaeonotus, 271
Junglefowl, Red, 120
Keiser, Carl N., see Roth, A. M.
Kestrel, American, 311, 335
Killdeer, 94–111, 174
Kingbird, Cassin's, 335
 Thick-billed, 12
 Tropical, 199
 Western, 322–339
Kinglet, Ruby-crowned, 336
Kite, Mississippi, 9, 191, 198
 Kittiwake, Black-legged, 133
 Knot, Red, 94–111, 132
Lake, Michelle L. S., see Stuyck, C. M.
Lang, Aaron J., and Heinl, Steven C., First Record of the Pallas's Grasshopper Warbler in Alaska, 261–265
Larus canus, 133
 crassirostris, 5
 fuscus, 124, 133
 glaucoides, 133
 livens, 195
 occidentalis, 195
 schistisagius, 5–6
Leiothlypis celata, 157, 322–339
 ruficapilla, 322–339
Lenze, Michael, see Withrow, J. J.
Leonard, Paul B., see Stuyck, C. M.
Leucolia violiceps, 19
Leucophaeus atricilla, 133
leucopolius, Vireo swainsoni, 240–251
Leucosticte atrata, 124, 140
 tephrocotis, 124, 140
Limnodromus griseus, 94–111
 scolopaceus, 94–111
Limosa fedoa, 94–111, 346
 haemastica, 5
 lapponica, 5
Locustella lanceolata, 263
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>naevia</td>
<td>263</td>
</tr>
<tr>
<td>Lonchura oryzivora</td>
<td>119</td>
</tr>
<tr>
<td>Loon, Arctic</td>
<td>6</td>
</tr>
<tr>
<td>Common, Pacific</td>
<td>47–57</td>
</tr>
<tr>
<td>Red-throated, Yellow-billed</td>
<td>47–57, 195–198</td>
</tr>
<tr>
<td>Lophodytes cucullatus</td>
<td>285</td>
</tr>
<tr>
<td>Lovebird, Rosy-faced</td>
<td>128</td>
</tr>
<tr>
<td>lugens, Motacilla alba</td>
<td>13, 199–200</td>
</tr>
<tr>
<td>lutescens, Leiothlypis celeta</td>
<td>157</td>
</tr>
<tr>
<td>Macaw, Military</td>
<td>144–145</td>
</tr>
<tr>
<td>MacDonald, John</td>
<td>see Ambrose, S.</td>
</tr>
<tr>
<td>Magpie, Yellow-billed</td>
<td>222–239</td>
</tr>
<tr>
<td>Mallard</td>
<td>194, 278–294</td>
</tr>
<tr>
<td>Mareca americana</td>
<td>278–294</td>
</tr>
<tr>
<td>Martin, Purple</td>
<td>296–310</td>
</tr>
<tr>
<td>Maxwell, Daniel J.</td>
<td>see Terrill, R. S.</td>
</tr>
<tr>
<td>McCaskie, Guy</td>
<td>see Benson, T. A.</td>
</tr>
<tr>
<td>Mearnsi, Junco hyemalis</td>
<td>271</td>
</tr>
<tr>
<td>Melanerpes erythrocephalus</td>
<td>144</td>
</tr>
<tr>
<td>Melanitta americana</td>
<td>129</td>
</tr>
<tr>
<td>Melospiza lincolnii</td>
<td>337</td>
</tr>
<tr>
<td>Melozone crissalis</td>
<td>337, fusca</td>
</tr>
<tr>
<td>Meyers, Martin</td>
<td>see Tinsman, J.</td>
</tr>
<tr>
<td>Miller, Paige C.</td>
<td>see Delehanty, David J.</td>
</tr>
<tr>
<td>Egg Retrieval by Trumpeter Swans</td>
<td>266–268</td>
</tr>
<tr>
<td>Mimus polyglottos</td>
<td>336</td>
</tr>
<tr>
<td>Mockingbird, Northern</td>
<td>336</td>
</tr>
<tr>
<td>Molothrus aeneus</td>
<td>191–192, 204</td>
</tr>
<tr>
<td>Merganser, Common</td>
<td>278–294</td>
</tr>
<tr>
<td>Hooded</td>
<td>285</td>
</tr>
<tr>
<td>Red-breasted</td>
<td>285</td>
</tr>
<tr>
<td>Mergus merganser</td>
<td>278–294</td>
</tr>
<tr>
<td>Oreortyx pictus</td>
<td>323, 334</td>
</tr>
<tr>
<td>Oreothlypis superciliosa</td>
<td>141</td>
</tr>
<tr>
<td>Oriole, Bullock's</td>
<td>145, 322–339</td>
</tr>
<tr>
<td>Hooded</td>
<td>337</td>
</tr>
<tr>
<td>Streak-backed</td>
<td>140, 145</td>
</tr>
<tr>
<td>Owl, Boreal</td>
<td>12</td>
</tr>
<tr>
<td>Burrowing</td>
<td>340–344</td>
</tr>
<tr>
<td>Great Horned</td>
<td>170</td>
</tr>
<tr>
<td>Long-eared</td>
<td>170</td>
</tr>
<tr>
<td>Northern Saw-whet</td>
<td>168–172</td>
</tr>
<tr>
<td>Snowy</td>
<td>128</td>
</tr>
<tr>
<td>Oxyura jamaicensis</td>
<td>278–294</td>
</tr>
<tr>
<td>Oystercatcher, Black</td>
<td>128</td>
</tr>
<tr>
<td>Pachyramphus aglaiac</td>
<td>136</td>
</tr>
<tr>
<td>Parkesia motacilla</td>
<td>204</td>
</tr>
<tr>
<td>Parlapiano, Jack B.</td>
<td>see Fine, J.</td>
</tr>
<tr>
<td>Parrot, Thick-billed</td>
<td>128</td>
</tr>
<tr>
<td>Parula, Tropical</td>
<td>124, 141</td>
</tr>
<tr>
<td>Passer domesticus</td>
<td>128</td>
</tr>
<tr>
<td>Passerculus sandwichensis</td>
<td>256, 271, 345–347</td>
</tr>
<tr>
<td>Passerina amoena</td>
<td>322–339</td>
</tr>
</tbody>
</table>
INDEX

c caerulea, 339
Patagioenas fasciata, 334
Pearman, Myrna, see Cook, C. A.
Petrel, Bulwer's, 311
Bulwer's/Jouanin's, 19
Petrochelidon fulva, 137
pyrrhonota, 336
Peucaea cassinii, 15, 200–202
Peucedramus taeniatus, 68–75, 273
Pewee, Eastern Wood-, 145
Greater, 12
Western Wood-, 12, 335
Phainopepla, 323, 337
Phainopepla nitens, 323, 337
Phalarope, Red-necked, 94–111
Wilson's, 94–111
Phalaropus fulicarius, 195
lobatus, 94–111
tricolor, 94–111
Phasianus colchicus, 119, 128
Pheasant, Ring-necked, 119, 128
Phylloscopus borealis, 191
examinandus, 191
fuscatus, 13
inornatus, 13
proregulus, 13
xanthodryas, 191
Pica nuttalli, 222–239
Pigeon, Band-tailed, 334
Rock, 128
Pintail, Northern, 278–294
Pipilo chlorurus, 337
maculatus, 337
Pipit, American, 337
Prirannga bidentata, 144
ludovicianus, 322–339
rubra, 339
Platalea ajaja, 9, 198
Plectrophenax nivalis, 15
Plegadis chihi, 136, 217
chihi × falcinellus, 198
falcinellus, 9, 136, 198
Pletz, Hardy, see Cook, C. A.
Plover, American Golden-, 131–132, 183–187, 194
Black-bellied, 94–111, 183–187
Common Ringed, 4
European Golden-, 183–187
Pacific Golden-, 183–187, 194
Semipalmated, 94–111
Snowy, 94–111
Pluvialis apricaria, 183–187
dominica, 131–132, 183–187, 194
fulva, 183–187, 194
squatarola, 94–111, 183–187
Pochard, Common, 4
Podilymbus podiceps, 174, 348
Poecile atricapillus, 137
gambeli, 336
Polioptila caerulea, 336
Pollock, Jessica J., Carlisle, Heidi Ware, Hayes, Heather M., and Robinson, Bryce W., Monitoring through Community Science: Anna’s Hummingbird Winter Range Expansion into Idaho, 58–67; see also Robinson, B. W.
Porphyrio martinicus, 131
Progne subis, 296–310
Psaltriparus minimus, 336
pugetensis, Zonotrichia leucophrys, 318
Quail, California, 112–123, 128, 334
Gambel's, 113, 114
Mountain, 323, 334
Quetzal, Eared, 136
Quiscalus quiscula, 15–18, 140
Radamaker, Kurt, see Rosenberg, G. M.
Rail, Yellow, 128
Raven, Common, 336
Recurvirostra americana, 94–111, 174
Redhead, 278–294
Redpoll, Common, 13
Redshank, Spotted, 5
Rhynchositta pachyrhyncha, 128
ridgwayi, Colinus virginianus, 128
Rinkert, Alex M., see Benson, T. A.
Rissa tridactyla, 133
Robinson, Bryce W, Pollock, Jessica J., Carlisle, Heidi Ware, Hayes, Heather M., and Engle, Janice, First Documen-
INDEX

tation of Successful Breeding for the Anna's Hummingbird in Idaho, 76–79
Robinson, Bryce W., see Pollock, J. J.
Rodriguez-Hernández, Irak, see Gaona-Melo, T.
rostratus, Passerculus sandwichensis, 347
Rosy-Finch, Black, 124, 140
Gray-crowned, 124, 140
Ruff, 94–111, 132
Ruiz-Campos, Gorgonio, see Gaona-Melo, T., see Moreno-H., H. R., and see González-P., H.
Rynchops niger, 144, 174
Sage-Grouse, Greater, 23–46
Salpinctes obsoletus, 336
sanctorum, Passerculus sandwichensis, 346
Sanderling, 94–111
Sandpiper, Baird's, 94–111
Least, 94–111
Pectoral, 94–111
Semipalmated, 94–111
Sharp-tailed, 124, 132
Solitary, 94–111
Spotted, 94–111
Upland, 5, 132, 195
Western, 94–111, 332
White-rumped, 132
Santolo, Gary M., Ground Nesting by Aechmophorus Grebes in Orange County, California, 173–177
Sapsucker, Yellow-bellied, 198
Sayornis nigricans, 335
phoebe, 199
saya, 335
Scaup, Greater, 281, 348
Lesser, 278–294
schistacea, Passerella iliaca, 165–167
Scolopax minor, 128
Scoter, Black, 129
White-winged, 285
Scrub-Jay, California, 336
Searcy, Adam J., see Benson, T. A.
Selasphorus rufus, 334
sasin, 334
Setophaga castanea, 141
coronata, 322–339
discolor, 141–144, 192, 205
fusca, 141
gracieae, 18–19
nigrescens, 322–339
occidentalis, 322–339
petechia, 322–339
pinus, 190, 191, 205
pitiayumi, 124, 141
striata, 141
tigrina, 18, 141, 204–205
towsendi, 322–339
towsendi × occidentalis, 339
virens, 144, 192, 205
Shearwater, Wedge-tailed, 6
Shoveler, Northern, 278–294
Shuford, W. David, Book Review: Breeding Bird Atlas of Nevada County, California, 82–86
Sialia mexicana, 336
Silcock, W. Ross, Locality and Date of Collection of the Type Specimen of the Slate-colored Fox Sparrow, 165–167
sinoidea, Passerella iliaca, 148–159
Siskin, Pine, 337
Sitta canadensis, 336
carolinensis, 336
Skimmer, Black, 144, 174
Snipe, Wilson's, 94–111
Solitaire, Townsend's, 336
Somateria mollissima, 4
spectabilis, 4
Sparrow, American Tree, 140, 256
Black-chinned, 337
Brewer's, 252–260, 337
Cassin's, 15, 200–202
Chipping, 271, 322–339
Clay-colored, 271
Field, 15, 124, 140, 190, 191, 204
Fox, 148–159, 165–167, 311–318, 337
Golden-crowned, 311–321, 337
House, 128
Java, 119
Lark, 271, 337
LeConté's, 15
Lincoln's, 337
Rufous-crowned, 323, 337
INDEX

Savannah, 256, 271, 345–347
Timberline, 252–260
White-crowned, 15, 256, 271, 311–319, 337
Spatula clypeata, 278–294
cyanoptera, 278–294
querquedula, 3–4
Sphyrapicus varius, 198
Spinus lawrencei, 337
pinus, 337
psaltria, 337
tristis, 337
Spiza americana, 205
Spizella atrogularis, 337
breweri, 252–260, 337
pallida, 271
passerina, 271, 322–339
pusilla, 15, 124, 140, 190, 191, 204
Spizelloides arborea, 140, 256
Spoonbill, Roseate, 9, 198
Starling, Eurasian, 128, 336
Stercorarius longicaudus, 133
parasticus, 132, 195
pomarinus, 132
Sterna forsteri, 174
paradisaea, 124, 133, 192, 195
Stilt, Black-necked, 94–111, 174
Stint, Little, 5
Red-necked, 5
Stork, Wood, 133–134
Streptopelia decaocto, 128, 332
Sturnus vulgaris, 128, 334
Stuyck, Claire M., Leonard, Paul B., Frost, Gerald V., Lake, Michelle L. S., and Walters, Jeffrey D., Update on the Status and Breeding Phenology of the Timberline Sparrow (Spizella breweri taverneri) in Alaska, 252–260
subis, Progne subis, 296–310
Sula dactylatra, 6
dactylatra/granti, 8
granti, 6–8
nebouxii, 136
sula, 8–9
swainsoni, Vireo gilvus, 241
Vireo swainsoni, 240–251
Swallow, Barn, 298, 336
Cave, 137
Cliff, 336
Northern Rough-winged, 336
Tree, 298–305, 336
Violet-green, 336
Swan, Black, 266
Mute, 266
Trumpeter, 129, 266–268
Tundra, 278–294
Swift, Black, 129, 323
Chimney, 129–131
Vaux's, 322–339
White-throated, 334
Synthliboramphus antiquus, 195
Tachybaptus dominicus, 129
Tachycineta bicolor, 298–305, 336
thalassina, 336
Taner, Flame-colored, 144
Summer, 339
Western, 322–339
Taylor, Clayton, Book Review: Photograp
hry: Birds: Field Techniques and the Art of the Image, 181–182
Taylor, Daniel M., The Status of Loons in Idaho, 47–57
Teal, Blue-winged, 281
Cinnamon, 278–294
Green-winged, 124, 129, 192, 278–294
Tern, Arctic, 124, 133, 192, 195
Caspian, 174
Elegant, 133
Forster's, 174
Terrill, Ryan S., Dean, Christine A., Gar
rett, John, Maxwell, Daniel J., Hill, Lauren, Farnsworth, Andrew, Dokter, Adriaan M., and Tingley, Morgan W., A Novel Locality for the Observation of Thousands of Passe
rines Birds during Spring Migration in Los Angeles County, California, 322–339
Terrill, Ryan S., see Benson, T. A.
Thalasseus elegans, 133
thayeri, Larus glaucoides, 133
Thrasher, California, 323, 336
Curve-billed, 13
Thrush, Clay-colored, 124, 137–140
Gray-cheeked, 128
Hermit, 336
Orange-billed Nightingale-, 128
Rufous-backed, 137
Swainson's, 336
White-throated, 124, 137–140
Wood, 13, 137, 199
Thryomanes bewickii, 336
Thryothorus ludovicianus, 124, 137, 145
thurberi, Junco hyemalis, 271
INDEX

Tingley, Morgan W., see Terrill, R. S.
Tinsman, Jeanne, and Meyers, Martin, Nevada Bird Records Committee Report for 2019–2020, 190–206
Titmouse, Oak, 336
Towhee, California, 337
 Canyon, 273
 Green-tailed, 337
 Spotted, 337
	townsendi, Passerella iliaca, 149

Toxostoma curvirostre, 13
redivivum, 323, 336

Tringa erythropus, 5
flavipes, 94–111
melanoleuca, 94–111
semipalmata, 94–111
solitaria, 94–111

Troglodytes aedon, 336
hiemalis, 12, 199
pacificus, 199

Turdus assimilis, 124, 137
grayi, 124, 137–140
migratorius, 140, 336
rufopalliatus, 137

Turnstone, Black, 124, 132
Ruddy, 94–111, 132

Tyrannus caeculus, 12
melancholicus, 199
verticalis, 322–339
 vociferans, 335
unalaschcensis, Passerella iliaca, 148–159,
 311–318

Unitt, Philip, see Gaona-Melo, T.
VanBuskirk, Raymond L., see Fine, J.

Vermivora chrysoptera, 18, 204
cyanoptera, 18, 140–141, 204

Vireo, Blue-headed, 12, 124, 136
 Cassin’s, 12, 136, 322–339
 Philadelphia, 136–137
 Red-eyed, 137, 145
 Warbling, 240–251, 322–339
 White-eyed, 12
 Yellow-green, 137
Vireo cassinii, 12, 136, 322–339
flavoviridis, 137
gilvus, 240–251, 322–339
griseus, 12
olivaceus, 137, 145
philadelphicus, 136–137
solitarius, 12, 124, 136
swainsoni, 240–251
v-nigrum, Somateria mollissima, 4

Turkey, 334

Wagtail, Western Yellow, 311
White, 13, 199–200
Walters, Jeffrey D., see Stuyck, C. M.

Warbler, Aquatic, 264
 Arctic, 191
 Audubon’s, 322–339
 Bay-breasted, 141
 Blackburnian, 141
 Blackpoll, 141
 Black-throated Gray, 322–339
 Black-throated Green, 144, 192, 205
 Blue-winged, 18, 140–141, 202
 Canada, 124, 144, 205
 Cape May, 18, 141, 204–205
 Connecticut, 18, 204
 Crescent-chested, 141
 Dusky, 13
 Fan-tailed, 144
 Golden-winged, 18, 204
 Grace’s, 18–19
 Grasshopper, 263
 Hermit, 322–339
 Japanese Leaf, 191
 Japanese Swamp, 264
 Kamchatka Leaf, 191
 Kentucky, 18, 141
 Lanceolated, 263
 MacGillivray’s, 339
 Middendorff’s Grasshopper, 261–265
 Mourning, 18, 204
 Myrtle, 325
 Nashville, 322–339
 Olive, 68–75, 273
 Orange-crowned, 157, 322–339
 Palla’s Grasshopper, 261–265
 Palla’s Leaf, 13
 Pine, 190, 191, 205
 Prairie, 141–144, 192, 205
 Red-faced, 19
 Sedge, 263–264
 Streaked Reed, 264
 Styan’s Grasshopper, 264
 Townsend’s, 322–339
 Townsend’s × Hermit, 339
 Wilson’s, 311, 322–339
 Worm-eating, 18, 191, 204
 Yellow, 322–339
 Yellow-browed, 13
 Yellow-rumped, 322–339

INDEX

Waterthrush, Louisiana, 204
Waxwing, Cedar, 336
Whimbrel, 94–111
Whistling-Duck, Fulvous, 128
Wigeon, American, 278–294
Willet, 94–111
Williamson, Jessie L., and Baumann, Matthew J., Evidence of Brood Parasitism and Quantification of Rangewide Overlap between the Olive Warbler and Brown-headed Cowbird, 68–75
Withrow, Jack J., and Lenze, Michael, A Hooded Crane (Grus monacha) at Delta Junction, a First for Alaska, 160–164
Woodcock, American, 128
Woodpecker, Acorn, 335
 Downy, 335
 Hairy, 335
 Lewis's, 335
 Nuttall's, 335
 Pileated, 128
 Red-headed, 144
Wood-Pewee, Eastern, 145
 Western, 12, 335
Wren, Bewick's, 336
 Canyon, 336
 Carolina, 124, 137, 145
 House, 336
 Marsh, 217
 Pacific, 199
 Rock, 336
 Winter, 12, 199
Wrentit, 323, 336
Yellowlegs, Greater, 94–111
 Lesser, 94–111
Yellowthroat, Common, 339
 zaboria, Passerella iliaca, 148–159
 Zamora-Hernández, Enrique D., see Erickson, R. A.
 Zenaida macroura, 334
 Zonotrichia atricapilla, 311–321, 337
 leucophrys, 15, 256, 271, 311–319, 337
As they report in this issue of *Western Birds*, Carolyn A. Cook, Glen T. Hvenegaard, Geoffrey L. Holroyd, Hardy Pletz, and Myrna Pearman investigated the dispersal of the Purple Martin in central Alberta and across Canada east of the Rocky Mountains more generally, on the basis of recapture of 153 birds of known sex banded in central Alberta and 38 recoveries of banded birds of known sex elsewhere in Canada. At the age of one year, half of the birds returned to their natal colony, half relocated elsewhere. But among older birds, especially females, the proportion returning to the natal colony was higher. Distances of dispersal of martins at least two years old were greater than those of yearlings, implying that among the older martins that do not return to their natal colony, site fidelity to the new colony is incomplete.