Western Specialty:
Crested Auklets

Photo by © Robert H. Day of Bentonville, Arkansas:
Crested Auklets (Aethia cristatella), Big Koniuji Island, Shumagin Islands, Alaska, June 1976.
In both morning and evening these birds congregate and display on the rocks of talus slopes where they nest. Around the turn of the 20th century the colony on southern Big Koniuji was one of the largest alcid colonies anywhere. In 1977 about 42,000 Crested Auklets were nesting in five colonies on four of the outer Shumagin Islands. But by 2011 the numbers had fallen to perhaps no more than 500.
Volume 53, Number 4, 2022

Birds of The Shumagin Islands, Alaska

Nesting Ecology of the Barn Swallow on Agricultural Lands in Yukon
Maria Leung and Donald Reid ... 309

Winter Surveys for Mexican Spotted Owls with Audio Recorders
Brent Carl Hetzler .. 327

Thanks to Western Birds’ Reviewers, Associate Editors, and Editorial Team ... 334

Book Reviews
Robert A. Hamilton and Kenneth P. Able ... 335

Index
Daniel D. Gibson .. 340

Front cover photo by © Robert H. Day of Bentonville, Arkansas: Crested Auklets (Aethia cristatella) in communal display flight at Big Koniuji Island, Shumagin Islands, Alaska, May 1976. At Big Koniuji, flocks of Crested Auklets, sometimes as many as tens of thousands, sit on the water below the Yukon Harbor colony, peeling off to perform group aerial displays resembling starling murmurations. Since the 1970s, however, the number of Crested Auklets nesting in the Shumagin Islands has declined steeply, perhaps presaging a retraction of the species from the eastern end of its breeding range. In this issue of Western Birds, Day, G. Vernon Byrd, and Edgar P. Bailey review the entire avifauna of the Shumagins and its many changes since the islands were first visited by naturalist Georg Wilhelm Steller in 1741.

Back cover photo by © Maria Leung of Whitehorse, Yukon Territory, Canada: Week-old chicks of the Barn Swallow (Hirundo rustica) in a goat shed at a farm north of Whitehorse. In this issue of Western Birds, Maria Leung and Donald Reid summarize their study of the breeding biology of the Barn Swallow at the northern extremity of its range, where it nests in buildings, culverts, and other artificial structures. Six of 41 nests observed apparently represented second clutches, and of these five were successful; successful double-brooding by any bird is seldom confirmed at arctic or subarctic latitudes.

Western Birds solicits papers that are both useful to and understandable by amateur field ornithologists and also contribute significantly to scientific literature. Particularly desired are reports of studies done in or bearing on North America west of the 100th meridian, including Alaska and Hawaii, northwestern Mexico, and the northeastern Pacific Ocean.

Send manuscripts to Daniel D. Gibson, P. O. Box 155, Ester, AK 99725; avesalaska@gmail.com. For matters of style consult the Suggestions to Contributors to Western Birds (at https://westernfieldornithologists.org/publications/journal).
ABSTRACT: We studied birds in the Shumagin Islands in 18 of the 37 years from 1970 to 2006 and synthesized all available information on birds of this area. A total of 126 forms of 125 species, including hypothetical species, has been recorded in the Shumagins, of which aquatic birds constitute 67% and terrestrial birds 33%. Overall, 52% of all forms breed, probably breed, or formerly bred; of these, aquatic birds represent 57% and terrestrial birds 43%. The avifauna is heavily weighted toward Nearctic (39% of all forms) and Beringian (32%) forms, followed by Holarctic (21%), Palearctic (6%), and Oceanian (2%) forms; breeding taxa are even more heavily weighted toward Beringian (46%) and Nearctic (40%) forms. The Shumagins have few breeding waterfowl, other freshwater birds, and shorebirds and are not on important flyways for any of these groups, despite lying near important spring and fall staging areas on the nearby Alaska Peninsula. The seabird and terrestrial avifaunas are diverse and similar to those in nearby areas, especially the eastern Aleutians. Populations of several seabird species in the Shumagins have declined substantially over the last 40 years. Two terrestrial species, the Pacific Wren (Troglydytes pacificus) and Pine Grosbeak (Pinicola enucleator), have expanded their breeding ranges into this area, and breeding distributions of some terrestrial birds in the outer Shumagins appear to be changing. Changes in range or breeding status have been caused, at least in part, by predation by introduced foxes, overgrazing by introduced cattle degrading already limited habitat, and the introduction of ground squirrels.

The Shumagin Islands (Figure 1) represent an important early part of Alaska ornithology: bird records date as far back as the voyage of Vitus Bering in 1741 and 1742, when Georg Wilhelm Steller recorded a list of birds at Nagai Island on 30 and 31 August 1741 (Golder 1925). The islands got their name from St. Peter crewman Nikita Shumagin, who died there. This archipelago lies between the heath-covered islands of the Aleutians and the shrub zone of the Alaska Peninsula and southern Kodiak Island; as a result, these islands are characterized by an interesting mixture of heath and shrub habitats and their
Figure 1. The Shumagin Islands, Alaska, and nearby areas.
associated avifaunas. In addition, their position at or near the limits of the east–west distribution of some nesting alcids and at or near the southwestern limit of shrub-nesting passerines is of biogeographic interest.

Much of the historic information about birds in this region is fragmentary and based on short visits, usually to communities on Unga and Popof islands, by ornithologists associated with expeditions that stopped briefly while en route to other places in Alaska (Dall 1873, Bean 1882, Turner 1886, Seale 1898, Burroughs 1901, Chapman 1902, Keeler 1910, Wetmore 1911, Jaques 1930, Gabrielson 1944a, b, 1946; F. L. Beals field notes; also many museum specimens collected by C. H. Townsend from the 1880s to the 1910s). Since the 1970s, however, the frequency of bird observations has increased because most of these islands are now within the Alaska Maritime National Wildlife Refuge (AMNWR). We recorded data on the avifauna of the Shumagins during 18 years between 1970 and 2006, primarily while studying seabirds and eradicating introduced arctic and red foxes (Vulpes lagopus and V. vulpes, respectively) to allow native bird populations to recover. Here, we pool our data with scattered published and unpublished information to summarize what currently is known about this ornithologically interesting area.

STUDY AREA

Lying south of the Alaska Peninsula near its tip and separated by Unga Strait, which is ~15 km wide at its narrowest point, the Shumagin Islands comprise some 35 islands and named islets and nearby continental shelf (Figure 1). These islands range in size from Unga, the largest (~442 km²) and westernmost, to many islets <100 m long. Small parts of Unga and Popof and nearly all of the other islands are part of the AMNWR, which is administered by the U.S. Fish and Wildlife Service (USFWS). The remainder is privately owned, primarily by local Native corporations and individuals. Sand Point on Popof is the islands’ only community currently inhabited; Unga village was occupied until 1969. We divide the archipelago into two main parts: the inner Shumagins (Unga, Popof, Korovin, Karpa, and Andronica islands, the Haystacks, and several small islands, islets, and rocks) and the outer Shumagins (Nagai, Big and Little Koniuji, Simeonof, Bird, and Chernabura islands and many small islands, islets, and rocks). The Koniuji group of the outer Shumagins, a site of intensive seabird studies, includes Castle Rock, Big and Little Koniuji, Herendeen, Atkins, and Hall islands and Murre Rocks.

The archipelago is complex geologically (Burk 1965). The inner Shumagins are a mixture of volcanic flows, breccias, conglomerates, sandstones, and geological oddities such as both petrified wood and gold/silver deposits on Unga. The outer Shumagins from Nagai to western Big Koniuji consist largely of metamorphic flysch, slate, and graywacke, which do not weather to form ledges and talus slopes suitable for nesting seabirds. Two outcrops on Nagai, most of Big Koniuji, and the remaining islands of the outer Shumagins are composed of granodiorite, a granitic rock that does provide ledges, crevices, and talus in which seabirds can nest. In addition, during the Pleistocene Epoch glaciers covered the outer Shumagins, especially the Koniuji group (Grantz 1963).

Ponds and other wetlands are limited except on Simeonof, which has numerous ponds and small marshes. Scattered ponds and marshes also occur
on Unga, Nagai, and Little Koniuji, and small tidal lagoons occur on Unga, Popof, Korovin, Nagai, and Big Koniuji.

The climate is cool, moist, overcast, and windy (Burk 1965). At Sand Point, the mean air temperature ranges from −0.6 °C in February to 11.6 °C in August and averages 4.8 °C across the entire year. Mean monthly precipitation ranges from 6.1 cm in April to 16.0 cm in September and averages 9.5 cm; rain falls on average 145 days/year. Mean and maximal monthly wind speeds average 17.9 and 32.9 km/hr, respectively. The sea-surface temperature ranges from 3.3 °C in March to 11.7 °C in August and averages 6.9 °C (USDOC 2020).

The islands’ terrestrial habitat (Figure 2) is a mosaic of bare rock, lichens and mosses, grasses and herbaceous plants, shrubs, and introduced trees, a combination resulting from the effects of climate, recent glaciation, and the archipelago’s distance from the Alaska Peninsula (Bailey 1978, Talbot et al. 2002, Daniëls et al. 2004). The area is naturally treeless, although a few Sitka spruces (Picea sitchensis) have been planted on Unga, Popof, Little Koniuji, and Simeonof. Medium to tall (up to ~3–3.5 m high) thickets of shrubs, Sitka alder (Alnus viridis), salmonberry (Rubus spectabilis), elderberry (Sambucus racemosa), and willow (Salix spp.) occur in the lowlands, primarily on the inner islands; on the outer islands shrubs are generally low (≤1 m) but grow to 2–2.5 m in protected areas. Other lowland vegetation consists of grasses (primarily Leymus and Calamagrostis), umbelliferous plants (primarily Heracleum and Angelica), and, occasionally, ferns (Athyrium). Above 250–300 m elevation, the vegetation is procumbent and composed of lichens, mosses, and heaths (e.g., Empetrum, Vaccinium). Offshore islets and rocks have the grass–umbellifer assemblage, and a few have small patches of shrubs.

Three to five species of terrestrial mammals are native to the Shumagins. The tundra vole (Microtus oeconomus popofensis) occurs only on the inner Shumagins, on Unga and Popof (Murie 1959, MacDonald and Cook 2009), Henderson (Bailey and McCargo 1984), and possibly Andronica (Fay and Sease 1985). The dusky shrew (Sorex monticolus) occurs on Unga, Popof, and probably all of the medium-sized and large islands in the outer Shumagins (Murie 1959, Kenyon 1964, Sowl 1973, Bailey 1978, Byrd 2001, MacDonald and Cook 2009; Day pers. obs.). The North American river otter (Lontra canadensis) probably occurs throughout the archipelago (Bailey 1978, 1985, 1993a, 1994, Bailey and McCargo 1984, Byrd 2001, MacDonald and Cook 2009). The arctic ground squirrel (Urocitellus parryii) might have been native on some of the islands, both inner and outer (see Golder 1925, Eddingsaas et al. 2004) but is believed to have been introduced throughout the outer islands as food for foxes (Bailey 1993b). Currently, ground squirrels occur on Karpa and on nearly all larger islands in the outer Shumagins (Murie 1959, Kenyon 1964, Sowl 1973, Bailey 1978, 1993b, Byrd 2001; Day pers. obs.). The red fox was introduced to several islands but currently occurs only on Unga, where it is probably native (Bailey 1993b). Surprisingly, the brown bear (Ursus arctos), an excellent swimmer, does not appear to occur here.

Introduced terrestrial mammals include the two species of foxes, domestic cattle (Bos taurus), American bison (Bison bison), and house mouse (Mus musculus; Murie 1959, Bailey 1993b, 1994, MacDonald and Cook 2009). The arctic fox was introduced to ≥10 islands but disappeared naturally from all except Little Koniuji, Chernabura, and Simeonof, from which it was eradi-
cated by the mid-1990s (Byrd et al. 1997; Jeffrey C. Williams pers. comm.). Domestic cattle were removed from Simeonof and Chernabura in 1985 and 1986, when a few were moved to Unga for subsistence use (Bailey 1994, Schroeder 1994, Roof and Porter 2014). Bison were transplanted to Popof in 1954 and currently live on the eastern, uninhabited portion of the island (Fall et al. 1993). Bailey (1994) reported the house mouse near the ranch house on Simeonof, inferring it escaped ashore in cargo from vessels supporting the

Figure 2. Main vegetation types of the Shumagin Islands, Alaska. (A) tall alder shrubs and introduced Sitka spruces at Sand Point, Popof I.; (B) grasslands and willow/alder shrub thickets ~2 m high, Bendel I.; (C) grass/umbellifer community and sea cliffs, Castle Rock; (D) upland heaths and unvegetated alpine areas, Big Koniuju I.; (E) ponds and marshes, Little Koniuju I.; (F) cobble and sand beaches, Little Koniuju I.

Photos by J. C Williams, USFWS (A–B), and R. H. Day (C–F)
cattle ranch or from a shipwreck. Trapping there in 2001, however, did not catch any (Byrd 2001), so the mouse's current status is unknown.

Two species of pinnipeds breed in the Shumagins, the Steller’s sea lion (*Eumetopias jubatus*) and harbor seal (*Phoca vitulina*), as well as the sea otter (*Enhydra lutris*). Other marine mammals occurring there include the common minke whale (*Balaenoptera acutorostrata*), humpback whale (*Megaptera novaeangliae*), killer whale (*Orcinus orca*), and harbor porpoise (*Phocoena phocoena*).

METHODS

RESULTS

Conventions Used in Species Accounts

Subspecies follow Gibson and Withrow (2015), and, for species occurring annually, abundance categories follow Gibson and Byrd (2007): rare, uncommon, fairly common, common, abundant. Following DeCicco et al. (2017), we use the word “report” instead of “record” for unique or unusual sightings without specimen, photographic, or clearly descriptive documentation; these species should be considered hypothetical at this time. The primary migration
period in the spring extends approximately from May to mid- or late June; in the fall, it extends from approximately early July to October.

Subspecific names without parentheses represent specimens identified to that level, whereas subspecies with parentheses are inferences based on zoogeography or other information (see Gibson and Byrd 2007). On the basis of data compiled at http://www.vertnet.org/, at least 375 specimens (skins, skeletons, whole bodies in preservative fluid, and/or eggs) from the Shumagin Islands are deposited at the following locations: American Museum of Natural History, New York, NY (AMNH); Academy of Natural Sciences of Philadelphia, Philadelphia, PA (ANSP); California Academy of Sciences, San Francisco, CA (CAS); Chicago Academy of Sciences, Chicago, IL (CHAS); Carnegie Museum of Natural History, Pittsburgh, PA (CM); Cornell University Museum of Vertebrates, Ithaca, NY (CUMV); Denver Museum of Nature and Science, Denver, CO (DMNS); Field Museum of Natural History, Chicago, IL (FMNH); Natural History Museum of Los Angeles County, Los Angeles, CA (LACM); Museum of Comparative Zoology, Harvard University, Cambridge, MA (MCZ); Museum of Vertebrate Zoology, University of California, Berkeley, CA (MVZ); James L. Slater Museum of Natural History, University of Puget Sound, Bellingham, WA (PSM); Santa Barbara Natural History Museum, Santa Barbara, CA (SBMNH); San Diego Natural History Museum, San Diego, CA (SDNHM); University of Iowa Museum of Natural History, Iowa City, IA (SUI); University of Alaska Museum of the North, Fairbanks, AK (UAM); Donald R. Dickey Bird and Mammal Collection, University of California, Los Angeles, CA (UCLA); University of Florida Museum of Natural History, Gainesville, FL (UF); University of Michigan Museum of Zoology, Ann Arbor, MI (UMMZ); U.S. National Museum of Natural History, Washington, DC (USNM); University of Washington Burke Museum, Seattle, WA (UWBM); Western Foundation of Vertebrate Zoology, Camarillo, CA (WFVZ); and Yale University Peabody Museum, New Haven, CT (YPM). In a few cases, specimens are discussed in publications, but we have been unable to locate those specimens at VertNet; we refer to those specimens as being in an unknown location.

Annotated List of Species and Subspecies

Anser canagicus. Emperor Goose. Uncommon in winter. Up to 22 birds were seen in winter 2000–2002 at Popof (C. Hoffman), where the latest record is of 7 birds 13 Apr 1973 (D. I. Eisenhauer); 143 birds were seen at Simeonof 25 Feb 1982 (J. E. Sarvis, C. P. Dau). **NOTES:** Both Murie (1959) and Sowl (1973) were told that this Beringian species winters at Simeonof, as it does throughout the Aleutian Islands and on both the Bering and Pacific sides of the Alaska Peninsula, northeast to the Kodiak archipelago (Eisenhauer and Kirkpatrick 1977, Gibson and Byrd 2007, Schmutz et al. 2020).

Branta bernica (*nigricans*). Brant. Uncommon or rare in winter and spring. About 75–100 birds were seen at Sand Point 9 and 11 May 1944 (F. L. Beals), and Sowl (1973) reported that a few wintered at Simeonof. **NOTES:** This Beringian subspecies breeds in northeastern Russia and across western and northern Alaska; most Alaska birds stage in fall at Izembek Lagoon, on the Alaska Peninsula 120 km west of the Shumagins, before migrating to winter from Oregon to Mexico (Lewis et al. 2020); small numbers also winter at Izembek (Ward et al. 2009, Lewis et al. 2020).
Branta hutchinsii (*leucopareia*). Cackling Goose. Uncommon in spring and fall. Flocks of 36, 26, and 40 were seen flying west past Bird Island 8–26 May 1984 (Bailey and McCargo 1984), 2 were at Simeonof 2 Jun 1994, and up to 4 stayed through the scientists’ departure 24 Jun (Bailey 1994). On 16 May 1928 Jaques (1930) saw migrating to the southwest (i.e., toward the Aleutians) 3 flocks that he identified as subspecies *minima*, and Murie (1959) was told that Cackling Geese (unclear whether *leucopareia* or *minima*) occur at Simeonof in both the spring and fall. **Notes:** Although the subspecies is unconfirmed, it is likely that these sightings represent *leucopareia*, which breeds in the Aleutians and the Semidi Islands and migrates through the Shumagins on passage to and from wintering areas in California (Byrd and Woolington 1983, Byrd 1998, Mini et al. 2011). Nevertheless, subspecies *minima*, which occurs at Izembek Lagoon in low numbers, may also occur in the Shumagins.

Cygnus columbianus (*columbianus*). Tundra Swan. Rare breeder; probably casual in winter. Nests have been recorded at Ungra (summer 1983; K. Rose) and Simeonof (Bailey 1994, Byrd 2001), where there are large lakes. Breeding has not been confirmed elsewhere, but there are also summer records at Popof (1997; Day), Nagai (1741; Steller, *in* Golder 1925:80), Big Koniuji (Bailey 1985), Little Koniuji (Bailey 1993a), and Chernabura (Bailey 1994). Only 1 or 2 were seen at Popof in winter 2000–2002 (Hoffman). **Notes:** This swan is a rare or uncommon breeder on the Alaska Peninsula (Dau and Sarvis 2002) and a locally common winter visitor in the easternmost Aleutians (Dau and Sarvis 2002, Gibson and Byrd 2007).

Spatula clypeata. Northern Shoveler. Casual in spring. One was seen at Simeonof 26 May 1994 (Bailey 1994). **Notes:** This Holarctic species breeds in western Alaska (Gabrielson and Lincoln 1959) and on the Alaska Peninsula (Gill et al. 1981); it is rare or uncommon in spring and fall in the Aleutians (Gibson and Byrd 2007).

Mareca strepera. Gadwall. Uncommon breeder in the outer Shumagins. Nests in small numbers at Simeonof (1 brood 18–23 Jun 1968. W. L. Troyer; 2 nests 7 Jun 1984, Bailey and McCargo 1984; 2 nests 10 and 17 Jun 1994. Bailey 1994; 2 broods 13 Jul 2001, Byrd 2001) and possibly in the Koniuji group (1976, Day); birds assumed to be nonbreeders also summered at both locations. **Notes:** In southwestern Alaska, this Holarctic species breeds to the tip of the Alaska Peninsula (Kessel and Gibson 1978, Gill et al. 1981) and probably is uncommon in the eastern Aleutians in the winter and spring (Gibson and Byrd 2007).

Mareca americana. American Wigeon. Casual in spring and winter. Lone pairs were seen at Big Koniuji 25 May 1985 (Bailey 1985) and Bird Island 4 Jun 1984 (Bailey). Also winters at Popof in some years (A. Gronholdt, Hoffman). **Notes:** This Nearctic species breeds on the Alaska Peninsula (Gill et al. 1981) and occurs intermittently in the eastern Aleutians in winter (Gibson and Byrd 2007).

Anas platyrhynchos (*platyrhynchos*). Mallard. Uncommon breeder and resident. Nests, broods, or breeding behavior have been recorded at Popof (Gronholdt; pair believed to be breeding 14 May 1944, Beals), Simeonof (brood 20 Aug 1946, Gabrielson 1946; bird acting as if nesting Jun 1994, Bailey 1994; brood 13 Jul 2001, Byrd 2001), and probably Bendel (Bailey 1978). Birds assumed to be nonbreeders have been seen in the summer, sometimes in numbers, at Big Koniuji (Day), Little Koniuji (Bailey 1993a), Simeonof (Kenyon 1964, Byrd and Williams 2006; Troyer), and Chernabura (28 Jun 1994, Bailey). In the winter, Beals saw 2 pairs at Popof 2 Dec 1944 and indicated that this species is common at that time (Gabrielson and Lincoln 1959); Hoffman saw up to 21 birds there in winter 2000–2002. **Notes:** Holarctic subspecies *platyrhynchos* is an uncommon to common breeder and resident on the Alaska Peninsula (Gill et al. 1981) and in the Aleutians (Gibson and Byrd 2007).

Anas acuta. Northern Pintail. Rare or uncommon in spring and summer; re-
cordoned only in the outer Shumagins. Up to 8 birds were seen at Simeonof on dates ranging from 18 May (1994) to 17 Jul (1995) (Bailey 1994; Troyer, W. Stahl). **NOTES:** This Holarctic species breeds in small numbers on the Alaska Peninsula (Gill et al. 1981) and in the Aleutians (Gibson and Byrd 2007).

Anas crecca carolinensis and **A. c. crecca.** Green-winged Teal. Uncommon breeder, rare in winter; nests in the outer Shumagins. We collected no specimens and identified few birds to subspecies. Various publications (Kenyon 1964, Jones 1970, Bailey 1978, 1993a, 1994, Byrd 2001, Maccormick 2002, Byrd and Williams 2006) suggest that *carolinensis* is the breeding form and that *crecca* is a nonbreeding summer visitor. The species also winters at Popof in low numbers (Hoffman). **NOTES:** Nearctic *crecca* breeds commonly on the Alaska Peninsula (Jaques 1930, Gill et al. 1981) and is rare in winter in the eastern Aleutians, where nesting has been suspected on Unimak (Gibson and Byrd 2007). Palearctic *A. c. crecca* breeds throughout the Aleutians (Gibson and Byrd 2007) but apparently is rare on the Alaska Peninsula (Cold Bay, Izembek and Cinder River lagoons—Jaques 1930, Gill et al. 1981; C. F. Zeillemaker, UAM unpubl. data).

Aythya marila nearctica. Greater Scaup. Uncommon breeding resident; occurs throughout the archipelago. Nests or broods have been reported from Unga (nest 18 Jul 1880; Bean 1882), Nagai (nest 16 Jun 1960; Kenyon 1964), Bendel and Spectacle (July 1977; Bailey 1978), and Simeonof (nest 16–18 Jun 1968, Troyer; 7 broods Jul 1995, Stahl; brood 16 Jul 2001, Byrd 2001; 3 broods 30 Jul 2006, Byrd and Williams 2006). Apparently nonbreeding birds are also common in summer at Korovin (Sowl 1973) and Simeonof (Gabrielson and Lincoln 1959, Kenyon 1964, Bailey 1994, Byrd and Williams 2006). Beals (in Gabrielson and Lincoln 1959) saw scaup wintering in the Shumagins, and Hoffman noted up to 217 unidentified scaup at Popof winter 2000–2002. **NOTES:** Nearctic subspecies *nearctica* breeds and is resident on both the Alaska Peninsula (Gill et al. 1981) and the Aleutians (Gibson and Byrd 2007). **SPECIMENS:** USNM (1), location unknown (1; see Gabrielson 1946).

Polysticta stelleri. Steller's Eider. Casual in summer and uncommon to common in winter. Dall (1873) saw it in the Shumagins in both the summer and March but stated that it was much less common there than in the eastern Aleutians. Gronholdt also saw the species regularly in the Shumagins in the winter, and up to 836 birds wintered near Popof 2000–2002 (Hoffman). **NOTES:** Steller's Eider winters in numbers from the eastern Aleutians to Kodiak Island (Gabrielson and Lincoln 1959, Forsell and Gould 1981, Gibson and Byrd 2007).

Somateria spectabilis. King Eider. Casual in summer and winter. About 100 females and subadult males summered throughout the Koniuji group in 1976 (Day), but the species has not been seen summering since. Two birds were seen at Popof in winter 2000–2002 (Hoffman). **NOTES:** In the winter, this Holarctic species is uncommon to fairly common in the eastern Aleutians (Gibson and Byrd 2007) and along the Alaska Peninsula (Powell and Suydam 2020) east to Kodiak Island (Gabrielson and Lincoln 1959, Forsell and Gould 1981).

Somateria mollissima (*v-nigrum*). Common Eider. Rare in summer and casual in winter. Six were seen at Big Koniuji May–Jul 1976 (Day), and several males were seen at Simeonof Jun 1960 (Kenyon 1964), but none have been recorded since then (Jones 1970, Bailey and McCargo 1984, Bailey 1994, Byrd 2001, Byrd and Williams 2006). In the winter, three were seen at Popof 31 Dec 2019 (L. Vitale, https://eBird.org). **NOTES:** The Beringian subspecies *v-nigrum* breeds in coastal northwestern North America and northeastern Siberia (Goudie et al. 2020); it is an uncommon to common breeder and resident on the Alaska Peninsula (Gill et al. 1981) and in the Aleutians (Gibson and Byrd 2007).
Histrionicus histrionicus. Harlequin Duck. Common nonbreeding resident. Harlequins occur in the summer along shorelines throughout both the inner (Dall 1873, Murie 1959, Sowl 1973) and outer (Gabrielson 1946, Murie 1959, Kenyon 1964, Sowl 1973, Bailey 1993a, 1994, Byrd 2001, Byrd and Williams 2006) Shumagins. In the winter, ≥10 were seen at Big Koniuji Nov 1982 (Day), and up to 204 were seen at Popof in winter 2000–2002 (Hoffman). **NOTES:** This Holarctic species is an uncommon to common nonbreeding resident on the Alaska Peninsula (Gianini 1917, Gill et al. 1981) and the Aleutians (Gibson and Byrd 2007). **SPECIMENS:** UMMZ (1).

Melanitta perspicillata. Surf Scoter. Casual in winter and spring. These scoters are seen at Popof in the winter but not every year (Gronholdt, Hoffman), and 4 were at Big Koniuji Nov 1982 (Day). In the spring ~40 were at Simeonof 8 May 1984 (Bailey), and a late-migrating pair was at Big Koniuji 6 Jun 1976 (Day). **NOTES:** This Nearctic species is an uncommon migrant on the Alaska Peninsula, occasionally occurring as late as June (Gianini 1917, Gill et al. 1981), and is intermittent in the Aleutians from fall to spring (Gibson and Byrd 2007).

Melanitta deglandi. White-winged Scoter. Common or abundant in winter, common migrant, and rare in summer. Up to 4 were seen in the Koniuji group in summer 1976 (Day), a flock of 9 was at Little Koniuji 4 Sep 1941 (Beals), and the species was abundant at Unga 25 Apr 1943 (Beals) and common in Unga Pass 13 May 1936 (Murie 1959). Up to 276 birds were seen at Popof in winter 2000–2002 (Hoffman). **NOTES:** This Nearctic species breeds on the Alaska Peninsula (Gill et al. 1981), with 2 breeding records on nearby islands (Withrow 2015), but fairly common in the eastern Aleutians in winter (Gibson and Byrd 2007).

Melanitta americana. Black Scoter. Abundant in winter and uncommon in spring and summer. Dall (1873) noted the species in spring and summer, and up to 60 were seen at Big Koniuji from early May to late Jun 1985 (Bailey 1985). At least 25 were at Big Koniuji in Nov 1982 (Day), and up to 640 were seen at Popof in winter 1944 (Beals) and 2000–2002 (Hoffman). **NOTES:** This Nearctic species breeds on the Alaska Peninsula (Gill et al. 1981) and is rare to uncommon in the Aleutians in the summer and uncommon to common there in the winter (Gibson and Byrd 2007).

Clangula hyemalis. Long-tailed Duck. Uncommon to abundant in winter and spring. Scattered groups occurred at Popof in Dec 1942 and as late as 7 May in 1944 (Beals), up to 749 were at Popof in winter 2000–2002 (Hoffman), and ≥40 were at Big Koniuji Nov 1982 (Day). Two late-departing birds were at Korovin 8 Jun 1973 (Sowl 1973), and one was at Big Koniuji (3–14 Jun 1976; Day). **NOTES:** This Holarctic species is rare in the summer and locally abundant in the winter on the Alaska Peninsula (Gill et al. 1981) and locally common to abundant in the eastern Aleutians in winter (Gibson and Byrd 2007).

Bucephala albeola. Bufflehead. Uncommon in winter and spring. Up to 45 were at Popof in winter 2000–2002 (Hoffman), and up to 20 were at Big Koniuji in Nov 1982 (Day) and early May 1985 (Bailey). **NOTES:** This Holarctic species is a rare visitor, mainly in late winter and spring, on the Alaska Peninsula (Gill et al. 1981) and uncommon to fairly common in the eastern Aleutians in winter (Gibson and Byrd 2007).

Bucephala clangula (americana). Common Goldeneye. Casual in winter. Three unidentified goldeneyes seen at Popof in Feb 2000 (Hoffman) almost certainly were of this species. **NOTES:** This Nearctic subspecies is well known from Kodiak (Murie 1959), the Alaska Peninsula (Gill et al. 1981), and the Aleutians (Gibson and Byrd 2007).

Mergus merganser (americanus). Common Merganser. Uncommon nonbreed-
ing resident; recorded only in the outer Shumagins. Two were at Big Koniuji 18 Jun 1985 (Bailey 1985), 2–4 were at Little Koniuji 30 May–15 Jun 1994 (Bailey), and up to 13 were at Simeonof (Bailey and McCargo 1984; Stahl). **Notes:** The Common Merganser is not known to nest anywhere in southwestern Alaska (Gabrielson and Lincoln 1959) but occurs as a rare to uncommon nonbreeding resident on both the Alaska Peninsula (Gill et al. 1981) and the eastern Aleutians (Gibson and Byrd 2007).

Mergus serrator. Red-breasted Merganser. Fairly common resident throughout the archipelago though recorded nesting only in the outer Shumagins. Nests or broods were recorded at Little Koniuji 31 Jul 1976 (Day), Simeonof 24 May–30 Jul (Kenyon 1964, Bailey 1994, Byrd 2001, Byrd and Williams 2006; AMNWR unpubl. data), and Chernabura 24 Jun–14 Jul 1994 (Bailey 1994). In addition, reports of an alleged nest (7 Jun 1984; Bailey) and a brood (20 Jul 1995; Stahl) of Common Mergansers at Simeonof almost certainly were of Red-breasted Mergansers. The species also probably nests at Bendel (Bailey 1978). In winter, one bird was at Big Koniuji Nov 1982 (Day), and up to 1 unidentifed mergansers were at Popof winter 2000–2002 (Hoffman). **Notes:** This Holarctic species breeds and is a resident on both the Alaska Peninsula (Gill et al. 1981) and the Aleutians (Gibson and Byrd 2007).

Lagopus lagopus alexandrae. Willow Ptarmigan. Variably rare to common breeder and resident. Occurs on at least all of the larger islands in the archipelago, with nests, broods, or breeding behavior recorded at Popof (Dall 1873, Chapman 1902), Big Koniuji (Bailey and Norvell 1987, Maccormick 2002), Simeonof (Byrd 2001; Stahl), and Chernabura (Byrd 2001). Willow Ptarmigan also have been seen, and presumably nest, at Unga (Bean 1882), Nagai (Stejneger, in Golder 1925:81, Murie 1959, Bailey 1978, Bailey and Norvell 1987), Little Koniuji (Bailey 1993a), and Bird islands (D. D. Gibson). In some cases we suspect populations to have been depressed by introduced foxes: prior to fox eradication at Big Koniuji, only 8 birds were seen in May and Jun 1985 (Bailey), whereas, after eradication, 13 broods were seen in Jul 1987 (Bailey and Norvell 1987) and ≥100 adults and several broods and nests were seen in 1 week in Jul 1990 (Bailey). **Notes:** Following Gibson and Withrow (2015), we regard L. l. muriei Gabrielson and Lincoln, 1949 (type locality Nagai Island), as a synonym of L. l. alexandrae Grinnell, 1909 (type locality Baranof Island), which breeds from southeastern Alaska to the Alaska Peninsula and in the Aleutians at Unimak (Gibson and Byrd 2007, Gibson and Withrow 2015). **Specimens:** AMNH (16), UAM (4), UNSN (4), CM (1), LACM (1), UMMZ (1).

Lagopus muta nelsoni. Rock Ptarmigan. Rare to common breeder and resident. Occurs on at least all of the larger islands in the archipelago, although the alpine habitats this species frequents have received little attention. Consequently, nests, broods, or breeding behavior have been recorded only at Unga (Gabrielson and Lincoln 1959), Little Koniuji (Bailey 1993a), and Bird islands (1995; Gibson), but Rock Ptarmigan also have been seen, and presumably nest, at Popof (Gabrielson and Lincoln 1959), Peninsula Island (5 birds 24 July 1976; Day), Big Koniuji (1976; Day), Simeonof (Bailey 1994; Byrd, Gibson, Troyer), and Chernabura (Bailey 1994; Byrd, Gibson). **Notes:** Like those of the Willow Ptarmigan, populations of the Rock Ptarmigan were apparently depressed by fox predation (e.g., at Bird Island; Bailey). The Beringian subspecies nelsoni breeds widely on the Alaska Peninsula (Gill et al. 1981), in the eastern Aleutians (Gibson and Byrd 2007), over most of mainland Alaska, and in northeastern Asia (Gibson and Withrow 2015). **Specimens:** UAM (5), MCZ (2), USNM (2), CAS (1), location unknown (1; see Gabrielson and Lincoln 1959).

Podiceps auritus (cornutus). Horned Grebe. Probably rare in winter and spring. A flock of 6 was seen at Bird Island 8 May 1984 (Bailey). **Notes:** This Nearctic subspecies is a rare migrant on the Alaska Peninsula (Gill et al. 1981) and rare or uncommon in the Aleutians in winter (Gibson and Byrd 2007).
Podiceps grisegena (*holboellii*). Red-necked Grebe. Rare in winter and spring. Two birds were at Big Koniuji in Nov 1982 (Day), up to 6 were at Popof in winter 2000–2002 (Hoffman), and two late migrants were at Simeonof 4 Jun 1960 (Kenyon 1964). **Notes:** This species nests on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and occurs in the western Gulf of Alaska and the Aleutians in winter (Gabrielson and Lincoln 1959, Gibson and Byrd 2007).

Streptopelia orientalis. Oriental Turtle-Dove. One report. A single bird was seen at Chernabura 24 Jun–14 Jul 1994 (Bailey 1994). **Notes:** This eastern Palearctic species is accidental or casual in the western Aleutians (Gibson and Byrd 2007), and there is one record from the eastern Aleutians, of one at Unalaska in Jun and Jul 1995 (Gibson and Byrd 2007).

Cuculus canorus canorus. Common Cuckoo. One record. A pair was seen in aerial courtship at East Head, Popof, 21 Jun 1995 (Gibson 2018). Also, an unidentified *Cuculus* cuckoo was at Big Koniuji 15 Jul 1990 (Bailey). **Notes:** The Common Cuckoo is intermittent in spring in the western and central Aleutians (Gibson and Byrd 2007). **Specimens:** UAM (1).

Antigone canadensis (*canadensis*). Sandhill Crane. One record. Drummond (2021) noted a flock of 16 birds at Simeonof 12 Jul 2021. **Notes:** This subspecies nests across most of northern North America and in the Russian Far East; it nests at Nelson Lagoon (Gill et al. 1981) and probably does at Unimak Island, in the far eastern Aleutians (Gibson and Byrd 2007).

Haematopus bachmani. Black Oystercatcher. Fairly common breeder and probable resident. Nests and roosts along shores throughout the archipelago, with nests or young recorded in June and July on both the inner (Dall 1873; Day) and outer Shumagins (Kenyon 1964, Moe and Day 1979, Bailey 1994, Byrd and Williams 2006). **Notes:** Populations on Simeonof and Chernabura increased significantly after foxes were eradicated (Byrd et al. 1997, Byrd 2001). The Black Oystercatcher is also resident on the Alaska Peninsula (Gabrielson and Lincoln 1959) and most of the Aleutians (Gibson and Byrd 2007). **Specimens:** USNM (2), location unknown (1; see Dall 1873).

Pluvialis fulva. Pacific Golden-Plover. Rare or uncommon in spring and fall, one winter record. In the spring, 1 was collected at Popof 22 Jun 1872 (Dall 1873), 3 were seen and 1 was collected at Popof 5–6 May 1944 (Beals), 1 was at Simeonof 29 May 1994 (Bailey 1994), and 5 were at Bird Island 19 May 1984 (Bailey). In the fall, 25 were at Unga 18 Aug 1946 (Gabrielson 1946), and 1 was at Bird 22 Sep 1988 (Bailey). The only winter record is of one collected at Popof 15 Dec 1901 (Chapman 1902). **Notes:** Gabrielson and Lincoln (1959:329–330) were unclear about the identity of golden-plovers from this area, but we believe that all occurring on the Shumagins are *P. fulva*. One specimen (CAS 74013; collected at Simeonof Island 7 May 1894) was identified as *P. dominica*, but we believe instead that it is *fulva*. It was collected with 5 other specimens of *fulva* at the same location on the same day. Its measurements are equivocal and the bird is molting heavily, precluding definitive identification. This primarily Palearctic species is a fairly common nesting bird and an annual migrant on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018, Alaska Shorebird Group 2019; R. E. Gill, Jr., in litt.) and is an annual migrant in the Aleutians (Gibson and Byrd 2007). In contrast, the American Golden-Plover (*P. dominica*) is unknown in the Aleutians (Gibson and Byrd 2007) and occurs as a breeder and migrant on the Alaska Peninsula only near its base (Ruthrauff et al. 2007; R. E. Gill, Jr., in litt.). **Specimens:** MVZ (3), CAS (1), USNM (2), location unknown (1; see Chapman 1902).

Charadrius semipalmatus. Semipalmated Plover. Uncommon or fairly com-
mon breeder; occurs throughout the archipelago but nests mainly on islands with sandy beaches. Nests, young, or nesting behavior have been recorded at Popof (2 small chicks 29 Jun 1997; Day), Simeonof (Kenyon 1964, Bailey 1994, Byrd 2001), and Chernabura (Bailey 1994). Probably nesting birds have also been seen at Unga (Coorumbung Estate, eBird), Big Koniuji (Day), Little Koniuji (Bailey 1993a), and Bird islands (Bailey). NOTES: Widespread on the Alaska mainland, this species nests in southwestern Alaska from the Alaska Peninsula (Gill et al. 1981) to the central Aleutians (Gibson and Byrd 2007).

\textit{Charadrius mongolus (stegmanni).} Lesser Sand-Plover. One record. A female was photographed at Unga 2 Jun 1997 (A. Wilson, http://www.oceanwanderers.com/Aleut.1.html; accessed 13 Jan 2021). NOTES: The eastern Palearctic subspecies \textit{stegmanni} has been recorded widely in coastal Alaska (see Gibson and Withrow 2015).

\textit{ Arenaria interpres interpres.} Ruddy Turnstone. Casual in spring, rare in fall. The only spring record is of 1 bird at Simeonof 26 May 1994 (Bailey). In the fall, 6 were at Unga 10 Jul 1983 (Rose), 1 was at Simeonof 20 Aug 1946 (Gabrielson 1946), and 2 – 5 were there 13 – 16 Jul 2001 (Byrd 2001). NOTES: This Holarctic subspecies breeds in northwestern Alaska, across the Palearctic, and in northeastern North America (Nettleship 2020); it is an annual migrant on the Alaska Peninsula (Gill et al. 1981, Ruthrauff et al. 2007) and the Aleutians (Gibson and Byrd 2007). SPECIMENS: MVZ (1).

\textit{ Arenaria melanocephala.} Black Turnstone. Casual in spring and fall. Although, on hearsay, Turner (1886:150) reported the Black Turnstone as “plentiful” at Unga, the only subsequent records are of 1 seen at Simeonof 5 Jun 1960 (Kenyon 1964) and 2 seen there 12 Jul 2021 (Drummond 2021). NOTES: This Beringian species nests primarily on the Yukon–Kuskokwim delta (Gabrielson and Lincoln 1959) but is also an annual migrant and nester on the Alaska Peninsula (Gill et al. 1981, Ruthrauff et al. 2007).

\textit{Calidris ptilocnemis} (sspp.). Rock Sandpiper. Rare in fall and intermittent or casual in spring. The only spring record is of “a few” at Bird Island in May 1984 (Bailey). Fall migrants have been recorded throughout the archipelago: at Unga and Popof (seen 23 Jul 1983; Rose), Turner (24 on 1 Aug 2006, Byrd and Williams 2006), Big Koniuji (1 on 5 Jul 1976, Day), Simeonof (5 on 20 Aug 1946, Gabrielson 1946; 19 from 13 to 16 Jul 2001, Byrd 2001), Bird (4 on 14 Jul 2001, Byrd 2001), and Chernabura (3 in early Jul 1994, Bailey; 3 from 14 to 16 Jul 2001, Byrd 2001). NOTES: Following Hellmayr and Conover (1948), Gabrielson and Lincoln (1959:368) stated that subspecies \textit{couesi} is a breeding resident in the Shumagins, but no subsequent observations have suggested breeding; furthermore, all birds have been seen on beaches, not in inland nesting habitat, suggesting both an absence of nesting and that all birds were on passage. Subspecies \textit{couesi} breeds on the Alaska Peninsula and in the Aleutians (Gill et al. 1981, Tibbitts et al. 1996, Gibson and Byrd 2007, Savage et al. 2018, Gill et al. 2020) and probably accounts for the Rock Sandpipers seen in
the Shumagins, but subspecies *tschuktschorum* of the Bering Sea islands also may occur there on passage to and from areas where it winters in south-central Alaska.

Gallinago delicata. Wilson’s Snipe. Uncommon local breeder. Nests, young, or breeding behavior have been recorded at Unanga (Gronholdt, Rose), Popof (29 Jun 1997, Day), Andronica (Bailey 1978), and Simeonof (Bailey 1994, Schroeder 1994, Byrd 2001, Byrd and Williams 2006). **Notes:** This Nearctic species breeds on the Alaska Peninsula (Gill et al. 1981, Tibbitts et al. 1996, Savage et al. 2018) and the eastern Aleutians (Gibson and Byrd 2007). **Specimens:** USNM (1).

Tringa incana. Wandering Tattler. Rare in spring and fall. In the spring, seen at Nagai (1 collected 16 May 1936, Murie 1959), Big Koniuji (1 on 10 Jun 1973, Sowl 1973; 3 in May and Jun 1985, 1 on 10 Jun 1989, Bailey), Little Koniuji (1 in May 1993, Bailey 1993a), and Simeonof (2 in May 1994, Bailey 1994). In the fall, seen at Big Koniuji (up to 4 from 28 Jun to 4 Aug 1976, Day; 17 Jul 1977, Bailey; 2 in Jul 1986, Bailey) and Simeonof (≥ 1 on 13 and 14 Jul 2001, Byrd 2001). **Notes:** This Beringian species is rare in spring and fall on the Alaska Peninsula (Gill et al. 1981, Tibbitts et al. 1996) and uncommon in spring and fall in the Aleutians (Gibson and Byrd 2007). **Specimens:** USNM (1).

Tringa flavipes. Lesser Yellowlegs. Casual in spring. One was seen at Simeonof 26 May 1994 (Bailey 1994). **Notes:** This Nearctic species is an annual migrant on the Alaska Peninsula (Gill et al. 1981, Tibbitts et al. 1996) and casual in spring and early summer throughout the Aleutians (Gibson and Byrd 2007).

Tringa melanoleuca. Greater Yellowlegs. Casual in fall. One bird was seen at Simeonof 19 Jul 1995 (Stahl). **Notes:** In the fall, this Nearctic species is annual on the Alaska Peninsula (Gill et al. 1981, Tibbitts et al. 1996) and casual in the Aleutians (Gibson and Byrd 2007).

Phalaropus lobatus. Red-necked Phalarope. Rare breeder and fall migrant; probably more common than indicated here because of occurring principally at sea during migration. Nesting has been recorded only at Simeonof: up to 33 birds mid-Jul 1995 (Stahl); noted on 2 lakes, including 1 pair with young, 13–16 Jul 2001 (Byrd 2001). In the fall, 1 was seen at sea near the Haystacks 19 Aug 1946 (Gabrielson 1946). **Notes:** The Red-necked Phalarope nests on the Alaska Peninsula (Gianini 1917,
Phalaropus fulicarius. Red Phalarope. Uncommon in spring and fall; probably more common than indicated here because it occurs only at sea during migration. In the spring, seen at sea in the Shumagins 15–16 May 1928 (Jaques 1930), common there 23 May 1936 (Murie 1959), and 3 flocks of up to 50 birds each moved past Big Koniuji 5–9 Jun 1976 (Day). In the fall, many flocks of 10–100 birds each were seen at sea near Simeonof 19 Aug 1946 (Gabrielson and Lincoln 1959), and 2 birds were seen southwest of Unga 9 Sep 1973 (R. A. MacIntosh). **NOTES:** This Holarctic species migrates at sea throughout southwestern Alaska (Gabrielson and Lincoln 1959, Gould et al. 1982, Gibson and Byrd 2007). **SPECIMENS:** CAS (1).

Stercorarius pomarinus. Pomarine Jaeger. Rare in spring and fall; probably passes regularly during migration at sea. Spring records are of 1 on 23 May 1936 (Murie 1959), 3 on 2 Jun 1997 (A. Wilson and others, http://www.oceanwanderers.com/Aleut.1.html), and 1 at Simeonof 14 Jun 1995 (Gibson). In the fall, 1 was seen ~15 km south of Unga 10 Sep 1973 (Maclntosh). **NOTES:** This Holarctic species migrates through the region but nests only in the high Arctic (Gabrielson and Lincoln 1959, Gould et al. 1982); it is uncommon at sea in the Aleutians from the spring through the fall (Gibson and Byrd 2007).

Stercorarius longicaudus (pallescens). Long-tailed Jaeger. Casual nonbreeding summer visitor in the outer Shumagins. At least 1 was at Simeonof 13–16 Jul 2001 (Byrd 2001), and single birds were at Chernabura 28 Jun and 9 Jul 1994 (Bailey). **NOTES:** Subspecies pallescens is a widespread nester or visitor on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and is uncommon at sea in the Aleutians from the spring through the fall (Gibson and Byrd 2007).

Uria aalge (inornata) and U. lomvia (arra). Common Murre and Thick-billed Murre. Both species are common local breeders and uncommon outside the breeding season. Approximately 270,000 birds of both species combined nested in the Shumagins in 1977 (Bailey 1978; also see Table 2). Subsequently populations decreased at 3 colonies: Karpa, Castle Rock, and Bird (Table 3). In contrast, the colony at the Twins increased, and a new colony was started by 2010 at Near. Fall sightings are of about 50 Commons in Popof Strait 8 Sep 1973 and many murres 20–30 km southwest of Unga 9–10 Sep 1973 (MacIntosh). In winter, scattered birds, primarily Commons, were seen near Big Koniuji in Nov 1982 (Day), and up to 10 murres at
a time, including some identified as Commons, were seen at Popof in winter 2000–2002 (Hoffman). **Notes:** Several hundred Common Murre carcasses were found on beaches at Simeonof in May–Jun 1994 (Bailey 1994), indicating a large die-off the previous winter or spring. Both subspecies of the murres are Beringian in origin and nest locally throughout the region (Sowls et al. 1978, Gibson and Byrd 2007).

Cepphus columba columba. Pigeon Guillemot. Common breeder; rare in winter. This species nests in low densities almost throughout the archipelago, being recorded everywhere except Egg and Sealion Rocks (Table 2). An estimated 9000 birds nested in the Shumagins in 1977 (Bailey 1978). The colonies at Hall and Atkins islands, formerly the largest in the archipelago, have decreased substantially (Table 4). In spite of the overall decline in numbers in the Shumagins, populations at Simeonof

Table 1 Distribution of Nesting Seabirds Other than Alcids in the Shumagin Islands, Alaska^a^

<table>
<thead>
<tr>
<th>Island</th>
<th>Parasitic Jaeger</th>
<th>Black-legged Kittiwake</th>
<th>Short-billed Gull</th>
<th>Glaucous-winged Gull</th>
<th>Arctic Tern</th>
<th>Fork-tailed Storm-Petrel</th>
<th>Leach’s Storm-Petrel</th>
<th>Northern Fulmar</th>
<th>Red-faced Cormorant</th>
<th>Pelagic Cormorant</th>
<th>Double-crested Cormorant</th>
<th>Unidentified/total cormorants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unga</td>
<td>PB</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Egg</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Popof</td>
<td>PB</td>
<td>B</td>
<td>PB</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>PB</td>
<td>B</td>
<td>PB</td>
<td>B</td>
</tr>
<tr>
<td>Sealion Rocks</td>
<td>—</td>
</tr>
<tr>
<td>Korovin</td>
<td>PB</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Karpa</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>PB</td>
<td>PB</td>
<td>B</td>
<td>—</td>
</tr>
<tr>
<td>Andronica</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>The Haystacks</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
</tr>
<tr>
<td>Nagai</td>
<td>PB</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Peninsula</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Spectacle</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bendel</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Turner</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>The Twins</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>PB</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Near</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Castle Rock</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>PB</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Big Koniuji</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Murre Rocks</td>
<td>—</td>
</tr>
<tr>
<td>Hall</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Herendeen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Atkins</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Little Koniuji</td>
<td>B</td>
<td>—</td>
</tr>
<tr>
<td>Simeonof</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bird</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>PB</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Chernabura</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

^a^B, breeding; PB, probably breeding; B?, breeding status unclear; —, not breeding.
and Chernabura increased as a result of the removal of introduced foxes (Table 4); for example, Gabrielson (1946) said the guillemot was common at Simeonof, but it was not reported there again until 1995, after which the population increased. Up to 9 birds at a time were seen near Popof in winter 2000–2002 (Hoffman).

Notes:
The Nearctic subspecies *columba* nests widely in southwestern Alaska (Gabrielson and Lincoln 1959, Murie 1959, Sowls et al. 1978, Gibson and Byrd 2007). Specimens: SDNHM (2), UAM (2), USNM (1), location unknown (3; see Dall 1873 and Gabrielson and Lincoln 1959).

Brachyramphus marmoratus. Marbled Murrelet. Rare breeder and resident; found throughout but probably nests only in the outer Shumagins (Table 2). In the inner Shumagins, 2 were seen in Popof Strait 29 Jun 1997 (Day), and 1 was at Unga 29 Jul 2019 (Schuette, eBird). In the outer Shumagins, at Big Koniuji, a few birds were seen 11 Jul 1973 (G. J. Divoky pers. comm.), scattered birds, including a possible juvenile 18 Aug, occurred in summer 1976 (Day), and 2 birds were seen on 1 Jul 1986 (Bailey). Then from 11 Jun to 4 Jul 1990 a crew collected 21 specimens

Table 2 Distribution of Nesting Alcids in the Shumagin Islands, Alaska

<table>
<thead>
<tr>
<th>Island</th>
<th>Common Murre</th>
<th>Thick-billed Murre</th>
<th>Pigeon Guillemot</th>
<th>Marbled Murrelet</th>
<th>Kittlitz’s Murrelet</th>
<th>Ancient Murrelet</th>
<th>Cassin’s Auklet</th>
<th>Parakeet Auklet</th>
<th>Least Auklet</th>
<th>Crested Auklet</th>
<th>Rhinoceros Auklet</th>
<th>Horned Puffin</th>
<th>Tufted Puffin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unga</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Egg</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Popof<sup>b</sup></td>
<td>B?</td>
<td>B?</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Sealion Rocks</td>
<td>—</td>
</tr>
<tr>
<td>Korovin</td>
<td>—</td>
</tr>
<tr>
<td>Karpa</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Andronica</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>The Haystacks</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>PB</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Nagai</td>
<td>—</td>
</tr>
<tr>
<td>Peninsula</td>
<td>—</td>
</tr>
<tr>
<td>Spectacle</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Bendel</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Turner</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>The Twins</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Near</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Castle Rock</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Big Koniuji</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>PB</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Murre Rocks</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Hall</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Herendeen</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Atkins</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Little Koniuji</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Simeonof</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Bird</td>
<td>B</td>
<td>B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Chernabura</td>
<td>—</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

^aB, breeding; PB, probably breeding; B?, breeding status unclear; —, not breeding.

^bThe identity of the murres nesting on Popof Island is uncertain.
(some in breeding condition) near the mouth of Flying Eagle Harbor, where the species was common and birds were heard calling while flying inland to suspected nest sites in a talus field above the harbor (J. F. Piatt in litt.). At Little Koniuji, 2 pairs were seen 2 Jul 1976 and several scattered birds were seen on other days that summer (Day), 2 were seen 1 Jun 1986 (Bailey), and 4 were seen 19 Jun 1993 (Bailey 1993a). In the outer Shumagins away from Big and Little Koniuji the only sighting is of 2 at Chernabura 15 July 2011 (AMNWR unpubl. data). In addition, almost all Marbled Murrelets seen on seabird transects in the Shumagins occurred near Big and Little Koniuji; a few also were seen near Andronica and in Unga Strait (North Pacific Pelagic Seabird Database data from J. F. Piatt and G. Drew in litt.). Up to 29 birds at a time were seen near Popof winter 2000–2002 (Hoffman), and 5 were seen there 21 Feb 2015 (F. Bottom, eBird).

Notes:
This species breeds locally in alpine habitat near deep, protected bays along the Alaska Peninsula (Nelson 2020) and in

Table 3 Estimates or Counts of Murres at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Karpa The Haystacks</th>
<th>The Twins</th>
<th>Near</th>
<th>Castle Rock</th>
<th>Bird</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>240,000</td>
<td>30,000</td>
<td>200</td>
<td>0</td>
<td>8000</td>
<td>24,000</td>
</tr>
<tr>
<td>1976</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>220,000</td>
<td>9900</td>
<td>400</td>
<td>0</td>
<td>8000</td>
<td>24,000</td>
</tr>
<tr>
<td>1984</td>
<td>7000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>80,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>7774</td>
<td></td>
<td></td>
<td>“hundreds”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>>>377c</td>
<td></td>
<td></td>
<td></td>
<td>Byrd 2001</td>
</tr>
<tr>
<td>2006</td>
<td>2694</td>
<td>402</td>
<td></td>
<td></td>
<td></td>
<td>Byrd and Williams 2006</td>
</tr>
<tr>
<td>2010</td>
<td>1290</td>
<td>2570</td>
<td>354</td>
<td></td>
<td></td>
<td>Rojek and Williams 2010</td>
</tr>
<tr>
<td>2011d</td>
<td>7642</td>
<td>1191</td>
<td>248</td>
<td></td>
<td></td>
<td>AMNWR unpubl. data</td>
</tr>
</tbody>
</table>

Both species pooled; for a given island/colony and year, numbers of identified birds are added to those of unidentified birds.

Boone for the Haystacks, Byrd for Bird.

Count plus “hundreds on water near cliffs.”

This appeared to be a year of breeding failure, so birds probably visited colonies irregularly.

Table 4 Estimates or Counts of the Pigeon Guillemot at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th>Colony</th>
<th>Year</th>
<th>Hall</th>
<th>Atkins</th>
<th>Simeonof</th>
<th>Chernabura</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1973</td>
<td>1500</td>
<td>2500</td>
<td>0</td>
<td></td>
<td>Sowl 1973</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>1200</td>
<td>2000</td>
<td></td>
<td></td>
<td>Moe and Day 1979</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>1200</td>
<td>2000</td>
<td>0</td>
<td>“scattered pairs”</td>
<td>Bailey 1978</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Bailey 1985</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>B. Anderson, USFWS 2020</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>184</td>
<td>206</td>
<td>119</td>
<td></td>
<td>Byrd 2001</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td>Byrd and Williams 2006</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>71</td>
<td>73</td>
<td>218</td>
<td>187</td>
<td>AMNWR unpubl. data</td>
</tr>
</tbody>
</table>

Notes: This species breeds locally in alpine habitat near deep, protected bays along the Alaska Peninsula (Nelson 2020) and in
the Aleutians (Gibson and Byrd 2007). **Specimens:** AMNH (8), UWBM (2), CAS (1). 11 of the 21 specimens collected at Big Koniuji in 1990 appear to be represented only by tissue samples.

Brachyramphus brevirostris. Kittlitz’s Murrelet. Rare summer visitor and probable breeder. Occurs throughout the archipelago, most commonly at Big and Little Koniuji. At Big Koniuji, 3 birds were seen in late May 1985, 1 was seen in Jun 1985, 10 were seen 1 Jun 1986 (Bailey 1985, 1986), and 2 were seen 15 Jul 2001 (Byrd 2001). At Little Koniuji, several were seen regularly May–Jun 1993, including a flock of 20 on 17 Jun 1993 (Bailey 1993a). Almost all Kittlitz’s seen on seabird transects in the Shumagins have been near Big and Little Koniuji, although a few also were seen near Andronica and in Unga Strait (Piatt and Drew in litt.). Also, two were seen at sea between Nagai and Sealion Rocks 14 Jun 1973 (Sowl 1973), and some were at the Haystacks and the Twins Jul 1977 (Bailey). **Notes:** Like the Marbled Murrelet, Kittlitz’s breeds locally in alpine habitat near deep, protected bays along the Alaska Peninsula and in the Aleutians (Gibson and Byrd 2007, Day et al. 2020a). **Specimens:** AMNH (1).

Synthliboramphus antiquus. Ancient Murrelet. Common or abundant local breeder and uncommon fall migrant; nests primarily on the outer islands (Table 2). In 1976 and 1977 at least 33,000 birds nested on at least 8 of the Shumagins (Bailey 1978) and the species was seen at 2 other islands. It was abundant at Karpa (Bailey 1978), the Haystacks (Bailey 1978), the Twins (Bailey 1978), and Near (Bailey 1978). The numbers reported for Peninsula Island were 3000 (USFWS 2020), Castle Rock 30,000, (Moe and Day 1979), and Hall 3000 (Moe and Day 1979). Only a few were at Murre Rocks (Day). The Ancient Murrelet probably nests at Bird Island, where it was heard calling at night in Jun 1984 (Bailey and McCargo 1984) and a few were seen 13–15 Jun 1995 (Byrd). One chick seen at Bendel 31 Jul 2006 (Byrd and Williams 2006) could have come from nearby Peninsula Island. Large flocks seen in early summer probably probably represent birds aggregating between the laying of the first and second eggs: 2000 in Yukon Strait, Big Koniuji, 7 Jun 1976 (Day); 5000 near Nagai 10 Jun 1973 (Sowl 1973); “many thousands” between Little Koniuji and Chernabura 11–12 Jun 1973 (>190 murrelets/km²; Sowl 1973). During the summer Ancient Murrelets are also seen at sea, e.g., in Popof Strait 7 Jun 1973 and between Nagai and Sealion Rocks 14 Jun 1973 (Sowl 1973); within 9 km of Atkins 18 Jun 1995 (R. Merrick); near Simeonof, Chernabura, and Bird 13–16 Jul 2001 (Byrd 2001). In the fall, scattered birds were seen near Simeonof 19 Aug 1946 (Gabrielson 1946), and two were seen ~30 km southwest of Unga 9 Sep 1973 (MacIntosh). **Notes:** Information on population trends is nonexistent. This Beringian species nests throughout southwestern Alaska (Gabrielson and Lincoln 1959, Sowls et al. 1978, Gibson and Byrd 2007). **Specimens:** USNM (2), UWBM (2), AMNH (1), SUI (1), UAM (1).

Ptychoramphus aleuticus aleuticus. Cassin’s Auklet. Common or abundant local breeder, nesting primarily on the outer islands (Table 2); rare outside the breeding season. At least 46,000 birds nested in the Shumagins in 1977 (Bailey 1978), including, presumably, the Haystacks (Bailey 1978), the Twins (Bailey 1978), Castle Rock (Moe and Day 1979, Byrd 2001, Byrd and Williams 2006), and Hall (Sowl 1973, Moe and Day 1979). Also seen near Nagai (14 Jun 1973; Sowl 1973) and Herendeen (11 Jun 1973; Sowl 1973). Scattered birds have been seen elsewhere throughout the islands in the spring and summer (Murie 1959, Sowl 1973, Byrd and Williams 2006), with up to 1057 within 9 km of Atkins on 18 Jun 1995 (Merrick). In the fall and winter, single auklets believed to be Cassin’s were seen southwest of Unga 9 Sep 1973 (MacIntosh) and near Hall 19 Nov 1982 (Day), with scattered birds also seen just northwest of the Shumagins the following day (Day). **Notes:** Information on population trends is nonexistent. Stejneger (in Golder 1925:80) speculated that either this species or *Cerorhinca* was the *taucher* seen by Steller at Nagai 30–31 Aug
Aethia psittacula. Parakeet Auklet. Widespread breeder in generally low densities from the Haystacks to all outer islands (Table 2). Bailey (1978) estimated the population at ~26,000 birds in 1977. However, numbers have declined substantially at Castle Rock, Cape Thompson on Big Koniuji, Hall, Herendeen, and Atkins (Table 5). Notes: This Beringian species nests throughout southwestern Alaska (Gabrielson and Lincoln 1959, Sowls et al. 1978, Gibson and Byrd 2007). Specimens: UAM (1), USNM (1).

Aethia pusilla. Least Auklet. Rare summer visitor and probable breeder; seen only in the outer Shumagins (Table 2). On 24 Jul 1976 one bird flew from a probable nest site (small talus patch) on the northern side of Castle Rock, where Crested Auklets also nested (Moe and Day 1979, Day), but the species has not been seen there subsequently (Byrd and Williams 2006, AMNWR unpubl. data), so its present status is unclear. Four birds were seen at Simeonof 5 Jun 1960 (Kenyon 1964), and 5 were there 18–23 Jun 1968 (Troyer), but no nesting habitat is available. The remains of four Least Auklets were found in an eagle aerie at Herendeen in Jun 1960 (Kenyon 1964), and the wing of a freshly killed Least Auklet was found in an aerie near Koniuji Strait 30 August 1976 (Moe and Day 1979). The only record since the 1970s is of a flock of 20 seen at Bird 14 Jul 2001 (Byrd 2001). Notes: This Beringian species, which is abundant in the Aleutians and Bering Sea region (Gabrielson and Lincoln 1959, Sowls et al. 1978, Gibson and Byrd 2007), nests as far east as the Semidi Islands (Hatch and Hatch 1983).

Aethia cristatella. Crested Auklet. Rare to abundant breeder; uncommon to abundant in winter. About 42,000 birds nested in 5 colonies at 4 islands, all in the outer Shumagins, in 1977 (Bailey 1978; also see Table 2). At possibly all colonies, however, the population has declined substantially. The Cape Thompson population on Big Koniuji has disappeared (Table 6), the small populations on the Twins and Near (Bailey 1978) may have disappeared by 2011 (AMNWR unpubl. data), and the population at Castle Rock has nearly disappeared. The largest former colony, at Yukon Harbor on Big Koniuji, has undergone the largest numerical decline (Table 6). Townsend (1913), who had visited other large auklet colonies in the Bering Sea, described this as one of the largest colonies he had seen—as large as the massive Least Auklet colony on the Pribilof Islands. The Yukon Harbor population, however, had nearly disappeared by the mid-1980s. This species forages widely in the southern
Shumagins during the summer (Gabrielson and Lincoln 1959, Sowl 1973, Byrd 2001, Bailey 1978). It also winters, sometimes in substantial numbers: 45–50 birds were seen near Big Koniuji, and scattered small flocks were seen in the northern Shumagins, 18–19 Nov 1982 (Day), and a flock of ~18,000 was seen in the Shumagins Feb 1972 (Byrd). However, the species was not seen near Popof in winter 2000–2002 (Hoffman). Notes: This Beringian species nests locally throughout southwestern Alaska (Gabrielson and Lincoln 1959, Sowls et al. 1978, Gibson and Byrd 2007).

Specimens: UAM (27), USNM (3), CAS (2), UWBM (2), AMNH (1), UMMZ (1).

Cerorhinca monocerata. Rhinoceros Auklet. Rare breeder (Table 2). In 1977, about 40 birds nested at Near (Bailey 1978), but there have been no subsequent records. Probably also nests at Simeonof, particularly on the Murie Islets (4 near them 14 Jul 1995, USFWS 2020; 30 birds 17 Jul 1995, S. A. Hatch; 7 birds 15–16 Jul 2011, AMNWR unpubl. data), and at Chernabura (2 birds 10 Jul 1994, Bailey; 5 birds 14–16 Jul 2001, Byrd 2001; 1 bird 15 Jul 2011, AMNWR unpubl. data). Up to 2 birds also have been seen at Spectacle (14 Jul 2011, AMNWR unpubl. data), Big Koniuji (early Jul 2002, Maccormick 2002), and Bird (13–15 Jun 1995, Byrd); 3 birds were seen at sea within 9 km of Atkins 18 Jun 1995 (Merrick). Notes: This Beringian species also nests near the Shumagins on the Sandman Reefs (Bailey and Faust 1980) and Semidi Islands (Hatch and Hatch 1983).

Fratercula corniculata. Horned Puffin. Common or abundant breeder and uncommon outside the breeding season; has nested on every island except Sealion Rocks (Table 2), with ~150,000 birds nesting in 1977 (Bailey 1978). Populations subsequently decreased at all 4 large colonies: Karpa, Near, Castle Rock, and the Koniuji Strait colony on Big Koniuji (Table 7). Conversely, populations appear to be increasing at both Simeonof and Chernabura (Table 7). In the fall and winter, hundreds were seen near Popof and Unga 8–10 Sep 1973 (MacIntosh), and 40–50 newly molted birds were seen at Big Koniuji 19 Nov 1982 (Day). Notes: Recorded at Nagai as early as 30–31 Aug 1741 by Steller (Stejneger in Golder 1925:80). This Beringian species nests throughout southwestern Alaska (Gabrielson and Lincoln 1959, Murie 1959, Sowls et al. 1978, Gibson and Byrd 2007). Specimens: ANSP (1), location unknown (1; see Dall 1873).
Fratercula cirrhata. Tufted Puffin. Common or abundant breeder; rare outside the breeding season. This species has nested on every island except Sealion Rocks (Table 2), with a population estimated at ~190,000 in 1977. Populations have decreased substantially at the 5 largest colonies: Karpa, Castle Rock, Hall, Atkins, and Bird (Table 8). At Simeonof, where the species apparently did not nest in 1960 (Kenyon 1964) or 1977 (Bailey 1978), “a dozen burrows” were found in 1994 (Bailey 1994), and numbers increased thereafter, with about 130 birds counted in 2011 (AMNWR unpubl. data). In the fall and winter, birds were seen at sea near Unga and Popof 8–10 Sep 1973 (MacIntosh), and a few were at various points 19–20 Nov 1982 (Day).

Notes: Recorded at Nagai by Steller 30–31 Aug 1741 (Stejneger in Golder

Table 7 Estimates of Counts of the Horned Puffin at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Karpa</td>
<td>7000</td>
<td>60,000</td>
<td>12,000</td>
<td>>500</td>
<td>5000</td>
<td>616</td>
<td>1135</td>
<td>677</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Near</td>
<td>7000</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
<td>"10s of 1000s"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Rock</td>
<td>20,000</td>
<td>60,000</td>
<td>60,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Koniuji</td>
<td>140,000</td>
<td>63,000</td>
<td>66,000^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aEstimates for Koniuji Strait and Granite Cove area except that for 1977, which is for the total island.

^bMaximal number includes a mixed-species flock of 1700 Horned and Tufted puffins offshore.

^cMaximal number includes a mixed-species flock of 300 Horned and Tufted puffins offshore.

Fratercula cirrhata. Tufted Puffin. Common or abundant breeder; rare outside the breeding season. This species has nested on every island except Sealion Rocks (Table 2), with a population estimated at ~190,000 in 1977. Populations have decreased substantially at the 5 largest colonies: Karpa, Castle Rock, Hall, Atkins, and Bird (Table 8). At Simeonof, where the species apparently did not nest in 1960 (Kenyon 1964) or 1977 (Bailey 1978), “a dozen burrows” were found in 1994 (Bailey 1994), and numbers increased thereafter, with about 130 birds counted in 2011 (AMNWR unpubl. data). In the fall and winter, birds were seen at sea near Unga and Popof 8–10 Sep 1973 (MacIntosh), and a few were at various points 19–20 Nov 1982 (Day). **Notes:** Recorded at Nagai by Steller 30–31 Aug 1741 (Stejneger in Golder

Table 8 Estimates of Counts of the Tufted Puffin at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Karpa</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>80,000</td>
<td>80,000</td>
<td>8000</td>
<td>8000</td>
<td>85,000</td>
<td>85,000</td>
<td>85,000</td>
<td></td>
</tr>
<tr>
<td>Castle Rock</td>
<td>85,000</td>
<td>80,000</td>
<td>80,000</td>
<td>5200</td>
<td>5200</td>
<td>12,000</td>
<td>12,000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Hall</td>
<td>2000</td>
<td>2000</td>
<td>5200</td>
<td>12,000</td>
<td>16,000</td>
<td>3000</td>
<td>3000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Atkins</td>
<td>8000</td>
<td>8000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>16,000</td>
<td>16,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>"10s of 1000s"</td>
<td>"10s of 1000s"</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
<td></td>
</tr>
</tbody>
</table>

^aProbable breeding failure.

^bMaximal number includes a mixed-species flock of 1700 Horned and Tufted puffins offshore.

^cMaximal number includes a mixed-species flock of 300 Horned and Tufted puffins offshore.

Rissa tridactyla pollicaris. Black-legged Kittiwake. Locally common breeder and resident. About 160,000 birds nested in the Shumagins in 1977 (Bailey 1978). The species has nested on at least 12 islands (Table 1). Nonbreeders roost on shores throughout the archipelago and are seen widely in both nearshore and offshore waters. The largest breeding colonies have been at the Haystacks, Castle Rock, Cape Thompson on Big Koniuji (Figure 3), and Bird Island. Populations have declined dramatically at Castle Rock and Bird, and the number of nests at Cape Thompson appears to have declined much more than has the population (Table 9). At the same time, new colonies have appeared since the 1970s at Popof and at Big Koniuji (Table 9). In the fall and winter, thousands were seen in Popof Strait 8 Sep 1973 (MacIntosh), and at least 200 were at Big Koniuji 19 Nov 1982 (Day). **NOTES:** Beringian subspecies *pollicaris* nests throughout southwestern Alaska (Murie 1959, Sowls et al. 1978, Gibson and Byrd 2007).

Specimens: MSB (2), USNM (2), UWBM (1) location unknown (2; see Dall 1873).

Xema sabini. Sabine’s Gull. Rare in fall; has probably also occurred in spring (Gould et al. 1982). One or two birds per day were seen migrating at sea near the Shumagins and nearby Alaska Peninsula 24 Sep–18 Oct 1973 (MacIntosh). **NOTES:** This Holarctic species nests as far south as upper Bristol Bay (Murie 1959) and migrates through southwestern Alaska to and from its winter range in the Pacific off South America (Day et al. 2020b).

Chroicocephalus philadelphia. Bonaparte’s Gull. One report without details of a flock at Popof 20 Jun 1940 (Gabrielson 1944a). **NOTES:** The species does not nest beyond the tree limit at the base of the Alaska Peninsula (Gabrielson and Lincoln 1959), but it is a common visitor on the Bering Sea coast of the Alaska Peninsula.
from spring through fall (Gill et al. 1981) and has been reported from the eastern Aleutians (see Gibson and Byrd 2007).

Notes: This Palearctic species has been recorded widely in southwestern Alaska (Gibson and Withrow 2015) from the western Aleutians (Gibson and Byrd 2007) to the Alaska Peninsula (Bartonek and Gibson 1972, Gill et al. 1981).

Larus canus (kamtschatschensis). Common Gull. One report. Two at Unga Spit, Unga, 2 Jun 1997 were well described, including their size, which was noticeably larger than the Short-billed Gull, and their yellow eyes (D. Filby and J. Brodie-Good, http://www.oceanwanderers.com/Aleut.1.html). Notes: The eastern Palearctic subspecies kamtschatschensis is rare in spring in the western Aleutians (Gibson and Byrd 2007). It has been recorded in the central Aleutians (Gibson and Byrd 2007) and as far north in the Bering Sea as St. Lawrence Island (Lehman 2019).

Larus brachyrhynchus. Short-billed Gull. Uncommon breeder and nonbreeding summer visitor; probably winters in small numbers. At Popof, 100–150 defensive birds were in a marsh 29 Jun 1997 (Day). At Bendel, ~300 pairs nested in 1977 (Bailey 1978), and the colony was still active in 1987 (Bailey) and 2006 (Byrd and Williams 2006), At Simeonof were 10–15 pairs in 1964 (Kenyon 1964) and 1994 (Bailey 1994),

Table 9: Estimates or Counts of the Black-legged Kittiwake at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Popof (Popof Head)</th>
<th>Castle Rock</th>
<th>Big Koniuji (Cape Thompson)</th>
<th>Big Koniuji (Flying Eagle Harbor)</th>
<th>Bird Island</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>6000</td>
<td>4800</td>
<td>0</td>
<td>43,000</td>
<td>Sowl 1973</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>11,610</td>
<td>10,690</td>
<td>(7904–7947 nests)</td>
<td>0</td>
<td>Moe and Day 1979, R. H. Day</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>15,800</td>
<td>(7800 nests)</td>
<td>43,000</td>
<td>Bailey 1978</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td>11,600</td>
<td>12,000</td>
<td>(700 nests)</td>
<td>Bailey 1985</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td>12,000</td>
<td></td>
<td>(33 nests)</td>
<td>Bailey 1985</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td>0</td>
<td>(60 nests)</td>
<td>9000</td>
<td>Bailey and Norvell 1987</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>2000</td>
<td>575</td>
<td>(324 nests)</td>
<td></td>
<td>J. McCullough, USFWS 2020; S. Hatch, USFWS 2020b</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>880</td>
<td>7566</td>
<td>(5345 nests)</td>
<td>(125 nests)</td>
<td>Byrd 2001</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>228</td>
<td>10,023</td>
<td>(4749 nests)</td>
<td></td>
<td>Byrd and Williams 2006</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>884</td>
<td>6568</td>
<td>632</td>
<td>(38 nests)</td>
<td>AMNWR unpubl. data</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Estimate is for total island, although the only colony known at that time was at Cape Thompson.

bMcCullough for Popof, Hatch for Bird.
40 pairs in 2006 (Byrd and Williams 2006). At Chernabura were ~15 pairs in 1994 (Bailey 1994), ≥150 birds in 2006 (Byrd and Williams 2006), and ≥200 in 2011 (AMNWR unpubl. data; see also Table 1). Nonbreeders occur widely in summer (e.g., 100 in the Koniuji group in 1976, Day) and are particularly common at Little Koniuji (Bailey 1993a). **NOTES:** Short-billed Gulls nest the length of the Alaska Peninsula (Murie 1959, Gill et al. 1981), possibly west to Unimak Island, and are uncommom in winter as far west as the central Aleutians (Gibson and Byrd 2007).

Larus argentatus (*smithsonianus*). Herring Gull. Casual in spring. One subadult was seen near the Shumagins 15–16 May 1928 (Jaques 1930), and a one-year-old was seen near Nagai 14 May 1987 (Day). **NOTES:** Both the Nearctic *smithsonianus* and the distinctive Beringian *vegae* of the northern Bering Sea have been recorded in the eastern Aleutians (Gibson and Byrd 2007), but *smithsonianus* does not nest on the Alaska Peninsula (contra Gianini 1917).

Larus schistisagus. Slaty-backed Gull. One reported without details at Popof 10 Jun 2005 (K. Oeser, eBird). **NOTES:** This Beringian species is casual or intermittent at any season in the eastern Aleutians (Gibson and Byrd 2007).

Larus glaucescens. Glaucous-winged Gull. Locally common breeder and resident, nesting on every island/rock except Little Koniuji and Murre Rocks (Table 1). Nonbreeders roost on shores and occur widely in both nearshore and offshore waters. In the 1970s the estimated nesting population in the Shumagins was 27,500–28,500 birds, of which ~25,000 were at Unga, Egg, Popof, Karpa, Nagai, and Hall (Bailey 1978). There are no recent counts for most of these colonies, but Glaucous-winged Gulls nest at 4 colonies on 3 islands where introduced foxes have been removed: Granite Cove and Flying Eagle Harbor on Big Koniuji, Simeonof, and Chernabura (Table 10). In the fall and winter, thousands were seen at sea between Popof and Unga 8 Sep 1973, some were seen ~30 km south of Unga 10 Sep 1973 (both MacIntosh), and at least 100 were at Big Koniuji 19 Nov 1982 (Day). **NOTES:** This widespread Beringian species is a common or abundant resident on the Alaska Peninsula (Gill et al. 1981) and the Aleutians (Gibson and Byrd 2007). **SPECIMENS:** CM (1), MVZ (1).

Larus hyperboreus (ssp.). Glaucous Gull. Probably rare in spring or summer. Single second-year birds were seen among Glaucous-winged Gulls at Popof 20 May 1972 (Gibson) and at Hall 17 Jun 1976 (Day). **NOTES:** This Holarctic species winters throughout southwestern Alaska (Murie 1959), being rare in the Aleutians from fall

Table 10 Estimates or Counts of the Glaucous-winged Gull at Selected Colonies in the Shumagin Islands, Alaska, by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Big Koniuji (Granite Cove)</th>
<th>Big Koniuji (Flying Eagle Harbor)</th>
<th>Simeonof</th>
<th>Chernabura</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Sowl 1983</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>Moe and Day 1979</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Bailey 1978</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>~1100</td>
<td>30</td>
<td>~200</td>
<td>Bailey and McCargo 1984</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>30</td>
<td>340</td>
<td>Simeonof</td>
<td>Bailey 1986</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>1600</td>
<td>0</td>
<td>Chernabura</td>
<td>Bailey and Norvell 1987</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>>750<sup>a</sup></td>
<td>2581</td>
<td>1531</td>
<td>Byrd 2001</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td>Byrd 2001</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td>AMNWR unpubl. data</td>
<td></td>
</tr>
</tbody>
</table>

^aEstimate of birds just in colonies.
to spring (Gibson and Byrd 2007). It is unclear whether these birds represent the eastern Palearctic subspecies *pallidissimus* or Beringian *barrovianus*.

Sterna paradisaea. Arctic Tern. Rare to uncommon local breeder and summer visitor. This species nests on and near Popof, Simeonof, and probably Chernabura (Table 1) and occurs as scattered nonbreeders throughout the rest of the archipelago (e.g., two at Little Koniuji 31 Jul 1976, Day). At Range, an islet near Popof where Dall (1873) recorded nesting, hundreds nest in some years (Bailey 1978); 30 pairs were seen in 1984 (Bailey and McCargo 1984). Day found at least 12 birds and 1 nest inland on Popof 28 Jun 1997. The Arctic Tern nests in numbers at Simeonof, especially on the Murie Islets (~95 pairs 6 Jun 1960. Kenyon 1964; ~100 pairs Jun 1984, Bailey and McCargo 1984), but also inland in some years (e.g., 1968, Jones 1970; 2001, Byrd 2001; 2006, Byrd and Williams 2006). At Chernabura, it has been recorded during every visit (Bailey 1994, Byrd 2001, Byrd and Williams 2006, Stahl). The latest fall record is of ~50 birds seen 30 km southwest of Unga 9 Sep 1973 (MacIntosh). **Notes:** This Holarctic species is a locally abundant nester and summer visitor on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018); it is an uncommon or rare migrant throughout the Aleutians, where it nests only on the central and western islands (Gibson and Byrd 2007). **Specimens:** SDNHM (1), USNM (1), location unknown (2; see Dall 1873).

Gavia stellata. Red-throated Loon. Rare nonbreeding summer visitor, recorded as singles or pairs at Simeonof: 5 Jun 1960 (Kenyon 1964), late Jun 1968 (Troyer), 6 Jun 1987 (Bailey), May–Jun 1994 (Bailey 1994), and 20 Aug 1946 (Gabrielson 1946). **Notes:** This Holarctic species both nests and winters on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and is an uncommon or fairly common breeder and rare wintering bird in the Aleutians (Gibson and Byrd 2007), so it probably winters in the Shumagins too.

Gavia pacifica. Pacific Loon. Rare to fairly common in spring, fall, and winter. In spring, one was seen at Simeonof 26 May 1994 (Bailey 1994), and 2 were seen in the Shumagins 2 Jun 1997 (A. Wilson and others, http://www.oceanwanderers.com/Aleut.1.html). In the fall, ~25 flew northeast up Unga Strait 10 Oct 1974, and the species was common in the same area 24 Sep–18 Oct 1975 (MacIntosh). Up to 8 unidentified loons, some probably the Pacific, were seen near Popof winter 2000–2002 (Hoffman), and one Pacific was seen there 20 Feb 2015 (F. Bottom, eBird). **Notes:** This Nearctic species nests on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and occurs in the eastern Aleutians from fall to spring (Gibson and Byrd 2007).

Gavia immer. Common Loon. Uncommon nonbreeding resident. Recorded only in the outer Shumagins: Big Koniuji (1 bird 14–15 Jun 1976, Day), Simeonof (flock of 8 migrating 8 Jun 1960, Kenyon 1964; 1 bird 18–23 Jun 1968, Troyer; 1 found dead 2 Sep 1872, Dall 1873), Bird (single birds 21 May and 6 Jun 1984, Bailey and McCargo 1984), and Chernabura (one bird 24 Jun–14 Jul 1994, Bailey 1994). One was seen at Popof 4 Apr 2018 (D. Briem, eBird). **Notes:** The lack of records from the inner Shumagins is surprising, as the species nests on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018), nests locally and winters in the Aleutians (Gibson and Byrd 2007), and winters commonly at Kodiak (Forsell and Gould 1981).

Gavia adamsii. Yellow-billed Loon. Rare in migration and summer. Three birds were seen in the Shumagins 2 Jun 1997 (A. Wilson and others, http://www.oceanwanderers.com/Aleut.1.html), 1 was seen near Chernabura 11 Jun 1973 (Sowl
1973), and 1 basic-plumaged bird was at Big Konjuji 16 Aug 1976 (Day). **NOTES:**
This Holarctic species is rare in the Aleutians from fall to spring (Gibson and Byrd 2007) and winters in the Kodiak area in small numbers (Forsell and Gould 1981), so it probably winters in the Shumagins too.

Phoebastria nigripes. Black-footed Albatross. Rare in summer. Seen in and near the Shumagins 16 May 1928 (Jaques 1930) and 8 Jun 1943 (Arnold 1948). Occasionally seen on the outer continental shelf just south of the Shumagins in Jul 1982, 1984, and 1985, although it was much more common over the shelf break than on the shelf itself (Day). **NOTES:** The Black-footed Albatross occurs in the Gulf of Alaska year round, primarily in oceanic water beyond the continental shelf (Gould et al. 1982, Day 2006); it is uncommon over oceanic water near the eastern Aleutians in the summer (Gibson and Byrd 2007).

Hydrobates furcatus furcatus and *H. leucorhous leucorhous*. Fork-tailed Storm-Petrel and Leach’s Storm-Petrel. Both are locally abundant breeders, recorded nesting on at least 9 islands (Table 1). An estimated 20,000 birds of both species combined nested on 6 islands in 1976 and 1977: the Haystacks, Peninsula, the Twins, Near, Castle Rock, and Hall (Bailey 1978, Moe and Day 1979). In addition, the Fork-tailed was recorded at night around a ship at two points around Nagai in 1973 (Sowl 1973). Both species were heard vocalizing on the Murie Islets and on an unnamed islet just south of Simeonof 6 Jun 1984, and both were heard calling from cliffs at Bird Island 25 May 1984 (Bailey and McCargo 1984). Their absence from Simeonof itself was probably due to fox predation. Fork-tailed Storm-Petrels are seen at sea among these islands during the summer (Murie 1959; Day) and were recorded in the fall southwest of Unga 9–10 Sep 1973 (MacIntosh). **NOTES:** Both species nest locally in the western Gulf of Alaska (Sowls et al. 1978) and throughout the Aleutians (Gibson and Byrd 2007). **SPECIMENS:** *furcatus*, SDNHM (1), UAM (1), USNM (1); *leucorhous*, USNM (4), UWBM (1).

Fulmarus glacialis rodgersii. Northern Fulmar. Uncommon local breeder and resident, colonizing the outer Shumagins since 1984 (Table 1). At the Twins, ~50 birds were seen on cliffs 11 Jul 2010 (Rojek and Williams 2010); none had been seen earlier (Sowl 1973, Bailey 1978). On 10 Jul 1990, ~20 were seen on cliffs on southeastern Castle Rock (USFWS 2020, Bailey), where none were seen in 1976 or 1977 (Bailey 1978, Moe and Day 1979). But only 3 birds were there 17 Jul 2001 (Byrd 2001), and none were seen in 2006 (Byrd and Williams 2006) or 2011 (AMNWR unpubl. data). On Bird Island, in Jun 1984 ~100 fulmars appeared to be nesting west of Point Welcome (Bailey and McCargo 1984), where none had been seen in 1973 or 1977 (Sowl 1973, Bailey 1978). Yet only a few individuals were there 9 Jul 1990 (USFWS 2020) and 13 and 15 Jun 1995 (Stahl), and none were there in 2006 (Byrd and Williams 2006) or 2011 (AMNWR unpubl. data). The species occurs at sea in and around the Shumagins during the summer (Gabrielson 1946, Arnold 1948, Kenyon 1964, Sowl 1973, Byrd 2001, Day), fall (“low numbers” 15–30 km southwest of Unga 9–10 Sep 1973, MacIntosh), and winter (“low numbers” 18–19 Nov 1982, Day). **NOTES:** The Beringian subspecies *rodgersii* is a locally abundant nester at the Semidi Islands (Hatch and Hatch 1983) and in the Aleutians (Gibson and Byrd 2007) and is common at sea throughout the region (Gould et al. 1982). **SPECIMENS:** AMNH (3), UWBM (1).

Ardenna tenuirostris. Short-tailed Shearwater. Uncommon to abundant non-breeding visitor from spring to fall. In spring, ~50,000 birds were seen off southwestern Nagai 14 May 1987, with several flocks of thousands each from Nagai to southeast of Simeonof (Day). Migrants were passing through the Shumagins at a rate of 500 birds/min on 2 Jun 1997 (A. Wilson and others, http://www.oceanwanderers.com/Aleut.1.html). Large flocks are recorded periodically in summer (e.g., ~2000 birds
believed to be this species south of the Shumagins 8 Jun 1943, Arnold 1948; among the Shumagins Jul 1977, Bailey 1978; near Nagai 19 Aug 1946, Gabrielson 1946). In fall, many tens of thousands were seen ~30 km southwest of Unga 9–10 Sep 1973 (MacIntosh). **NOTES:** The Short-tailed Shearwater is common or abundant in the Gulf of Alaska and the Aleutians from the spring to the fall but is rare in the winter (Gould et al. 1982, Day 2006, Gibson and Byrd 2007). **SPECIMENS:** AMNH (2).

Ardenna grisea. Sooty Shearwater. Uncommon to common nonbreeding visitor in summer, rare in winter. Small numbers were seen near the Koniuji group late May 1976 (Day), large flocks were seen near Simeonof 4–9 Jun 1960, and the species was recorded as prey in Bald Eagle aeries at both Herendeen and Simeonof (Kenyon 1964). Bailey (1978) also saw large flocks feeding among the Shumagins in summer 1977. In the winter, only 10–20 birds were seen near Big Koniuji 17–19 Nov 1982 (Day). **NOTES:** The Sooty Shearwater occurs year round as a rare or uncommon visitor in the Gulf of Alaska (Gould et al. 1982, Day 2006) and the Aleutians (Gibson and Byrd 2007).

Urile urile and **U. pelagicus pelagicus**. Red-faced Cormorant and Pelagic Cormorant. Rare to common local breeders and residents; probably less common in winter. About 15,000 cormorants, including these two and *Nannopterum auritum*, nested in the Shumagins in 1977 (Bailey 1978), with the Red-faced being the most common and the Pelagic second in abundance (Gabrielson and Lincoln 1959, Murie 1959). Most counts did not distinguish the Red-faced and Pelagic, which often nest together, so we treat them together, except in the few cases in which only the Pelagic was recorded. The locations of cormorant colonies shift, and the birds’ numbers vary wildly, hampering interpretation of population trends. The Red-faced and Pelagic have nested in mixed-species colonies on at least 7 islands: Unga, Korovin, the Haystacks, Big Koniuji, Hall, Herendeen, and Bird (Tables 1 and 11). In addition, unidentified cormorants, probably some of each species, have been recorded at the Twins (~2000 birds in 1973, Sowl 1973) and Karpa (20 birds in 1977, Bailey 1978). The Pelagic has also been recorded nesting at Popof, Andronica, and Simeonof. In the fall, “hundreds” of probable Red-faced were seen at sea between Popof and Unga 8 Sep 1973 (MacIntosh). In the winter, scattered birds of both species were seen in the Shumagins 18–19 Nov 1982 (Day), and up to 106 cormorants, at least some of which were identified as Pelagic, were seen near Popof winter 2000–2002 (Hoffman). **NOTES:** The two species of urili recorded by Steller at Nagai on 30–31 Aug 1741 were interpreted by Stejneger (in Golder 1925:80) to be *U. pelagicus* and *N. auritum*. Both species breed and are resident in the western Gulf of Alaska (Gabrielson and Lincoln 1959, Sowls et al. 1978) and the Aleutians (Gibson and Byrd 2007) **SPECIMENS:** urile, YPM (1); pelagicus, AMNH (4), PSM (1).

Nannopterum auritum cincinatum. Double-crested Cormorant. Rare to common local breeder; less common in winter. The least common cormorant in the Shumagins, the Double-crested occurs throughout the archipelago in the summer (Gabrielson and Lincoln 1959, Murie 1959) and has nested at 5 islands (Table 11): the Haystacks, the Twins, Big Koniuji, Hall, Herendeen, and possibly also Bird Island. Only 2 birds total were recorded wintering on 1 of 9 surveys near Popof winter 2000–2002 (Hoffman). **NOTES:** The Beringian subspecies cincinatum nests around the Gulf of Alaska and west to the eastern Aleutians (Sowls et al. 1978, Gibson and Byrd 2007). **SPECIMENS:** AMNH (1).

Pandion haliaetus (carolinensis). Osprey. Casual in spring and summer. Sowl (1973) was told by the ranch caretaker at Simeonof that he had shot a bird in May 1972, and one was seen at Bird 1 Jun 1984 (Bailey). **NOTES:** The Nearctic subspecies has not been collected or photographed in the Aleutians, but there are 4 sightings in May and Jun and 2 in Oct (Gibson and Byrd 2007).
Aquila chrysaetos canadensis. Golden Eagle. Rare breeder and probable resident. At Big Koniuji, an adult was in display flight 31 May and carrying nesting material 7 Jun 2002 (Maccormick 2002); the species has probably bred in other years also (Bailey 1985, Day). At Bird Island, Bailey noted downy chicks 9 May 1984 (Bailey and McCargo 1984) and 8 Jul 1987 (not 8 Jun, as written in Bailey and Norvell 1987) and adults at a previously used nest 9 May 1985 (Bailey 1985). Golden Eagles also have
BIRDS OF THE SHUMAGIN ISLANDS, ALASKA

<table>
<thead>
<tr>
<th>Colony and year</th>
<th>Cormorant species</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-faced</td>
<td>Pelagic</td>
<td>Unidentified</td>
</tr>
<tr>
<td>1984</td>
<td>140 nests (mostly Red-faced)</td>
<td>Bailey 1985</td>
</tr>
<tr>
<td>1985</td>
<td>40 nests (mostly Red-faced)</td>
<td>Bailey 1985</td>
</tr>
<tr>
<td>1986</td>
<td>270 nests</td>
<td>Bailey 1986</td>
</tr>
<tr>
<td>2011</td>
<td>0 birds<sup>a</sup></td>
<td>AMNWR unpubl. data</td>
</tr>
<tr>
<td>Hall</td>
<td>>800 birds/400 nests</td>
<td>Bailey and Norvell 1987</td>
</tr>
<tr>
<td>2006</td>
<td>6 birds/3 nests</td>
<td>AMNWR unpubl. data</td>
</tr>
<tr>
<td>2011</td>
<td>1017 birds/638 nests</td>
<td>AMNWR unpubl. data</td>
</tr>
<tr>
<td>Herendeen</td>
<td>“numbers” nested</td>
<td>Kenyon 1964</td>
</tr>
<tr>
<td>1960</td>
<td>“several” birds/0 nests</td>
<td>Kenyon 1964</td>
</tr>
<tr>
<td>1968</td>
<td>0 birds</td>
<td>W. L. Troyer</td>
</tr>
<tr>
<td>1977</td>
<td>0 birds</td>
<td>Bailey 1978</td>
</tr>
<tr>
<td>1994</td>
<td>0 birds</td>
<td>Bailey 1994</td>
</tr>
<tr>
<td>2006</td>
<td>0 birds</td>
<td>W. Stahl</td>
</tr>
<tr>
<td>2001</td>
<td>0 birds</td>
<td>Byrd 2001</td>
</tr>
<tr>
<td>2011</td>
<td>0 birds</td>
<td>AMNWR unpubl. data</td>
</tr>
<tr>
<td>Simeonof</td>
<td>“many hundreds”</td>
<td>Gabrielson 1946</td>
</tr>
<tr>
<td>1946</td>
<td>“many hundreds”</td>
<td>Kenyon 1964</td>
</tr>
<tr>
<td>1968</td>
<td>0 birds</td>
<td>W. L. Troyer</td>
</tr>
<tr>
<td>1977</td>
<td>0 birds</td>
<td>Bailey 1978</td>
</tr>
<tr>
<td>1994</td>
<td>50 birds</td>
<td>Bailey 1994</td>
</tr>
<tr>
<td>2001</td>
<td>15 birds</td>
<td>Byrd 2001</td>
</tr>
<tr>
<td>2011</td>
<td>37 birds</td>
<td>AMNWR unpubl. data</td>
</tr>
<tr>
<td>Bird</td>
<td>“large colony”</td>
<td>Jones 1970</td>
</tr>
<tr>
<td>1970</td>
<td>6000 birds (Red-faced/Pelagic)</td>
<td>Bailey 1978</td>
</tr>
<tr>
<td>1977</td>
<td>6000 birds (Red-faced/Pelagic)</td>
<td>Bailey 1978</td>
</tr>
<tr>
<td>1984</td>
<td>a few believed to be nesting</td>
<td>Bailey and McCargo 1984</td>
</tr>
</tbody>
</table>

^aIncomplete count.

been seen, and may nest, at Unga, where Dall (1873) believed them to be resident; Popof and Nagai (both in 1988, Gronholdt); Peninsula Island (Jun–Jul 1976, Day), and Chernabura (3 pairs Jun–Jul 1994; Bailey 1994). Seen only once at Simeonof (Jun 1994, Bailey), despite many surveys over the years. **NOTES:** Probably nests on all islands with mountains and ground squirrels, which are an important prey (Katzner et al. 2020). Golden Eagles are resident on the Alaska Peninsula (Katzner
et al. 2020); the Nearctic subspecies canadensis nests out to the tip of the peninsula (Bailey 1975) and probably in the eastern Aleutians (Gibson and Byrd 2007). **Specimens:** USNM (1), WFVZ (1).

Circus hudsonius. Northern Harrier. Casual in summer. One bird was seen at Simeonof 20 Jul 1995 (Stahl). **Notes:** This Nearctic species is a rare nester on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and probably casual in the eastern Aleutians in the summer and fall (Gibson and Byrd 2007).

Haliaeetus leucocephalus. Bald Eagle. Uncommon to common breeder and resident. Widespread and conspicuous, nesting on all islands and many smaller islets and rocks; seen by virtually every visitor (e.g., Gabrielson and Lincoln 1959, Murie 1959). **Notes:** The Bald Eagle is a common resident throughout southwestern Alaska (Gabrielson and Lincoln 1959, Murie 1959, Gibson and Byrd 2007). **Specimens:** WFVZ (4), UMMZ (3), UF (1), USNM (1).

Haliaeetus pelagicus. Steller's Sea-Eagle. Two reports lacking details of single adults at Simeonof 4 Oct 1979 (O. Vivion, *fide* J. E. Sarvis) and 4 Mar 1981 (Sarvis). **Notes:** These records probably represent a single wide-ranging bird seen also at multiple locations on the lower Alaska Peninsula from 1977 to 1981 (Gibson and Byrd 2007).

Buteo lagopus sanctijohannis. Rough-legged Hawk. Rare, probably breeding only in the inner Shumagins, where tundra voles occur (MacDonald and Cook 2009). One was seen at Unga in 1936 (Murie 1959). At Popof, 1 was collected 18 Jul 1880 (Bean 1882), 1 light-morph bird was seen 21 Jun 1995 (Gibson), and a defensive pair (1 light-morph) was seen 28 Jun 1997 (Day). Rough-legged Hawks have also been seen at Andronica (1 on 6 Jul 1977, Bailey) and Big Koniuji (2 on 2 Jun 1976, Day; 1 on 15 May 1985, Bailey), but none were known to nest, and voles are lacking on those islands. **Notes:** During the breeding season, the species specializes on lemmings (*Lemmus, Dicrostonyx*) and voles (*Microtus, Clethrionomys*) (Bechard et al. 2020). It nests on the Alaska Peninsula (Gianini 1917) and the eastern Aleutians (Gibson and Byrd 2007). **Specimens:** WFVZ (7), USNM (2); 8 of the 9 specimens are egg sets from Unga and Popof.

Bubo virginianus (lagophonus). Great Horned Owl. Rare breeder; residency status unclear. At Simeonof, one bird was heard calling the night of 13 Jul 2001 near a former ranch house, site of the island's only (planted) spruce trees (Byrd 2001). Two fledglings photographed in a small grove of planted spruce trees at the former Unga village, Unga, 5 Aug 2015 (Macaulay Library ML163672921; photograph by A. Boyle) confirm local nesting. In addition, birders on cruise ships visiting Unga saw 1 on 16 Jul and 3 on 15 Aug 2017, 1 on 18 Jun and 2 on 21 Aug 2018 (Schuette, eBird), and 2 on 1 Jul 2019 (Fabric Schmitt, eBird). Schuette, who worked on cruise ships visiting Unga, related that the owls were a “well-known commodity” and that he also saw fledglings there; he reported no sign of a nest in the local spruce trees and thought that the owls nested on a sea cliff southeast of town. **Notes:** This species has been recorded previously in southwestern Alaska at Chignik (6 records Jun–Sep; Narver 1970) and the Nelson Lagoon area (1 record Jul 1976; Gill et al. 1981). Subspecies lagophonus (includes algistus; Gibson and Withrow 2015) occurs in Alaska as far southwest as Bristol Bay (Gibson and Kessel 1997), although coastal records in western Alaska are primarily in the fall and winter. These Shumagin breeding records are >500 km from the edge of the known range in southwestern Alaska, at the limit of forest at the base of the Alaska Peninsula.

Bubo scandiacus. Snowy Owl. Casual. Beals saw 3 at Popof 8 May 1944 and was told, we suspect incorrectly, that they were resident and probably breeding (Gabrielson and Lincoln 1959; see also Murie 1959). **Notes:** Since 1944 there have been
no records of this species, which is casual in the winter and spring, but does not nest, on the Alaska Peninsula (Gill et al. 1981) and the eastern Aleutians (Gibson and Byrd 2007).

Asio flammeus flammeus. Short-eared Owl. Rare breeder. Eggs were collected at Unga 26 Jun 1893 (Gabrielson and Lincoln 1959). Single birds were seen at Popof 16 May 1936 (Murie 1959) and 12 Jun 1946 (Gabrielson 1946) but not afterward (Gibson, Day). Bailey (1994) found a nest at Simeonof 6 Jun 1994, and several sightings at Chernabura Jun–Jul 1994 (Bailey 1994) suggest nesting. **Notes:** Holarctic subspecies *flammeus* nests on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and in the eastern Aleutians (Gibson and Byrd 2007). **Specimens:** AMNH (1), USNM (1).

Megaceryle alcyon. Belted Kingfisher. Rare breeder and resident. At Popof, a nest was found in summer 1943 (Beals), and a presumably nesting bird was seen by a stream 27–28 Jun 1997 (Day). The species was not seen in the Koniuji group in 1976 (Day), but single birds were seen at Big Koniuji 7 May 1985 (Bailey 1985), 11–21 Jul 1987 (Bailey and Norvell 1987), and 19 Nov 1982 (Day). Bailey (1986) believed 2 pairs to be nesting there Jun–Jul 1986. Single birds were seen at Little Koniuji 25 Jun 1993 and 21 May 1995 (Bailey 1993a). **Notes:** The kingfisher is a rare breeder and resident on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018, Beals) and in the eastern Aleutians (Gibson and Byrd 2007).

Falco rusticolus. Gyrfalcon. Rare as a nonbreeding visitor in spring and summer; seen only in the outer Shumagins. Probably the same individual was seen at Big Koniuji 9 and 22 May 1985 (Bailey), and single birds were seen at Simeonof 18–23 Jun 1968 (Troyer), 9 Jun 1994 (Bailey), and 16 Jul 2001 (Byrd 2001). **Notes:** This Holarctic species is a rare nester and probably rare resident in the eastern Aleutians (Gibson and Byrd 2007), an uncommon breeding resident on the Alaska Peninsula (Gill et al. 1981), and a breeder at Chirikof Island (Withrow 2015).

Falco peregrinus (pealei). Peregrine Falcon. Uncommon breeder and probable resident. The only confirmed nesting record is at the southern end of Big Koniuji in 1976 (Moe and Day 1979). On the basis of repeated sightings in those areas, probable additional aeries on Big Koniuji are near Flying Eagle Harbor (Bailey and Norvell 1987) and Cape Thompson (Bailey 1985, Byrd and Williams 2006, Day, AMNWR unpubl. data). A pair seen sporadically at Castle Rock (Byrd and Williams 2006) presumably came from the suspected Cape Thompson aerie. The Peregrine Falcon has been recorded sporadically at numerous additional locations in both the inner (e.g., Unga, Karpa, Andronica, and the Haystacks; Gabrielson 1946, Rojek and Williams 2010, Gronholdt) and outer (e.g., Bendel, Turner, the Twins, Simeonof, and Bird; Gabrielson 1946, Kenyon 1964, Sowl 1973, Bailey 1994, Byrd and Williams 2006, Rojek and Williams 2010, Bailey, Byrd) Shumagins and probably breeds at some of them. **Notes:** Subspecies *pealei* is widespread and resident in southwestern Alaska (Gabrielson and Lincoln 1959, Murie 1959, Gibson and Byrd 2007).

Lanius borealis (borealis). Northern Shrike. Casual in fall and winter. Gronholdt saw several in various years at Sand Point, and Bailey saw one chasing a Song Sparrow at Big Koniuji 20 Sep 1988 (Bailey 1988). **Notes:** The Nearctic subspecies *borealis* is a rare probably breeding resident on the Alaska Peninsula (Gabrielson and Lincoln 1959, Savage 2018) and a casual or intermittent winter visitor in the eastern Aleutians (Gibson and Byrd 2007).

Pica hudsonia. Black-billed Magpie. Uncommon or fairly common breeder and resident. Widespread and conspicuous, nesting in alder and willow thickets throughout the archipelago, including smaller islands having shrubs, and occasionally on cliffs and in an old farmhouse (Dall 1873, Murie 1959, Kenyon 1964, Byrd
2001, Bailey, Byrd, Day). Nests, eggs, or young recorded at Popof (eggs 14 Jun 1898, USNM), Big Koniuji (fledglings with half-grown tails 10 Jul 1976, Day; adults carrying food toward alder stand, presumably for young, 12 Jun 2002, Maccormick 2002), Simeonof (2 nests in willows Jun 1994, Bailey 1994; nest in old farmhouse 16 Jul 2001, Byrd 2001), and Bird islands (multiple nests, including one on ground, Jun 1994; Bailey 1994). Also seen in winter (Kenyon 1964, Beals). **Notes:** The magpie is resident on the Alaska Peninsula (Gabrielson and Lincoln 1959, Murie 1959) and on Unimak Island (Gibson and Byrd 2007). **Specimens:** USNM (4), AMNH (3), UAM (3), MCZ (2), CM (1), DMNS (1), PSM (1).

Poecile atricapillus turneri. Black-capped Chickadee. Uncommon breeding resident, though no detailed information on nesting has been recorded. Recorded at Unga (Aug 1946, Gabrielson 1946; 29 Jul 2019, Schuette, eBird), Popof (in both summer and winter; Murie 1959, Beals, Day), Nagai (Murie 1959), and Big Koniuji (“small numbers” summer 1976, Day; May–Jun 1985 and Jul 1990, Bailey; Jun 2002, Maccormick 2002). **Notes:** Subspecies *turneri* of central and southern Alaska nests in tall brush throughout the Alaska Peninsula (Gabrielson and Lincoln 1959, Murie 1959) and on Unimak Island (Gibson and Byrd 2007). **Specimens:** USNM (9), LACM (1), location unknown (1; Beals field notes).

Tachycineta bicolor. Tree Swallow. Casual or rare local breeder, probably nesting on buildings. No nests have been recorded, but Tree Swallows have been observed at Popof 7 Jun 1973 (Sowl 1973) and 27–30 Jun 1997 (Day). At Big Koniuji, a pair copulated and was prospecting near temporary cabins but did not nest, 7–12 Jun 1976 (Day), At Simeonof, whose old buildings are collapsing, 10 were flying north 9 Jun 1960 (Kenyon 1964) and a few were seen May–Jun 1994 (Bailey 1994). **Notes:** It is unclear whether the Tree Swallow still nests at former Unga village, where the old buildings are collapsing. It nests on man-made structures on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and in the eastern Aleutians (Gibson and Byrd 2007).

Hirundo rustica (erythrogaster). Barn Swallow. Formerly locally common, being numerous and presumably nesting at Popof on 7 July 1899 (see Keeler 1910:225). No subsequent records. **Notes:** The Nearctic subspecies *erythrogaster* formerly
nested as far southwest as Unalaska (Murie 1959, Gibson and Byrd 2007), in the eastern Aleutians, but its range contracted eastward sometime after the mid-1920s (Kessel and Gibson 1978).

Troglodytes pacificus (ssp.). Pacific Wren. Uncommon breeder and resident. Since Turner’s (1886) observation at Unga in 1881, the species was not recorded again in the inner Shumagins until 2017 (2 birds at Unga 15 Jul; Schuette, eBird). After the first records in the outer Shumagins in 1976 and 1977, on Near (Bailey) and Big Koniuji (Day), the wren has now been seen in the summer on every larger island surveyed (Bailey 1985, 1986, 1993a, 1994, Byrd 2001, Maccormick 2002, Rojek and Williams 2010, AMNWR unpubl. data). **Notes:** Except by Turner in 1881, the species went unrecorded in the Shumagins until 1976 (Bean 1882, Seale 1898, Keeler 1910, Wetmore 1911, Gabrielson 1944a, b, Gabrielson and Lincoln 1959, Murie 1959, Beals; also extensive collecting by C. H. Townsend), including by Gabrielson and Murie, who tried to collect wrens throughout southern Alaska for taxonomic studies. Because wren populations in this region experience significant die-offs in severe winters (Withrow 2015), the birds could have been missed when populations were very low, but the multiplicity of wrenless visits to the Shumagins from the 1880s to the 1970s makes that scenario improbable. The colonizing subspecies is either *kiskensis* from the Alaska Peninsula and Aleutians or (less probably) *semidiensis* from the Semidi Islands (Gabrielson and Lincoln 1959, Murie 1959; see also Gibson and Withrow 2015, Withrow 2015). The Pacific Wren is an uncommon breeder on the Alaska Peninsula (Gabrielson and Lincoln 1959) and throughout the Aleutians (Gibson and Byrd 2007); the Shumagin records represent an expansion of the species’ breeding range within southwestern Alaska.

Catharus guttatus guttatus. Hermit Thrush. Uncommon breeder. Widespread and noticeable throughout the archipelago on islands with extensive alder thickets. Recorded, and presumably nests, at Unga (Gabrielson 1946), Popof (Gabrielson 1946, Murie 1959), Karpa (Bailey), Nagai (Stejneger in Golder 1925:81), Turner and Near (Jul 1977, Bailey), and in the Koniuji group at Big and Little Koniuji (1976, Day). The species has never been recorded on Shumagins (Bean 1882, Seale 1898, Keeler 1910, Wetmore 1911, Gabrielson 1944a, b, Gabrielson and Lincoln 1959, Murie 1959, Beals; also extensive collecting by C. H. Townsend), including by Gabrielson and Murie, who tried to collect wrens throughout southern Alaska for taxonomic studies. Because wren populations in this region experience significant die-offs in severe winters (Withrow 2015), the birds could have been missed when populations were very low, but the multiplicity of wrenless visits to the Shumagins from the 1880s to the 1970s makes that scenario improbable. The colonizing subspecies is either *kiskensis* from the Alaska Peninsula and Aleutians or (less probably) *semidiensis* from the Semidi Islands (Gabrielson and Lincoln 1959, Murie 1959; see also Gibson and Withrow 2015, Withrow 2015). The Pacific Wren is an uncommon breeder on the Alaska Peninsula (Gabrielson and Lincoln 1959) and throughout the Aleutians (Gibson and Byrd 2007); the Shumagin records represent an expansion of the species’ breeding range within southwestern Alaska.

Specimens: USNM (3), UAM (1).

Turdus migratorius (*migratorius*). American Robin. One record, of one at Sand Point 7 Jun 1973 (Sowl 1973). **Notes:** The species has been recorded on the Alaska Peninsula in late summer (Gill et al. 1981) and is casual in the central Aleutians in the fall (Gibson and Byrd 2007).

Pinicola enucleator flammula. Pine Grosbeak. Rare or uncommon but conspicuous local breeder and summer visitor. Occurs in tall shrub thickets on the inner Shumagins and in medium or tall shrubs at Big Koniuji. Apparently expanding...
its range from the alder zone on the Alaska Peninsula, the Pine Grosbeak was unknown in the Shumagins before the discovery of a pair suspected of nesting at Unga in summer 1983 (Rose). Four were seen there 16 Jul 2019 (Schuette, eBird). After single individuals were first seen at Popof 29 Jun 1983 (Rose) and Oct 1984 (Gronholdt), 8 birds were there 23 Jun 1995 (Gibson), and 3 were seen 27–28 Jun 1997 (Day). None were seen anywhere in the Koniuju group in 1976 (Day), but two were at Flying Eagle Harbor in Jun 1985 (Bailey 1985), and Bailey (1986) believed the species to be nesting there 11 Jun–12 Jul 1986; it was “well established” in Jul 1987 (Bailey and Norvell 1987). Subsequently, 2 were seen on southern Big Koniuju 14 Jun 2002 (Maccormick 2002), suggesting continuing southward expansion on the island. **NOTES:** The Beringian subspecies *flamnula* breeds and is resident from southeastern Alaska to the Alaska Peninsula (Young and Adkisson 2020) and Unimak Island (Gibson and Byrd 2007). **SPECIMENS:** UAM (10).

Leucosticte tephrocotis griseonucha. Gray-crowned Rosy-Finch. Uncommon resident. Probably breeds throughout the archipelago. Recorded at Unga (Turner 1886, Gabrielson 1946; just-fledged young 15–16 Aug 1911, Wetmore 1911), Popof (Burroughs 1901), Karpa (Rojek and Williams 2010, Bailey), Nagai (Rojek and Williams 2010), Big and Little Koniuju and Hall (Bean 1882, Bailey 1993a, Maccormick 2002, Day), Simeonof (Troyer, Bailey 1994), Bird (Jones 1970, Bailey and McCargo 1984, Byrd), and Chernabura (Jones 1970, Bailey 1994). **NOTES:** Beringian subspecies *griseonucha* is resident in southwestern Alaska (Gabrielson and Lincoln 1959, Gibson and Byrd 2007). **SPECIMENS:** UAM (3), USNM (2).

Acanthis flammea flammea. Common Redpoll. Rare to common visitor, probably at any season, and probably erratic breeder. Formerly, this shrub-nesting species was believed to nest only on the inner Shumagins (Gabrielson 1946, Gabrielson and Lincoln 1959, Murie 1959), and it still nests at Unga (10 on 18 Jun 2018 and 29 Jul 2019; Schuette, eBird) and Popof (Jun 1997, Day). In the outer Shumagins, Sowl (1973) saw “a few” in central Big Koniuju 11 Jun 1973, but Day did not see any in the Koniuju group in 1976. By the mid- and late 1980s, however, the species was regular at Big Koniuju (15 May 1985, 25 Jun 1986, Bailey 1985, 1986; 17 Jul 1990, Bailey) and by 2002 it was common and conspicuous on southern Big Koniuju (Maccormick 2002). In the outermost islands, single birds have been seen at Simeonof (18–23 Jun 1968, Troyer; 13 Jul 2001, Byrd 2001; 30 July 2006, Byrd and Williams 2006) and Bird islands (16 May 1984, Bailey and McCargo 1984). **NOTES:** Holarctic subspecies *flammea* breeds on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and in the eastern Aleutians (Gibson and Byrd 2007). **SPECIMENS:** USNM (3), location unknown (1; Beals field notes).

Acanthis hornemanni (exilipes). Hoary Redpoll. One report, of one seen at Bird Island 16 May 1984 (Bailey). **NOTES:** The species might be a rare breeder on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and probably is casual in the eastern Aleutians (Gibson and Byrd 2007).

Spinus pinus (pinus). Pine Siskin. Casual. M. Tillinghast saw 6 at Unga 16 Jul 2017 (eBird); Beals saw about 15 in a grove of spruce trees on Popof 9 Mar 1942 and said that a naval officer saw 8–10 in the same grove 20 Apr 1943 (Gabrielson and Lincoln 1959). Bailey (1986) saw 2 at Big Koniuju. **NOTES:** The Pine Siskin is casual on the Alaska Peninsula from spring to fall (Kessel and Gibson 1978) and casual in the eastern Aleutians primarily from fall to spring (Gibson and Byrd 2007).

Calcarius lapponicus (alascensis). Lapland Longspur. Locally common or abundant summer breeder and migrant. Recorded at Unga (15 birds 29 Jul 2019, Schuette, eBird) and Popof (≥6 birds 27–30 Jun 1997, Day). The only longspurs recorded in the Koniuju group, 4 at Big Koniuju 14 May 1985 (Bailey 1985), were probably migrants. The species is a common to abundant breeder at Simeonof (Bailey 1994, Byrd

Notes: Beringian subspecies *alascensis* is a common to abundant breeder on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and the Aleutians (Gibson and Byrd 2007).

Notes: Beringian subspecies *townsendi* is resident in southwestern Alaska (Gabrielson and Lincoln 1959) and the Aleutians (Gibson and Byrd 2007).

Specimens: USNM (3), MVZ (2).

Passerella iliaca unalascensis. Fox Sparrow. Fairly common local breeder. The earliest spring record is for 9 Apr (Beals in Gabrielson and Lincoln 1959). The species prefers tall alder thickets, as on Unga, Popof, and Nagai (Bean 1882, Gabrielson 1946, Murie 1959), but occurs on most or all islands with shrubs. It is fairly common in summer at Near (1977, Bailey 1978), Big Koniuji (1976, Day), Little Koniuji (1976, Day; 1993, Bailey 1993a), and Simeonof (1995, Stahl; 2006, Byrd and Williams 2006). At Simeonof, the Fox Sparrow was not recorded before 1995, in spite of surveys in the 1960s (Kenyon 1964, Troyer). It has been noted occasionally at Bird Island (7 May and 7 Jun 1984, Bailey and McCargo 1984) and Chernabura (Jun–Jul 1994, Bailey 1994; Jul 2001, Byrd 2001). **Notes:** Subspecies *unalascensis* is an uncommon breeder on the Alaska Peninsula (Gabrielson and Lincoln 1959, Murie 1959, Gill et al. 1981, Savage et al. 2018) and Unimak Island and may breed irregularly farther west in the Aleutians (Gibson and Byrd 2007). **Specimens:** UAM (8), AMNH (3), MCZ (3), USNM (3), CAS (1), PSM (1), location unknown (12; see Seale 1898:139, Murie 1959, Beals field notes).

Zonotrichia leucophrys (*gambelii*). White-crowned Sparrow. Casual or rare in summer. Single birds have been recorded at Unga (29 Jul 2019, Schuette, eBird), Popof (16 May 1936, Murie 1959), Simeonof (13 Jul 2001, Byrd 2001), and Chernabura (14–16 Jul 2001; Byrd 2001). **Notes:** Subspecies *gambelii* of northwestern North America breeds on the Alaska Peninsula (Gabrielson and Lincoln 1959, Murie 1959, Gill et al. 1981) and is hypothetical in the Aleutians (Gibson and Byrd 2007).

Specimens: USNM (5), UAM (3), AMNH (1), CAS (1).

Zonotrichia atricapilla. Golden-crowned Sparrow. Common or abundant breeder, nesting in alder thickets throughout the archipelago (Dall 1873, Bean 1882, Gabrielson 1946, Gabrielson and Lincoln 1959, Murie 1959, Kenyon 1964, Sowl 1973, Bailey and McCargo 1984, Bailey 1993a, 1994, Byrd 2001, Maccormick 2002, Day). Eggs were collected at Unga 22, 24, and 25 June 1895 (USNM), a pair was seen collecting nesting material at Big Koniuji 7 Jun 2002 (Maccormick 2002), and 3 fledglings were at Simeonof 30 Jul 2006 (Byrd and Williams 2006). **Notes:** The Golden-crowned Sparrow breeds on the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and in the Aleutians as far west as Unimak, but singing males have been recorded farther west (Kessel and Gibson 1978, Gibson and Byrd 2007). **Specimens:** USNM (5), UAM (3), AMNH (1), CAS (1).

Melospiza melodia sanaka [including semidiensis]. Song Sparrow. Common and widespread breeding resident, recorded by every visitor (e.g., Dall 1873, Gabrielson and Lincoln 1959, Bailey 1978). Eggs, nests, or young have been recorded at “the Shumagins” (USNM egg set Jun 1895), Popof (USNM egg set 7 Jul 1899), Big Koniuji (4 eggs 28 May 2002, Maccormick 2002), and Simeonof (4 eggs 18–23 Jun 1968, Troyer); fledglings 13–16 Jul 2002, Byrd 2001). Other islands of record comprise Unga (29 Jul 2019, Schuette, eBird), Popof (Chapman 1902, Day), Little Koniuji (Bean 1882, Bailey 1993a), Simeonof (Gabrielson 1946, Kenyon 1964, Bailey 1994, Byrd 2001), Bird Island (Byrd 2001), and Chernabura (Bailey 1994, Byrd 2001). Several were seen at Big Koniuji 19 Nov 1982 (Day). **Notes:** Beringian subspecies sanaka breeds on the Semidi and Shumagin islands, the western half of the Alaska Peninsula, and the eastern Aleutians (Gibson and Byrd 2007, Arcese et al. 2020). **Specimens:** UAM (13), AMNH (12), USNM (6), CAS (2), LACM (2), MCZ (2), SDNHM (2), CHAS (1), CUMV (1), FMNH (1), SBMNH (1), location unknown (1; Beals field notes).

Leiothlypis celata (ssp.). Orange-crowned Warbler. One report. Bailey (1985) saw one at Big Koniuji 21 May 1985. **Notes:** The species is a casual fall migrant at Cold Bay, near the tip of the Alaska Peninsula (Kessel and Gibson 1978) but has not been recorded in the Aleutians (Gibson and Byrd 2007).

Cardellina pusilla pileolata. Wilson’s Warbler. Uncommon breeder. Nests primarily in medium and tall alder thickets, so mainly in the inner Shumagins (Unga and Popof; Gabrielson 1946, Gabrielson and Lincoln 1959) and at Big Koniuji (Maccormick 2002, Day). Elsewhere, Wilson’s Warbler has been recorded only once at Simeonof (female 30 Jul 2006, Byrd and Williams 2006) and once at Bird Island (singing male 15 Jun 1995, Byrd, Gibson). **Notes:** Subspecies pileolata of the intermountain West and Rocky Mountains extends northwest beyond the range of the Pacific coastal chryseola to Alaska, breeding as far west as the Alaska Peninsula (Gill et al. 1981, Savage et al. 2018) and Unimak Island (Gibson and Byrd 2007). **Specimens:** UAM (3), PSM (1).
Rejected Records

Himantopus mexicanus. Black-necked Stilt. We believe that the evidence for Gronholdt's claim of a stilt at Unga in Sep 1972 (Bailey 1978) is insufficient.

Aethia pygmaea. Whiskered Auklet. Beals's field notes for 4 Sep 1941 stating that this species is "reported in large numbers breeding on Little Koniuji" are clearly in error because it does not nest east of the Aleutians (Gibson and Byrd 2007).

Accipiter gentilis. Northern Goshawk. Gabrielson's (1946) report of one chasing sandpipers at Simeonof 20 Aug 1946 was not included by Gabrielson and Lincoln (1959).

DISCUSSION

This is the first summary of all information on the avifauna of the Shumagin Islands. To date, 125 species, plus 1 additional subspecies, of birds have been recorded in this archipelago. Of those taxa, 24 (19% of all taxa) are waterfowl, 16 (13%) are shorebirds, 37 (29%) are seabirds, 8 (6%) are other waterbirds (grebes, cranes, loons, and kingfishers), and 41 (33%) are terrestrial birds. At least 65 taxa (52% of all taxa) breed, probably breed, or formerly bred: 6 waterfowl (9% of all breeding taxa), 5 shorebirds (8%), 24 seabirds (37%), 2 other waterbirds (3%), and 28 terrestrial birds (43%).

The zoogeographic affinity of the Shumagins' avifauna (126 taxa) is strongly Nearctic (39% of all taxa) and Beringian (32%). The remaining taxa are Holarctic (21%), Palearctic (6%), or Oceanian (2%). The emphasis on Nearctic and Beringian taxa is accentuated among the 65 breeding taxa: 40% are Nearctic in origin and 44% are Beringian, with only one from the Palearctic, the Common Cuckoo, represented by a single instance of attempted breeding (Figure 4).

![Proximate zoogeographic affinities of the breeding avifaunas of the Shumagin Islands and nearby areas in southwestern Alaska.](image)

Figure 4. Proximate zoogeographic affinities of the breeding avifaunas of the Shumagin Islands and nearby areas in southwestern Alaska.
The Shumagins are particularly important for nesting seabirds but are less so for migratory species, especially terrestrial birds. The diversity of migratory birds observed in the Shumagins appears to be lower than that seen in both the Port Moller–Nelson Lagoon–Herendeen Bay area of the southwestern Alaska Peninsula and in the eastern Aleutians, in part because of fewer observations in the Shumagins during migration periods. More importantly, however, the Shumagins also are out of the path of a main migration route like that seen on the Alaska Peninsula and in some parts of the Aleutians. For example, in the fall, the Bering Sea coast of the Alaska Peninsula provides important staging areas for many species that mostly or completely overfly the Shumagins, such as the Brant, Cackling Goose (B. h. minima), Pacific Golden-Plover, Dunlin (Calidris alpina), Long-billed Dowitcher (Limnodromus scolopaceus), Whimbrel, and Bar-tailed Godwit (Limosa lapponica; Gill et al. 1981, Reed et al. 1989). In the spring, the Shumagins provide a landfall of negligible importance to northbound transoceanic migrants that have almost reached the nearby Alaska Peninsula, which is as close as 15 km from the northern Shumagins and has extensive wetlands and mudflats (very limited in the Shumagins) that are important habitats for nesting and migrating waterfowl and shorebirds. These two groups are large components of the Alaska Peninsula's avifauna (Gill et al. 1981) but much smaller components of the Shumagins' avifauna. In addition, the Shumagins lie west of coastal and trans-Gulf migration routes in the central Gulf of Alaska (Isleib and Kessel 1989, Withrow 2015, DeCicco et al. 2017). Birds' primary migratory pathway in this region almost certainly is northeast–southwest, following the orientation of the Alaska Peninsula; a similar route has been posited for many birds that migrate to the Aleutians to breed (Gibson and Byrd 2007). Finally, the Shumagins also are at or near the eastern limit of the distribution of some nesting alcids and at or near the southwestern limit of brush–nesting passerines.

The Shumagins' location between the forests of much of mainland Alaska and the heath of the Aleutians leads to an interesting blending of breeding avifaunas. These islands also lie near an ill-defined area where the avifauna changes from being Nearctic-dominated (most of Alaska) to one that is more Beringian-dominated (most of the Aleutians and islands and coasts of the Bering Sea). Certain breeding species are oddly juxtaposed. For example, the Shumagins are the only place in the world where you can see Crested Auklets in display flights while listening to Black-capped Chickadees and Yellow and Wilson's warblers singing from nearby shrubs.

Avifaunal Comparisons

To put our work in the Shumagins in perspective, we have compared our records with those of two nearby areas: the north-central Alaska Peninsula and the eastern Aleutian Islands. We extend here those comparisons to the characteristics of the avifaunas as a whole. Field work has been extensive in both areas (Gill et al. 1981, Gibson and Byrd 2007), so the comparisons across this larger region should be robust.

A total of 184 taxa has been recorded across the 3 areas; of those taxa, 126 (69% of all taxa) have been recorded in the Shumagins, 130 (72%) have been recorded on the Alaska Peninsula, and 161 (89%) have been recorded in the eastern Aleutians. Altogether, 98 taxa (53% of all taxa) have been recorded...
in all 3 areas, and 139 (76%) have been recorded in at least 2 of the 3 areas, so many of the taxa are widespread through this region. The other 45 taxa (24% of the entire avifauna) are either migrants or accidental visitors that have been recorded only in 1 of the 3 areas. We suspect that the greater species richness in the eastern Aleutians and the fact that the eastern Aleutians account disproportionately for the taxa recorded in only 1 of the 3 areas reflects ornithologists’ disproportionately greater field effort in the Aleutians than in the other areas.

Of the 98 taxa recorded in all 3 areas, 42 (43%) breed or probably breed in all 3, and 63 (64%) breed in at least 2 of the 3, but only 8 (8%) breed in only 1 of the 3, again demonstrating that a large component of the avifauna breeds widely through this region. The taxa that breed in only 1 of the 3 areas appear to reflect habitat characteristics found primarily in one area (e.g., the Sandhill Crane and some waterfowl and shorebirds in the extensive marshes of the Alaska Peninsula), unusual breeding records in some areas (e.g., the Great Horned Owl in the Shumagins), the retraction of the range of the Barn Swallow from the Shumagins and Aleutians, or taxa of restricted distribution (e.g., the Aleutian Cackling Goose, Eurasian Green-winged Teal, Whiskered Auklet, and Red-legged Kittiwake [Rissa brevirostris] in the Aleutians).

The numbers of taxa breeding in the 3 areas are surprisingly similar (65–76 in each), but their affinities differ (Table 12). The breeding avifauna of the Shumagins clearly is similar to that in the eastern Aleutians, in that 97% of the taxa breeding in the Shumagins also breed in the eastern Aleutians. In contrast, only 65% of the taxa breeding in the Shumagins also breed on the Alaska Peninsula. The breeding avifauna of the Alaska Peninsula is also more similar to that of the Aleutians (79% similar) than to that of the Shumagins (65% similar), but not dramatically so. Finally, the breeding avifauna of the eastern Aleutians is also more similar to that of the Shumagins (83% similar) than to that of the Alaska Peninsula (67% similar). To some extent, the lower similarity of the Alaska Peninsula’s avifauna is caused by its more extensive aquatic and marsh habitats, as mentioned above. However, much of the similarity between the Shumagins and eastern Aleutians is driven by the larger number of breeding seabird species and the lower diversity of terrestrial birds in those two groups of islands.

Waterfowl, Waterbirds, and Shorebirds

Waterfowl, shorebirds, and other birds dependent on fresh water for nesting form moderate to minor components of the Shumagins’ avifauna. Al-

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Similarity of the Breeding Avifaunas of Three Areas of Southwestern Alaska</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>No. of taxa breeding</td>
</tr>
<tr>
<td>Shumagin Islands</td>
<td>65</td>
</tr>
<tr>
<td>Alaska Peninsula</td>
<td>65</td>
</tr>
<tr>
<td>Eastern Aleutian Islands</td>
<td>76</td>
</tr>
</tbody>
</table>

aIncluding taxa breeding, probably breeding, formerly breeding, or breeding nearby.
though 48 taxa of these categories have been recorded, only 13 (27%) of them actually breed. Only Unga (which still has foxes) and Simeonof have extensive wetlands, only Unga, Little Koniuji, and Simeonof have lakes or ponds, and only Popof and Big Koniuji have streams large enough to support kingfishers.

Seabirds

The avifauna of the Shumagin archipelago is composed substantially of seabirds, much like that of the other islands lying south of the Alaska Peninsula such as the Semidi Islands (Hatch and Hatch 1983) and much like the Aleutians to the west: 37 taxa of 37 species. Many species are limited to the outer Shumagins (Tables 1 and 2), where the granodiorite rocks weather to form cliff ledges and crevices, talus slopes, and other seabird-nesting habitat. The large number of birds breeding in this area make it an important part of the Alaska Maritime National Wildlife Refuge. The diversity of nesting seabirds here is also high, and the suite of 13 species of nesting alcids is one of the most diverse, exceeded perhaps only by Buldir Island, in the western Aleutians (Byrd and Day 1986). Thus the Shumagins support a diverse and highly representative sample of Alaska’s breeding seabirds. In addition, the Shumagins’ colonies of Cassin’s Auklet are important at a statewide level (USFWS 2020).

Nevertheless, the populations of several seabird species have declined over the 40 years of our study. The precise magnitude of change cannot be assessed from single counts in a season (most of our surveys), because of daily and seasonal variation in colony attendance by even the most visible and easiest to count species, the kittiwakes, murres, and, particularly, cormorants, of which the locations of colonies often shift from year to year. For species nesting in earthen burrows and rock crevices, populations are even more difficult to monitor. Nevertheless, the changes in numbers counted were so large (≥90% in many cases) that some nesting populations clearly have decreased: murres at Karpa, the Haystacks, Castle Rock, and Bird (Table 3), the Pigeon Guillemot at Hall and Atkins (Table 4), the Parakeet Auklet at several sites (Table 5), the Crested Auklet at Castle Rock, Cape Thompson, and Yukon Harbor (Table 6), the Horned Puffin at Castle Rock and Koniuji Strait on Big Koniuji (Table 7), the Tufted Puffin on Castle Rock and Bird (Table 8), and the Black-legged Kittiwake on Bird (Table 9). There are additional examples suggesting declines of many species at many other colonies, but the evidence is strongest in these cases, in our opinion. The few new and increased colonies are of murres at the Twins and Near (Table 3), the Pigeon Guillemot at Simeonof and Chernabura (Table 4), the Black-legged Kittiwake at Popof and Flying Eagle Harbor on Big Koniuji (Table 9), and the Glaucous-winged Gull at Big Koniuji, Simeonof, and Chernabura (Table 10). These increases, however, do not nearly compensate for the reduced numbers elsewhere. In addition, many of the new seabird colonies are of the Glaucous-winged Gull, one of the first species to recover after the removal of foxes (Byrd pers. obs.). In most cases, the causes for such large-scale declines in diverse seabirds are unclear, although marine regime shifts, which affect food availability and the trophic structure of marine food webs, may play an important role in the Gulf of Alaska; at least three regime shifts have been recorded since the mid-1970s (Agler et al. 1999, Anderson and Piatt 1999, Litzow 2006, Litzow
and Mueter 2014). In addition, vegetation overgrowing nesting crevices in the scree slope at Yukon Harbor on Big Koniuji (Renner et al. 2017) may have caused the decline of the large colony of Crested Auklets. The Yukon Harbor population had nearly disappeared by the mid-1980s, and Crested Auklets did not appear to be nesting there in 2021, although there was evidence that some birds were still visiting the colony (Drummond 2021). In addition, in 2021 the Crested Auklet was not recorded at either the Castle Rock or Cape Thompson colonies, where suitable nesting habitat remains yet the birds still disappeared. We speculate that the species may be disappearing from this eastern, warmer part of its range. Finally, the large declines in species that feed on different prey with different feeding strategies also suggest that food availability has declined on a broad scale and probably at multiple trophic levels.

Terrestrial Birds

Birds using primarily terrestrial habitats are the largest component (41 species of which 28 [68%] breed) of the avifauna and nest primarily in shrubs, in grass, and on the ground. Other habitats used by terrestrial birds include rock crevices, cliff ledges, sand banks, beached logjams, grass–umbellifer meadows, alpine dwarf, shrub mats, and buildings. In the inner Shumagins, 24–26 species of terrestrial birds have been recorded nesting on Popof and Unga islands, both of which lie ~15 km from the Alaska Peninsula. In the outer Shumagins, however, only 17–20 species nest on most islands, and only on Big Koniuji (22 species) does the species richness approach that of the inner Shumagins. Some species such as the Rough-legged Hawk, Great Horned Owl, and Tree Swallow nest only on the inner islands, some such as the Black-capped Chickadee and Pine Grosbeak nest from the inner islands to Big Koniuji in the outer islands, and others such as the Short-eared Owl, Pacific Wren, and Lapland Longspur nest primarily or only on the outer islands. In contrast, most of the other species nest or probably nest throughout the archipelago or nest sporadically throughout it.

To some extent, the apparent simplicity of the terrestrial avifauna may result from island-distance effects (MacArthur and Wilson 1967), making the diversity of the terrestrial nesting avifauna lowest in the outer Shumagins. These effects are most pronounced at Simeonof, Bird, and Chernabura, the three most remote islands in the archipelago. However, we suspect that the primary driver of this reduced diversity in these outermost islands is an island-distance effect on habitat.

The distribution of nesting hawks and owls in the Shumagins is determined largely by the distribution of prey. The vole-dependent Rough-legged Hawk is especially affected, in that tundra voles are found only on the inner Shumagins (Murie 1959, Bailey and McCargo 1984, Fay and Sease 1985, MacDonald and Cook 2009). Although the dusky shrew occurs on Unga, Popof, and probably all larger islands in the outer Shumagins except possibly Nagai (Murie 1959, Kenyon 1964, Sowl 1973, Bailey 1978, Byrd 2001, MacDonald and Cook 2009, Day), it is apparently too small a prey for these raptors. In contrast, the Short-eared Owl, which nests not only on Unga but also on Simeonof and probably Chernabura, prefers voles but also will take shrews and, in coastal areas, large numbers of birds (Wiggins et al. 2020). Factors that likely affect the diversity of terrestrial birds in the Shumagin
Islands include a decrease in the diversity of vertical habitat structure on the outer islands. For example, alder shrub thickets are both extensive and tall (up to 3–3.5 m) on the inner islands (Figure 2) but are generally scattered and low (≤1 m) on the outer islands, although they grow in large stands and up to 2.5 m in protected areas as far out as Big and Little Koniuji. This contrast was noted by Jones (1970), who called the vegetation at Bird Island “impoverished” compared with that in the nearby Koniuji group. This decrease in structural habitat diversity is reflected by the absence of the Black-capped Chickadee southeast of Big Koniuji and the irregularity of the Hermit Thrush, Common Redpoll, Yellow Warbler, and Wilson’s Warbler on one or more of the outermost three islands. In contrast, the Lapland Longspur, which is dependent on grassland, is confined to the outermost islands, southeast of the Koniuji group. In addition, the southern Alaska Peninsula and Shumagin Islands emerged from glaciation around 12,000–10,000 years before present, and alder pollen appeared in the Shumagins only about 5000 years ago (Heusser 1983), suggesting that the shrub-nesting avifauna followed the expansion of the shrub zone fairly recently and may still be in the process of colonizing. Furthermore, the near restriction of tall- and medium-shrub habitat to the inner Shumagins probably is related to the inner islands’ proximity to the source of dispersal from the Alaska Peninsula, slightly warmer summer temperatures, and possibly greater winter snow cover than in the outer Shumagins, which are moderated by mild maritime temperatures in both summer and winter. These factors also probably influence the distribution and extent of tall-shrub habitat in the Aleutian Islands (Talbot et al. 2010) and elsewhere (Hallinger et al. 2010, Myers-Smith et al. 2011).

An Avifauna in Flux

During the 40 years of our field work in the Shumagins, the distribution and abundance of some species changed, some of them substantially. The breeding distributions of at least two species, the Pacific Wren and Pine Grosbeak, expanded into this region. We also saw some species expand their ranges into the outer Shumagins (e.g., Belted Kingfisher and Pine Grosbeak to Big Koniuji) or even the outermost three islands (see above). At least some of the changes that we observed resulted from local factors (the introduction and subsequent removal of introduced mammals) and/or broad-scale factors (changes in the distribution and abundance of some bird species).

As in the Aleutian Islands, introductions of foxes for fur farming (Bailey 1993b) adversely affected ground-nesting birds in the Shumagins through predation of adults, young, and eggs. Introduced cattle (on Simeonof and Chernabura) and ground squirrels (probably introduced on the outer islands) modified native plant communities, thus affecting bird habitat. In some cases, multiple introduced species on a single island, as of both cattle and foxes on Simeonof and Chernabura, affected the native avifauna extensively.

From the time they were first introduced in 1840 until their eventual disappearance (natural or planned) from most of the 12 islands by 1995 (see Bailey 1993b, Byrd et al. 1996), foxes probably decimated the larger ground-nesting birds such as waterfowl, gulls, oystercatchers, and some species of seabirds. As seen in the Aleutians (Byrd et al. 1994, Ebert and Byrd 2002, Williams et al. 2003), breeding populations of some species such as the Black Oystercatcher,
Pigeon Guillemot (Byrd et al. 1997), and Glaucous-winged Gull (Bailey and Norvell 1987, Byrd 2001, Byrd and Williams 2006, AMNWR unpubl. data) increased after fox removal. We also suspect that recent increases in sightings of the Rhinoceros Auklet, Horned and Tufted Puffins, and Arctic Tern at Simeonof signal recolonization after the removal of foxes, albeit at rates slower than those seen in the oystercatcher, guillemot, and gull.

The removal of both foxes and cattle from Simeonof and Chernabura also has allowed the recovery of bird habitats, including shrubs (Bailey 1994), vegetative cover in wetlands and near the coast, and inland meadows. The resulting vegetative recovery and the elimination of predation from foxes has resulted in apparent population increases for a number of nesting species. In addition, shrub-nesting passerines such as the Hermit Thrush, Yellow Warbler, and Wilson’s Warbler are likely to benefit from habitat recovery in these outermost islands.

In addition to the effects of the factors described above on birds’ current distribution in the Shumagins, other, broad-scale changes in bird populations appear to be at play. For example, the Pine Grosbeak apparently is a recent colonizer of the western Alaska Peninsula and eastern Aleutians (see Gibson and Byrd 2007, Young and Adkisson 2020) that now also nests in the Shumagins. The species first was recorded at Unga in 1983 (K. Rose), then spread to Popof, where it first was recorded in 1984 (A. Gronholdt) and became well established by 1995 (D. D. Gibson). We have no data between Popof and Big Koniuji, where this species first was seen in 1985, and only at Flying Eagle Harbor (Bailey 1985); since then, it has expanded across a substantial part of the island, nesting to the southern end of the island by 2002 (Maccormick 2002). Similarly, the Belted Kingfisher expanded its range from the inner Shumagins to Big Koniuji sometime between 1976 and 1982 (Day) and first was recorded breeding around 1987 (Bailey and Norvell 1987). The colonization of the outer Shumagins by the Pacific Wren, probably in the early 1970s, and subsequent expansion within the archipelago to both the southeast and the west is another example; the record in 2017 of two birds at Unga, after an absence of nearly 150 years, indicates that the breeding range may be continuing to expand. Finally, the Great Horned Owl’s colonization of the Shumagin Islands on or before 2015 is astounding and cannot be understood easily. The causes for such broad-scale changes in the range of species such as these are unclear, but they clearly are occurring over surprisingly short time scales.

ACKNOWLEDGMENTS

Day’s work was supported by the U.S. Fish and Wildlife Service (USFWS) and the Institute of Marine Sciences at the University of Alaska—Fairbanks. Byrd’s and Bailey’s work was supported by the USFWS. Daniel D. Gibson, Andrew Gronholdt, Christopher Hoffman, Richard A. MacIntosh, Kenneth Rose, and William Stahl generously provided unpublished data; Robert E. Gill, Jr., provided expert advice on shorebirds in this region. Brie Drummond, Robert Kaler, Nora Rojek, and Jeffrey C. Williams—all of the USFWS—provided recent information on seabird populations and helped locate obscure references. John Piatt and Gary Drew of the U.S. Geological Survey provided unpublished data on murrelets from this area. Jack J. Withrow of the University of Alaska Museum helped with information on specimens, provided publications from the Harriman Expedition, and informed us about VertNet. We thank the 23 museums mentioned here for making information on their collections
LITERATURE CITED

Reed, A., Stehn, R., and Ward, D. 1989. Autumn use of Izembek Lagoon, Alaska,
BIRDS OF THE SHUMAGIN ISLANDS, ALASKA

by Brant from different breeding areas. J. Wildlife Mgmt. 53:720–725; doi.org/10.2307/3809203.
Turner, L. M. 1886. Contributions to the natural history of Alaska: Results of investi-
gations made chiefly in the Yukon District and the Aleutian Islands; conducted under the auspices of the Signal Service, United States Army, extending from May, 1874, to August, 1881. U.S. Army Signal Serv., Arctic Ser. II.

Accepted 23 March 2022
Associate editor: Robert E. Gill Jr.
NESTING ECOLOGY OF THE BARN SWALLOW ON AGRICULTURAL LANDS IN YUKON

MARIA LEUNG, Wild Tracks Ecological Consulting, 39 Harbottle Road, Whitehorse, Yukon, Canada Y1A 5T2; Leungreid@northwestel.net

DONALD REID, Wildlife Conservation Society Canada, 169 Titanium Way, Whitehorse, Yukon, Canada Y1A 0E9; dreid@wcs.org

ABSTRACT: Since the 1980s, the abundance of the Barn Swallow (Hirundo rustica) in North America, including the far north, has declined. To better understand the species’ biology north of 60° N, near the northern limit of its range, and in a region of expanding agriculture, we studied its nesting ecology on farms in southern Yukon Territory, Canada, in 2019 and 2020. We followed 21 attempted nests in 2019, 20 in 2020, of which 52% and 60%, respectively, were inside buildings with permanently open entrances. Other nests were built on the outside of buildings. In both years we inferred successful double brooding by three pairs, which is rarely reported north of 60°N latitude. We found the swallows’ reproductive output to be similar to that at temperate latitudes: first clutches ranged from three to six eggs (mean 4.8 in 2019; 4.2 in 2020); second clutches may have averaged marginally smaller (n = 6). The mean number of fledglings per nest was 3.3 in 2019 and 3.0 in 2020. Twenty-one percent of nests failed, either by falling off a vertical substrate or because of predation by deer mice (Peromyscus spp.), Black-billed Magpies (Pica hudsonia), or domestic cats. We also compared the air temperatures at nests, usually near building roofs, to ambient temperatures, finding them on average 1.6°C warmer than temperatures outside buildings. We set out 33 platforms and 20 wooden cups designed for Barn Swallow nesting but over the two years of our study the birds did not use any of them.

The decline of North American avifauna is well documented, and this loss is prominent among passerines (Rosenberg et al. 2019). Nebel et al. (2010) reported that the probability of decline of aerial insectivores was higher than that of passerines with other feeding strategies. Like that of other aerial insectivores, the population of the Barn Swallow (Hirundo rustica) has declined across North America since the 1980s (Nebel et al. 2010, Smith et al. 2015). Limited Breeding Bird Survey data from Yukon suggest a substantial population decline since 1970 (with some stabilization since 2000), but the level of confidence in the data is low (Smith et al. 2020, COSEWIC 2021). Suggested causes of the North American decline include the loss of nesting habitat, loss of foraging habitat, reduced availability of insect prey, degradation of the winter range, and periods of inclement weather that inhibit foraging, especially in the nesting season (Nebel et al. 2010, COSEWIC 2011, Spiller and Dettmers 2019). The replacement of older structures (e.g., wooden barns) by newer ones that provide fewer suitable nesting sites is thought to degrade nesting habitat (COSEWIC 2011). Various factors are implicated in the decline of insect populations, including the use of agro-chemicals and the frequency of severe storms increasing with climate change (Sánchez-Bayo and Wyckhuys 2019, Brown and Brown 2020).

Up until the mid-1900s, the population increase and range expansion of the Barn Swallow in North America were facilitated by the clearing of land and construction of buildings suitable for nesting, often on farms. In Yukon Territory, situated north of 60°N, the increase in human-made structures...
and the expansion of agricultural lands are more recent than in southern Canada, with the greatest expansion of agriculture in Yukon occurring since 1990 (Hill et al. 2000). Therefore, the population increase seen up to the mid-1900s in the Canadian provinces was probably not as pronounced in Yukon. Conversion of wildlands to agricultural fields continues; from 2013 to 2017, when the extent of agriculture exceeded 15,500 ha, the government of Yukon approved 23 applications for agricultural land and issued 45 agricultural titles (Government of Yukon 2018).

In contrast to most parts of North America south of 60°N, and many parts of Europe, in Yukon data on the nesting ecology of the Barn Swallow are limited (Sinclair et al. 2003, Brown and Brown 2020, COSEWIC 2021), motivating us to undertake a field study of the species’ nesting ecology there.

In many birds, warmer temperatures can enhance nestlings’ growth, as long as ambient temperatures are below or within the thermal neutral zone for provisioning adults or nestlings (Sauve et al. 2021). Ambient temperatures above the thermal neutral zone may constrain chicks’ growth through overheating and dehydration (Tapper et al. 2020, Sauve et al. 2021). Grüebl et al. (2010) suggested that the higher temperature and more constant microclimate in livestock barns allow nestlings to allocate more energy to growth and less to thermoregulation. We hypothesized that in the subarctic Yukon, Barn Swallows should choose nesting sites with warmer than ambient temperatures to buffer the chicks against the relatively cold temperatures.

Deployment of nest boxes to benefit aerial insectivores initially targeted cavity nesters (Jedlicka et al. 2011, Norris et al. 2018, Dulisz et al. 2021). Deployment of structures such as nest platforms and wooden cups for birds that do not nest in cavities is more recent. Nest platforms and nest cups for the Barn Swallow are promoted on websites, in guidelines for best practices, and through outreach events (www.nrcs.usda.gov/wps/portal/nrcs/detail//?cid=nrcs142p2_008682, OMNRF 2016, Lamoureux and Dion 2019). However, published studies on their utility in North America are few (Campomizzi et al. 2019).

In our field study we aimed to (1) document the Barn Swallow’s nesting ecology (nest locations, nesting phenology, nesting success) on agricultural lands near the northern limit of its breeding range, (2) determine whether Barn Swallows gain a thermal advantage in their choice of nest sites, and (3) assess the Barn Swallow’s use of supplementary nest structures we provided. We also augmented our data with data on nest locations, nesting phenology, and productivity from https://ebird.org.

METHODS

Study Area

Our study area encompassed ~5400 km² (Figure 1) within 170 km of Whitehorse, Yukon (60.721° N, 135.057° W). Here undeveloped valley bottoms are covered with boreal forest, dominated by white spruce (Picea glauca), lodgepole pine (Pinus contorta), and aspen (Populus tremuloides) and interspersed with wetlands, rivers, and lakes. Farmlands are concentrated in a
few valleys, alongside rivers and lakes, where soils are arable (Government of Yukon 2018). Structures on which Barn Swallows nest are situated on farms and adjacent to croplands, including fallow fields, hay or grain fields, pasture with livestock, and vegetable gardens.

Nesting Ecology

To access Barn Swallow nests on agricultural lands, in spring 2019 we asked the Yukon Agricultural Association and Growers of Organic Food Yukon to notify their members of our study and request that volunteers contact us. Word of mouth drew additional participation. We tracked nests on all the rural properties whose owners expressed interest. Thus our sample of nests was not chosen systematically so may not be representative of southern Yukon as a whole. Nevertheless, we surveyed 30 properties for Barn Swallows and found nests at 13 farms. Nests were located in and on a variety of structures, including metal and wooden shelters with and without livestock (Table 1).

In 2019 and 2020, we visited each nest weekly throughout the breeding
Table 1 Situation of Barn Swallow Nests on Agricultural Properties in Southern Yukon in 2019 and 2020

<table>
<thead>
<tr>
<th>Year and site</th>
<th>Description of nest site</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>atop metal bar clamps just below ceiling of SeaCan</td>
<td>2 to 3</td>
</tr>
<tr>
<td>B1</td>
<td>on corner of bamboo window blind on outside of house; west exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>B2</td>
<td>atop light fixture inside wooden goat barn</td>
<td>2 to 3</td>
</tr>
<tr>
<td>C</td>
<td>on window frame under eaves of house; southeast exposure</td>
<td>4 to 5</td>
</tr>
<tr>
<td>D</td>
<td>on side of metal roof support inside large metal barn</td>
<td>>6</td>
</tr>
<tr>
<td>E1</td>
<td>on side of wood support under roof of upper deck of house</td>
<td>>6</td>
</tr>
<tr>
<td>E2</td>
<td>atop wood support on underside of deck</td>
<td><1</td>
</tr>
<tr>
<td>E3</td>
<td>on wood wall under roof of covered deck</td>
<td>2 to 3</td>
</tr>
<tr>
<td>F</td>
<td>on wood rafter by light fixture inside carport</td>
<td>2 to 3</td>
</tr>
<tr>
<td>G</td>
<td>on light fixture by upper corner of small goat shed</td>
<td>2 to 3</td>
</tr>
<tr>
<td>H</td>
<td>on side of wood roof rafter inside pig barn</td>
<td>3 to 4</td>
</tr>
<tr>
<td>I1</td>
<td>on siding on outside of house under eaves; north exposure</td>
<td>4 to 5</td>
</tr>
<tr>
<td>I2</td>
<td>on wood support close to roof inside hay barn</td>
<td>3 to 4</td>
</tr>
<tr>
<td>J</td>
<td>adhered to metal roof support inside small Quonset for feeding cattle</td>
<td>1 to 2</td>
</tr>
<tr>
<td>K1</td>
<td>on wood wall halfway up corner inside garage beneath loft</td>
<td>2 to 3</td>
</tr>
<tr>
<td>K2</td>
<td>inside wood wall of garage</td>
<td>3 to 4</td>
</tr>
<tr>
<td>K3</td>
<td>on painted siding of house under eaves; west exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>K4</td>
<td>on window frame outside of house under eaves; north exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>K5</td>
<td>on light fixture above door under eaves; south exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>K6</td>
<td>above window of house under eaves; south exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>L</td>
<td>on side of metal roof support inside large metal storage building</td>
<td>>6</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>atop tubular metal frame inside a portable garage</td>
<td>2 to 3</td>
</tr>
<tr>
<td>B1</td>
<td>atop wood shelf above window outside; west exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>B2</td>
<td>on ceiling joists in goat barn (1st nest)</td>
<td>2 to 3</td>
</tr>
<tr>
<td></td>
<td>atop light fixture in goat barn (2nd nest)</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>atop wood support above feeding trough inside barn</td>
<td>2 to 3</td>
</tr>
<tr>
<td>C</td>
<td>on window frame under eaves of house; southeast exposure</td>
<td>4 to 5</td>
</tr>
<tr>
<td>E1</td>
<td>on wood frame of house outside</td>
<td>>6</td>
</tr>
<tr>
<td>E2</td>
<td>atop wood support on underside of deck</td>
<td><1</td>
</tr>
<tr>
<td>E3</td>
<td>on wood wall under roof of covered deck</td>
<td>2 to 3</td>
</tr>
<tr>
<td>E4</td>
<td>on wood wall under roof of cabin porch</td>
<td>2 to 3</td>
</tr>
<tr>
<td>F</td>
<td>on wood rafter inside carport</td>
<td>2 to 3</td>
</tr>
<tr>
<td>G</td>
<td>on light fixture by upper corner of small goat shed</td>
<td>2 to 3</td>
</tr>
<tr>
<td>K1</td>
<td>on wood wall halfway up corner inside garage beneath loft (1st nest)</td>
<td>1 to 2</td>
</tr>
<tr>
<td></td>
<td>on wood rafter in garage (2nd nest)</td>
<td>3 to 4</td>
</tr>
<tr>
<td>K2</td>
<td>on wood ceiling joist in shed (1st nest)</td>
<td>2 to 3</td>
</tr>
<tr>
<td></td>
<td>on wood wall in shed (2nd nest)</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>atop wood loft in generator building (1st nest)</td>
<td>2 to 3</td>
</tr>
<tr>
<td></td>
<td>atop breaker box in generator building (2nd nest)</td>
<td>1 to 2</td>
</tr>
<tr>
<td>K4</td>
<td>on siding, inner corner of house under eaves; southeast exposure</td>
<td>2 to 3</td>
</tr>
<tr>
<td>L</td>
<td>on side of metal roof support inside large metal storage building</td>
<td>>6</td>
</tr>
<tr>
<td>M</td>
<td>on metal frame under transport truck trailer</td>
<td><1</td>
</tr>
</tbody>
</table>
NESTING ECOLOGY OF THE BARN SWALLOW IN YUKON

season (May to September). During each visit, we counted the number of eggs or nestlings, and photographed nest contents by aiming a camera at a hand-held mirror positioned above the nest. We used binoculars to estimate the number of hatchlings at nests to which we could not get close enough to use a mirror. We did not capture or mark any birds for individual recognition.

To record activity at nests between our visits, we installed Bushnell “Trophy Cam” cameras (model 119537) that recorded 10 seconds of digital video when triggered by an infrared motion sensor. The sensor delayed a minimum of 1 second before it could trigger the camera to take the next clip. Farmers and property owners supplemented our efforts with their observations.

When our visits to a nest did not coincide with egg laying or hatching, we estimated the start of incubation and the date of hatching on the basis of (1) the 15-day average length of incubation in British Columbia (Campbell et al. 1997), (2) a guide to the age of nestling Barn Swallows by day (Fernaz et al. 2012), (3) the onset of the adults’ provisioning of hatchlings, as observed on camera recordings, and (4) ~12 days as the age at which nestlings begin defecating independently rather than the adults removing fecal sacs, as observed on camera recordings (Fernaz et al. 2012). Backdating to estimate initiation of laying was based on the apparent age of the most developed nestling. The number of nestlings approaching fledging and the date of fledging were based on site visits and camera recordings.

We report reproductive output per nest as the mean number of eggs, hatch success (percentage of nests hatching at least one egg), nest success (percentage of nests fledging at least one chick), rate of predation (percentage of nests at which predation was video-recorded or the entire clutch was lost), and mean number of young fledged. Following McClenaghan et al. (2019), we consider the number of young at the nest on or after day 16 after hatching as a count of number of fledglings. We inferred that a nest represented a second attempt in a season when a pair’s first attempt failed and they renested close by, and for some nests started after 15 July.

Double brooding is defined as the laying of a second clutch of eggs after fledging of young from the first clutch (Munroe et al. 2008). To assess double brooding in this unmarked set of birds, we relied on our nearly continuous record of numbers of adult Barn Swallows at a property and the date of occupation of specific nests. At sites with only one pair of adults, we inferred double brooding when that pair either built a second nest or reoccupied the first nest after the first brood had fully fledged, then laid a second clutch of eggs. At sites with more than one pair of adults, we inferred double brooding only if the second clutch was laid in the same nest or in one within a few meters of the first. We address attempted second nests separately from first nests because second nests are not fully independent from first nests with respect to the pair’s choice of site and conditions at the nest.

To develop a regional understanding of the Barn Swallow’s nesting ecology, we searched eBird (https://ebird.org/science/use-ebird-data/download-ebird-data-products) for Yukon records of Barn Swallows clearly occupying one or more nests whose supporting structure the observer noted. This supplemented our data on nest locations and timing of nesting. Some eBird observers provided data on numbers of eggs, nestlings, or fledglings from which we could estimate productivity.
Temperature at Nest Sites

To assess a possible relationship between nest-site occupation and air temperature, in 2020 we installed data loggers (Thermochron iButton DS1921G-F5) to measure temperatures at nests and outside ambient temperatures. Where possible, to reduce heat absorption from direct sunlight, we placed outdoor data loggers on the building’s outside north face. For nests inside buildings, we added the comparison of nest-site temperature with indoor ambient temperature, measured with an additional logger installed inside the building. Loggers were set at 1.5 m above ground level in accordance with World Meteorological Organization (2018) guidelines. To measure the temperature near a nest, we placed the logger within 30 cm of the nest and at the same height. We installed loggers either during egg laying or incubation. Loggers recorded temperatures hourly for 40 days. To compare temperatures at the nest with ambient temperatures we used the nonparametric Wilcoxon signed-rank test for difference in medians, a paired test (Zar 1999), because the data did not meet the criterion of normality for parametric tests. The sample size for a site equaled the number of simultaneous hourly readings of ambient temperature and nest-site temperatures and ranged from 961 to 973. From the hourly temperature data, we calculated the means for nest-site temperature, indoor ambient temperature, and outdoor ambient temperature. For statistical analyses we used NCSS8 (Hintze 2012) or followed Zar (1999), accepting statistical significance at $P < 0.05$.

Artificial Nest Platforms and Nest Cups

We tested two types of artificial nesting structures. A “nest platform” consisted of a horizontal platform with sides and roof to support a nest, and a “nest cup” mimicked the shape of a Barn Swallow nest, consisting of a semicircular cup-shaped wooden structure mounted on a wooden backboard (Figure 2). Dimensions for nest platforms are available at https://nestwatch.org/wp-content/themes/nestwatch/birdhouses/american-robin.pdf and http://www.nrcs.usda.gov/wps/portal/nrcs/detail//?cid=nrcs142p2_008682, among other sites. Dimensions for nest cups are in OMNRF (2016).

Between 19 April and 16 May 2019, we placed 33 nest platforms across 26 properties. Barn Swallows had nested at 13 of these properties during the previous five years. We placed two platforms at seven farms and a single platform at the remaining 19 properties. Six platforms were placed inside buildings and 27 were placed on the exterior of buildings. Three platforms were removed before April 2020; we continued to monitor the remaining 30 platforms in 2020.

Between 4 May and 12 May 2020, we installed 20 wooden nest cups manufactured by the Bird House Nature Company (Orillia, Ontario, Canada) and built to OMNRF (2016) specifications. These we monitored in 2020. We placed nest cups at 15 properties where nest platforms had been installed the previous year and at two additional properties where swallows had nested in 2019. Three properties had two nest cups each and the remainder had one nest cup each. Thirteen of the nest cups were installed inside buildings or in shelters; seven were placed on the exterior of buildings.
RESULTS

Nesting Ecology

Location. In 2019, we tracked Barn Swallow nests at 12 farms (Figure 3, Tables 1 and 2). Eight farms had a single active nest, two had two nests, one had three nests, and one had at least six nests, comprising 20 initial nesting attempts and one second attempt. At least four pairs reoccupied a nest built in a previous year.

In 2020, we tracked Barn Swallow nests at nine farms (eight being the same as in 2019). Six farms had one nest, one had three nests, and two farms had four nests, comprising 16 initial nesting attempts and four second attempts (Figure 3). At least six pairs used a nest that was built the previous year. No birds were marked so we do not know whether the same pairs reoccupied sites, whether fledglings from previous years reoccupied sites, or whether subsequent use was by pairs with no previous affiliation with the sites.

We inferred double brooding by three pairs each year (Figure 3, Tables 1 and 2). In 2019, one pair began building a second nest when their first brood had almost fledged, but then reverted to using the original nest when their first brood vacated it. Another pair raised their second brood in the same nest used for the first brood. The third pair built a new nest for their second clutch. In 2020, one pair built a new nest while their fledglings were still begging for food. Another pair began reusing their first nest, laid 5 eggs and abandoned...
the clutch, then laid 4 eggs in a different pre-existing nest within 2 m of the first and raised this brood. The third pair raised young in a pre-existing nest that was within the same room as its first nest. Unlike the other pairs, the third pair was on a property with two other pairs, but each pair used separate dwellings or separate rooms with separate exits.

Of the 21 initial nests in 2019, 11 (52%) were constructed inside buildings, each with a permanently open side or open door (Table 1). Of the 20 initial nests in 2020, 12 (60%) were inside buildings (Table 1). The nests were built on and in a wide variety of buildings and structures, and at a wide variety of heights (Table 1). Only 3 of 12 properties had large barns or sheds (total of 5

Figure 3. Phenology of Barn Swallow nests in southern Yukon. See Table 1 for identification of nests. Brown, nest building; blue, incubation; green, nestlings; purple, fledglings; red, nest failure (e.g., predation, abandonment). K2 and K3 in 2019 and E1 and K2 in 2020 are rough estimates, derived from one or two observations.
buildings) more than 4 m high. Barn Swallows nested in two of those in 2019, and one in 2020, and Cliff Swallows (*Petrochelidon pyrrhonota*) nested in three of the five in both years. Cliff Swallows were nesting, mostly colonially, at five of the 12 properties with Barn Swallows. Livestock were kept in four of the buildings with nests: two held goats, one had pigs, and one had young cows. The permanent building materials forming the roof above nests were made of wood (64%), metal (22%), or plastic (14%).

No active nests were closer together than 30 m. All but one were in or on separate buildings, even on properties with multiple nesting pairs. The exception, in 2020, was of two nests within the same building but in different rooms with different exits.

The eBird data (1975–2021) had records of 76 occupied nests at 67 locations at least 50 m apart. Most locations (88%) had single nests, but 10% had two nests and 2% had three nests close to each other. Only nine nests (12%) were on farm buildings like those on which we focused our field study. The majority of nests (53%) were on rural buildings away from agricultural lands, while 18% were on buildings within a townsite, 16% were on rural bridges, and one was in a culvert. Nests were commonly close to open water.

Phenology and reproductive output. Table 2 summarizes the phenology data, and Table 3 summarizes reproductive-success data from our field study and eBird data combined. The period of reproductive activity at nests, not

Table 2 Nesting Phenology of the Barn Swallow in Yukon

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field study, 2019–2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First broods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset of incubation</td>
<td>18</td>
<td>16 Jun</td>
<td>31 May–6 Jul</td>
</tr>
<tr>
<td>Hatch date</td>
<td>18</td>
<td>3 Jul</td>
<td>18 Jun–20 Jul</td>
</tr>
<tr>
<td>Fledging date</td>
<td>10</td>
<td>22 Jul</td>
<td>6 Jul–1 Aug</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset of incubation</td>
<td>11</td>
<td>7 Jun</td>
<td>2–25 Jun</td>
</tr>
<tr>
<td>Hatch date</td>
<td>11</td>
<td>22 Jun</td>
<td>17 Jun–10 Jul</td>
</tr>
<tr>
<td>Fledging date</td>
<td>11</td>
<td>13 Jul</td>
<td>5–24 Jul</td>
</tr>
<tr>
<td>Second broods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset of incubation</td>
<td>3</td>
<td>21 Jul</td>
<td>15–21 Jul</td>
</tr>
<tr>
<td>Hatch date</td>
<td>3</td>
<td>5 Aug</td>
<td>2–6 Aug</td>
</tr>
<tr>
<td>Fledging date</td>
<td>2</td>
<td>23 Aug</td>
<td>18–27 Aug</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset of incubation</td>
<td>3</td>
<td>20 Jul</td>
<td>17–22 Jul</td>
</tr>
<tr>
<td>Hatch date</td>
<td>3</td>
<td>4 Aug</td>
<td>1–6 Aug</td>
</tr>
<tr>
<td>Fledging date</td>
<td>3</td>
<td>23 Aug</td>
<td>21–24 Aug</td>
</tr>
<tr>
<td>eBird, 1975–2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incubation period</td>
<td>4</td>
<td></td>
<td>17 Jun–30 Jul</td>
</tr>
<tr>
<td>Nestling period</td>
<td>8</td>
<td></td>
<td>25 Jun–3 Aug</td>
</tr>
<tr>
<td>Fledglings at nest</td>
<td>13</td>
<td></td>
<td>8 Jul–4 Sep</td>
</tr>
</tbody>
</table>

*Number of nests.
*Second nests attempted after a failure excluded.
including nest building, was similar for both data sets and lasted more than three months, suggesting more than one nesting cycle for some pairs. In our field study, the onset of incubation for first broods extended from late May to early July, hatching extended from mid-June to mid-July, and most young fledged in July. In 2020, two pairs successfully fledged young after their first broods were depredated. They began incubation around 15 July and 17 July, eventually raising 5 and 4 fledglings.

In 2019, two of the second broods were successful, with all young fledging by 27 August (Table 2, Figure 3). Two second clutches were smaller than first clutches: three compared to six, and four compared to five. We were not able to see into the nest of the third second clutch. In 2020, the second clutches were the same size as the first: 3, 4, and 5 eggs (Figure 3). That year, all three pairs raised their second broods in a nest different from the first brood. Two of these nests pre-existed and the third was newly built. Of the three pairs of Barn Swallows that likely raised a second brood in 2020, one occupied the same site as a pair that had raised a second brood in 2019; the others were at sites not previously recorded to have second broods. Recently fledged juveniles continued to occupy nests as late as 4 September, even though they had taken their first flight at least 10 days earlier (26 August).

In 2019, two of the second broods were successful, with all young fledging by 27 August (Table 2, Figure 3). Two second clutches were smaller than first clutches: three compared to six, and four compared to five. We were not able to see into the nest of the third second clutch. In 2020, the second clutches were the same size as the first: 3, 4, and 5 eggs (Figure 3). That year, all three pairs raised their second broods in a nest different from the first brood. Two of these nests pre-existed and the third was newly built. Of the three pairs of Barn Swallows that likely raised a second brood in 2020, one occupied the same site as a pair that had raised a second brood in 2019; the others were at sites not previously recorded to have second broods. Recently fledged juveniles continued to occupy nests as late as 4 September, even though they had taken their first flight at least 10 days earlier (26 August).

The interval between initiation of first and presumptive second clutches was 41, 41, and 47 days for the three pairs in 2019, and 45, 47, and 51 days for three pairs in 2020. Both years combined, the mean was 45 days (SD = 3.9). The pair that took 51 days had laid a clutch of 5 eggs after raising their
first brood, abandoned the 5 eggs, and then laid another clutch of 4 eggs, which they raised.

For our full data set, hatching success was 81%, nest success was 70%, and 21% of nests were depredated (Table 3). Hatching success in 2019 and 2020 differed because of a greater rate of egg predation in 2020 (Table 3). Mean clutch size was 4.4 eggs, and mean number of young fledged was 3.2 (Table 3).

Nest failures. Over the two years, we recorded 12 nest failures: 10 for first attempts, and 2 for second attempts (both in 2020). The primary cause of failure was confirmed or likely predation (10 nests). One nest fell off the outside wall to which it had been attached and another was pulled off a rafter by a domestic cat that then consumed all five nestlings. Eggs in two other nests at one site were likely lost to predators. Black-billed Magpies (Pica hudsonia) nested at one farm, and video confirmed that they removed and consumed eggs at four nests. One pair of swallows lost all 3 eggs to deer mice (Peromyscus sp.), as attested by video of a mouse feeding in the nest on three successive nights.

Nest Temperature

We recorded data on nest temperature at 19 nests (including second broods and failed nests) across 16 sites in 2020. In all 13 comparisons, the temperature at the nest was significantly greater than the indoor ambient temperature ($P < 0.0001$, $n = 961$ to 973; Table 4), averaging $1.7^{\circ} C$ higher. Among 19 comparisons between temperature at the nest and outside ambient temperature, in 16 the nest temperature was significantly higher (P ranging from 0.028 to <0.0001, $n = 961$ to 971), in one there was no difference ($P = 0.912$, $n = 973$), and in two the nest temperature was significantly lower ($P <0.0001$, $n = 732$ to 972). Overall, nest temperature averaged $1.6^{\circ} C$ higher than outside ambient temperature. The one nest site with no significant temperature difference was built inside a portable garage consisting of a metal frame and PVC fabric cover.

Across all sites except one, the median daily temperatures at nests varied from $12^{\circ} C$ to $17^{\circ} C$. The exception was a nest in a generator shed where the median temperature was above $22^{\circ} C$ (Figure 4). The highest nest-site temperature was $42^{\circ} C$, which lasted 2 hours. The top of this nest was within 15 cm of a metal roof with a western exposure. The median temperature during the development of a pair’s second brood was slightly lower than during that of its first brood (Figure 4: nests B2, F, and L).

Artificial Nest Platforms and Nest Cups

None of the nest platforms was occupied by swallows. Neither were any nests completed in the cups provided.

DISCUSSION

We found that in Yukon Barn Swallows nest in and on a wide diversity of man-made structures. No birds nested colonially. Our observations on nesting phenology expand the range of dates for the incubation and nestling phases beyond those reported for Yukon by Sinclair et al. (2003) (3 June–8 July and 4 July–8 August, respectively) and in eBird (see Table 2). Our ob-
servations of earliest onset of incubation (31 May) and latest fledglings at nests (4 September) correspond closely with the range of dates of nest occupancy elsewhere in Yukon (26 May–4 September; eBird), and in the adjacent Northern Boreal Mountains Ecoprovince of British Columbia (late May–late August; Campbell et al. 1997).

On the basis of clutch size, the Barn Swallow’s potential productivity in Yukon is similar to that in other parts of North America. Sinclair et al. (2003) reported a mean clutch size in Yukon of 5.0 \((n = 5) \), whereas we found 4.3, data from all nests combined (Table 3). In British Columbia, Campbell et al. (1997) reported clutch sizes ranging from 1 to 10, with 84% of nests having 3 to 5 eggs. Studies in Kansas and West Virginia found that first clutches averaged 4.6 eggs, second clutches 4.1 eggs (Samuel 1971, Anthony and Ely 1976). In two years of study in Ontario, first clutches had 4.6 or 4.7 eggs, second clutches 3.9 or 4.4 eggs (McClenaghan et al. 2019).

Campbell et al. (1997) noted that in British Columbia “first clutches were significantly larger than second clutches.” In only two of the five cases in

Table 4 Comparisons of Temperatures (°C) Measured at Barn Swallow Nests with Ambient Temperatures in Yukon in 2020

<table>
<thead>
<tr>
<th>Nest</th>
<th>(n^b)</th>
<th>At nest ((T_n))</th>
<th>Mean</th>
<th>SE</th>
<th>SE</th>
<th>Inside ambient temperature ((T_i))</th>
<th>Mean</th>
<th>SE</th>
<th>Z(^d (T_n; T_i))</th>
<th>At nest ((T_n))</th>
<th>Mean</th>
<th>SE</th>
<th>SE</th>
<th>Z(^d (T_n; T_o))</th>
<th>Outside ambient temperature ((T_o))</th>
<th>Mean</th>
<th>SE</th>
<th>SE</th>
<th>Z(^d (T_n; T_o))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>973</td>
<td>13.9</td>
<td>0.18</td>
<td></td>
<td></td>
<td>12.9</td>
<td>0.16</td>
<td></td>
<td>21.407</td>
<td>13.9</td>
<td>0.18</td>
<td></td>
<td>0.111</td>
<td>E</td>
<td>23.241</td>
<td>13.8</td>
<td>0.15</td>
<td>21.560</td>
<td>E</td>
</tr>
<tr>
<td>B1</td>
<td>961</td>
<td>16.5</td>
<td>0.24</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>13.8</td>
<td>0.15</td>
<td>23.806</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2 (1st)</td>
<td>961</td>
<td>16.1</td>
<td>0.21</td>
<td></td>
<td></td>
<td>14.5</td>
<td>0.13</td>
<td></td>
<td>13.030</td>
<td>13.8</td>
<td>0.15</td>
<td>21.351</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2 (2nd)</td>
<td>961</td>
<td>14.9</td>
<td>0.19</td>
<td></td>
<td></td>
<td>14.1</td>
<td>0.12</td>
<td></td>
<td>6.347</td>
<td>13.1</td>
<td>0.14</td>
<td>21.713</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>961</td>
<td>16.9</td>
<td>0.21</td>
<td></td>
<td></td>
<td>15.4</td>
<td>0.14</td>
<td></td>
<td>14.813</td>
<td>13.8</td>
<td>0.15</td>
<td>23.806</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>972</td>
<td>15.8</td>
<td>0.15</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>14.7</td>
<td>0.19</td>
<td>11.492</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>972</td>
<td>15.5</td>
<td>0.16</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>13.0</td>
<td>0.15</td>
<td>26.120</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>972</td>
<td>14.1</td>
<td>0.14</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>13.0</td>
<td>0.15</td>
<td>18.713</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>972</td>
<td>14.8</td>
<td>0.14</td>
<td></td>
<td></td>
<td>14.4</td>
<td>0.16</td>
<td></td>
<td>9.065</td>
<td>13.0</td>
<td>0.15</td>
<td>24.927</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>972</td>
<td>14.2</td>
<td>0.15</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>13.0</td>
<td>0.15</td>
<td>20.533</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (1st)</td>
<td>972</td>
<td>16.5</td>
<td>0.25</td>
<td></td>
<td></td>
<td>13.0</td>
<td>0.14</td>
<td></td>
<td>22.523</td>
<td>14.0</td>
<td>0.16</td>
<td>20.793</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (2nd)</td>
<td>961</td>
<td>14.5</td>
<td>0.24</td>
<td></td>
<td></td>
<td>12.0</td>
<td>0.15</td>
<td></td>
<td>20.558</td>
<td>12.6</td>
<td>0.17</td>
<td>21.424</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>961</td>
<td>14.2</td>
<td>0.12</td>
<td></td>
<td></td>
<td>13.0</td>
<td>0.13</td>
<td></td>
<td>26.426</td>
<td>13.9</td>
<td>0.20</td>
<td>2.196</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>972</td>
<td>13.1</td>
<td>0.06</td>
<td></td>
<td></td>
<td>12.5</td>
<td>0.06</td>
<td></td>
<td>27.854</td>
<td>15.6</td>
<td>0.16</td>
<td>15.052</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>971</td>
<td>21.6</td>
<td>0.13</td>
<td></td>
<td></td>
<td>19.0</td>
<td>0.10</td>
<td></td>
<td>27.035</td>
<td>15.8</td>
<td>0.17</td>
<td>26.026</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>971</td>
<td>17.4</td>
<td>0.15</td>
<td></td>
<td></td>
<td>15.9</td>
<td>0.11</td>
<td></td>
<td>23.530</td>
<td>15.8</td>
<td>0.17</td>
<td>13.198</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L (1st)</td>
<td>961</td>
<td>15.8</td>
<td>0.16</td>
<td></td>
<td></td>
<td>13.4</td>
<td>0.08</td>
<td></td>
<td>17.103</td>
<td>13.9</td>
<td>0.13</td>
<td>24.474</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L (2nd)</td>
<td>961</td>
<td>16.0</td>
<td>0.16</td>
<td></td>
<td></td>
<td>13.2</td>
<td>0.08</td>
<td></td>
<td>24.046</td>
<td>13.3</td>
<td>0.12</td>
<td>26.908</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>732</td>
<td>13.9</td>
<td>0.15</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>14.3</td>
<td>0.14</td>
<td>8.303</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Measured if the nest was in a building or other shelter.

\(^b\)Number of simultaneous hourly temperature records.

\(^c\)SE, standard error.

\(^d\)From Wilcoxon signed-rank test for difference in medians

\(^e\)Temperature at nest was significantly warmer \((P < 0.05)\).

\(^f\)No significant difference.

\(^g\)Temperature at nest was significantly colder \((P < 0.05)\).
which we could ascertain the size of the second clutch was it smaller than the first. Yukon data on clutch size are still limited but do not suggest that in the north clutches are larger. This does not fit with the general increase in clutch size with latitude in many passerines (Lack 1947, Kulesza 1990) but may be explained by Lack’s (1947) food-limitation hypothesis if in this area the Barn Swallows experience substantial competition (e.g., from Cliff Swallows) for food.

The overall nest success we observed (70%) was lower than the 80.1% reported by McClenaghan et al. (2019) for southern Ontario, largely because of a higher rate of nest predation (21% vs. 15.7%). In our study nest predation was heavily influenced by one farm with resident Black-billed Magpies. Our mean number of young fledged per nest (3.2 ± standard error 0.32) was slightly less than but not significantly different from the 3.4 ± 0.12 reported by McClenaghan et al. (2019) \((t = 0.42, \text{ d.f. } 56, P > 0.50) \). It appears that this species largely compensates for the extra cost of migrating farther north but does not increase its reproductive output.

Several studies have addressed double brooding in songbirds north of 60°N in North America (Custer and Pitelka 1977, Jamieson 2011, Hussell et
al. 2014, Ringgenberg and Winker 2015), but most present indirect evidence. Hussell et al. (2014) reported double brooding of the Northern Wheatear (*Oenanthe oenanthe*) on Baffin Island but were unable to determine whether the young of the second brood fledged. Custer and Pitelka (1977) recorded a very late nesting attempt by Lapland Longspurs (*Calcarius lapponicus*) and assumed it followed an earlier successful nesting. Fledging was not confirmed. Ringgenberg and Winker (2015) suggested that the long period during which Common Redpolls (*Acanthis flammea*) are reproductively active (late April to late August) in Alaska is evidence for double brooding. Our evidence for double brooding by several pairs in both years was not conclusive (because birds were not marked), yet we did confirm successful fledging of later broods.

The time between initiation of first and second clutches appears shorter in Yukon than farther south in British Columbia. In a British Columbia study of 135 nesting pairs over 10 years, 37% laid a second clutch (Campbell et al. 1997). These second clutches may have included ones that followed a failed first attempt. The authors noted a period of about 51 days between the initiation of a successful first clutch and initiation of the second clutch. The interval in our study was shorter (mean = 45 days, SD = 3.9).

Possible reasons for a more compressed nesting cycle at northern latitudes include the longer daylight hours during which swallows can feed and a greater abundance of insect prey. Turner et al. (2017) suggested that the greater availability of prey farther north allows American Robins (*Turdus migratorius*) to forage and provide food to young for longer periods each day. Insect availability also changes with weather and farming practices. On the basis of study in the United Kingdom, Facey et al. (2020) considered the effects of weather on nestlings' body mass to be a result of how temperature, rainfall, and wind speed interactively affect prey availability and influence the nest's microclimate. In Denmark, Møller (2019) reported the rate at which Barn Swallows feed nestlings to increase with increasing insect abundance. We lack data on prey abundance, so cannot explore this further.

We documented nest failure because of predation and failed adhesion of the nest to a vertical substrate during brooding. The predators that Campbell et al. (1997) listed—the Common Raven (*Corvus corax*), Black-billed Magpie, Red Squirrel (*Tamiasciurus hudsonicus*), and domestic cat—are similar to ours, but our evidence of egg predation by a deer mouse is new. Brown and Brown (2020) noted that nests frequently fall from the substrate they are built on. Other cited causes of death include entanglement in monofilament fish line (Bartel 1984) and horse hair (Knight and Ryan 1980) incorporated in the structure of the nest. We did observe a Cliff Swallow strangled by horse hair.

Ambrosini and Saino (2010) suggested that the warmer temperatures and higher air humidity associated with rooms with livestock buffer developing embryos against the stress imposed by cool temperatures. Although few of our nesting sites were within rooms with livestock, nests built inside build- ings or shelters were significantly warmer than ambient indoor temperature. With few exceptions, nest sites indoors and outdoors were significantly warmer than ambient outdoor temperatures. The two exceptions were nests in unusual places. One was on the metal frame under the trailer of a transport truck about 1 m from the ground. Another was halfway up the inside permanently shaded wall of a garage. Cliff Swallows pre-emptying other nest
sites or high risk of predation by the Black-billed Magpie likely influenced where these nests were built.

Although warmth often favors nesting Barn Swallows, COSEWIC (2011) suggested that nests built under metal-roofed barns are at risk of overheating. Imlay et al. (2019) found the survival rate and body mass of nestling Cliff Swallows to be lower under metal than under wooden roofs. We observed the highest temperatures at a nest site built under a metal roof. Unlike the adults at other nests, those at this nest often perched beside it instead of sitting on eggs or young. Smith and Montgomerie (1992) noted that the amount of time that adult Barn Swallows devoted to incubation was negatively correlated with nest temperature. In many birds, the need to buffer the eggs against the cold declines with increasing ambient temperature (Sauve et al. 2021).

The nest platforms and nest cups we installed were not used, likely for several reasons. First, the distance between the ceiling of the building and floor of the platform (20 cm) may have been too great. Brown and Brown (2020) stated that the gap between most nests and the ceiling above them is 2.5 to 6 cm, and nests are about 13 cm high (i.e., total of 15.5 to 19 cm). Unlike platforms, cups can be placed closer to an overhanging roof. Second, returning Barn Swallows may prefer to use old nests from previous years. We found reuse of existing nests to be common. Third, the swallows may have preferred sites more sheltered than those where we placed the platforms and cups. Fourth, we monitored the structures no more than two years. Over time, and with changes in the individual swallows prospecting for nest sites, use of structures may increase. Teglhøj (2018) observed this in Denmark, finding that the number of broods raised in artificial nest cups increased from 16% in 2012 to 52% in 2016.

Despite the birds not nesting in the structures we provided, in 2020 a pair of Barn Swallows did construct a nest on a wood shelf provided by landowners, following removal of the 2019 nest. Mercadante and Stanback (2011) also demonstrated that removal of old nests encourages use of artificial nest structures. They attained an occupancy rate of 23% to 46% in wooden nesting cups at a Barn Swallow colony in North Carolina. As they removed the option of reuse of old nests and experimented at an established colony, their rate of nest-cup occupancy is not comparable to ours.

Our study is the first to address the Barn Swallow’s nesting ecology in Yukon and may serve as a basis for future investigations and monitoring of this species at subarctic latitudes. Our data suggest that in this area the swallow’s clutch size and nest success are similar to those farther south. Our temperature data suggest that Barn Swallows choose relatively warm microsites for nesting. Future studies could explore the role of changing prey availability (influenced by weather and pesticide applications) in nesting success, competition with Cliff Swallows for nest sites and prey, and the value of retaining known nest sites for returning birds, as our and other data suggest high site fidelity (COSEWIC 2021).

ACKNOWLEDGMENTS

We are very grateful to the many members of the agricultural community and property owners who welcomed us onto their lands and shared their insights. We thank the Yukon Agricultural Association, Growers of Organic Food Yukon, and
Yukon Agriculture Branch for their help in recruiting participating farms. The Habitat Stewardship Program, administered by Environment and Climate Change Canada, and the Weston Family Foundation provided funding for this project. The manuscript benefited from suggestions from C. Swarth, E. Nol, A. Campomizzi, and C. Savignac.

LITERATURE CITED

NESTING ECOLOGY OF THE BARN SWALLOW IN YUKON

the Yukon, and Agriculture and Agri-Food Canada–Research Branch, White-
york, Yukon.

Hussell, D. J. T., Bairlein, F., and Dunn, E. H. 2014. Double brooding by the North-
artic34387.

Imlay, T. L., Nickerson, D., and Horn, A. G. 2019. Temperature and breeding
success for Cliff Swallows (Petrochelidon pyrrhonota) nesting on man-made
cjz-2018-0224.

Jamieson, S. E. 2011. Pacific Dunlin Calidris alpina pacifica show a high propen-

tices strengthen ecosystem services in California vineyards. PLoS One 6:e27347;
https://doi.org/10.1371/journal.pone.0027347.

W. Birds 11:201.

Kulesza, G. 1990. An analysis of clutch-size in New World passerine birds. Ibis

Practices for the Protection of Farmland Birds, 2nd ed. Regroupement Québec
Oiseaux, Montréal.

reproductive performance of Barn Swallows (Hirundo rustica) breeding in On-

structions affect settlement patterns in Barn Swallows (Hirundo rustica). Auk

Møller, A. P. 2019. Parallel declines in abundance of insects and insectivorous birds in

and implications of double brooding in a southern population of Tree Swallows.

Nebeb, S., Mills, A., McCracken, J. D., and Taylor, P. D. 2010. Declines of aerial
insectivores in North America follow a geographic gradient. Avian Cons. Ecol.

reproductive output for Tree Swallows in a forest–grassland matrix in central
pone.0204226.

Note version 1.0. Species Conservation Policy Branch, Ontario Ministry of
Natural Resources and Forestry, Peterborough, ON.

Ringgenberg, B., and Winker, K. 2015. Indications that the Common Redpoll is

Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P.
science.aaw1313.

Sánchez-Bayo, F., and Wyckhuys, K. A. G. 2019. Worldwide decline of the entomo-
biocon.2019.01.020.

Smith, A. C., Hudson, M. A., Downes, C. M., and Francis, C. M. 2015. Change points
in the population trends of aerial-insectivorous birds in North America: Syn-
doi.org/10.1371/journal.pone.0130768.

Environment and Climate Change Canada, Gatineau, QC; https://wildlife-
species.canada.ca/breeding-bird-survey-results/P005/A001/?lang=e&m=s&
r=BARS&p=L&t=16938.

Spiller, K. J., and Dettmers, R. 2019. Evidence for multiple drivers of aerial insec-
condor/duz010.

Tapper, S., Nocera, J. J., and Burness, G. 2020. Heat dissipation capacity influ-
ences reproductive performance in an aerial insectivore. J. Exp. Biol. 223(10):
jeb222232; https://doi.org/10.1242/jeb.222232.

Teglhøj, G. P. 2018. Artificial nests for Barn Swallows Hirundo rustica: A conserva-
tion option for a declining passerine? Bird Study 65:385–395; https://doi.org/1
0.1080/00063657.2018.1516192.

of American Robins (Turdus migratorius) at the northern edge of their range.

World Meteorological Organization. 2018. Guide to Instruments and Methods of

Accepted 28 June 2022
Associate editor: Christopher W. Swarth
ABSTRACT: Monitoring Mexican Spotted Owls (Strix occidentalis lucida) in and near breeding territories during winter has practical value but has not been previously studied by passive techniques, including acoustic recorders. Such information could inform breeding survey strategies as well as identify new breeding pairs. The U.S. Fish and Wildlife Service’s standard survey protocol, entailing four nighttime visits to a site and listening for a response to broadcast calls, has limitations in winter, when nonbreeding owls are less likely to respond and multiple visits may not be possible. Instead, I tested the feasibility of using passive sound-recording equipment to detect the owl in winter, deploying audio recorders at two known nesting sites in northern Arizona over 6 months through winter 2014–2015. As a result, I recorded spontaneous calls during each month of the survey. Paired males and females called to each other in winter, and the variation in frequency of calling through the night paralleled the pattern found in previous studies. My data suggest that automated audio detection provides a reliable tool for continuous, high-resolution, long-term, and cost-effective monitoring of the Mexican Spotted Owl, in both winter and summer.

The U.S. Fish and Wildlife Service (USFWS 2012) has issued a protocol to guide the design of surveys for the Mexican Spotted Owl (Strix occidentalis lucida) during the breeding season but not for surveys in the nonbreeding season. The protocol, which instructs surveyors to broadcast owl calls in order to elicit a call in response, has several limitations: (1) nesting Spotted Owls might be less likely to respond if Barred Owls (S. varia) are present (Crozier et al. 2006), (2) surveys must stop if a Great Horned Owl (Bubo virginianus), a potential predator of the Spotted Owl, is present, (3) training personnel to survey effectively is challenging and time-consuming, (4) multiple visits are required for a probability of detection to be estimated and a reliable measure of occupancy to be generated (USFWS 2012), and (5) nighttime surveys in rugged terrain can be dangerous. In addition, broadcast surveys are typically limited to two to four per breeding season, to balance logistics with the need for an adequate sample size and to minimize any potential disturbance of the birds. To ensure a fairly uniform spread of surveys across the breeding season, no more than one survey per site can be completed in March (USFWS 2012). The applicability of the standard survey protocol in winter has been considered limited because of the Spotted Owl’s generally lower responsiveness to broadcast calls outside the breeding season (Ganey 1990, Gutiérrez et al. 2020). Finally, the broadcast survey’s protocol requires four nighttime visits before the absence of owls at the site is considered confirmed, which in winter may be not achievable because of snow or icy conditions and road closures. In contrast, wildlife surveys based on passive acoustic monitoring circumvent the limitations of the traditional survey method because audio recorders can be deployed and retrieved by day. Such equipment allows unattended and noninvasive data recording of a wide range of animals emitting detectable acoustic signals (Sugai et al. 2019).

The winter habits of the Mexican Spotted Owl have been rather well
studied via radio-telemetry (e.g., Zwank et al. 1994, Ganey et al. 2005, 2014). Radio-tracking of adults in southern Utah during both the breeding and nonbreeding seasons, 1991–1995, demonstrated that the nonbreeding home ranges were on average 49% larger than home ranges during breeding (Willey and van Riper 2007). While many of the tracked owls remained close to their breeding sites year round, some moved to peripheral areas or migrated up to 35 km from the nest area during the nonbreeding season (Willey 1998). Such diverse patterns of winter movements highlight the need for a reliable method of winter surveys that allows for simultaneous monitoring of the owls’ vocal behavior at multiple locations, as passive acoustics enable. Winter surveys are necessary if the Mexican Spotted Owl’s habitat is to be protected and its population sustained, especially with climate change (Peery et al. 2012).

The focus of my study is a population of the Mexican Spotted Owl in Walnut Canyon near Flagstaff, Arizona, that has a long history as the subject of research and conservation projects. In Walnut Canyon, two owls radio-tracked in 1986 and 1987 were demonstrated to occupy their home range year round apart from 2–3 weeks in late December and early January, during which they moved ~10 km down canyon (Ganey and Balda 1989). During that study, the owls were radio-tracked for ~1000 hours over 190 nights and were heard calling at distances up to 400 m (Ganey 1990). The frequency of these spontaneous calls increased from March through May, then declined from June through November. No calls were heard from December through February. During the breeding season, owls were heard calling during all hours of the night but were most vocal during the first 2 hours following sunset.

After successful use of passive sound recorders to survey Mexican Spotted Owls during the breeding season in Walnut Canyon for the National Park Service from 2011 to 2013, I tested them from October 2014 to March 2015 at two known nest sites. My objectives were to record the type and frequency of Mexican Spotted Owl calls in winter, determine whether breeding pairs exchanged calls in winter, and establish whether winter surveys for the Mexican Spotted Owl can rely on passive sound monitoring.

METHODS

Study Area

The two nesting sites I monitored in Walnut Canyon lie ~15 km east of Flagstaff. The study area includes a canyon deeply incised between rugged limestone cliffs within a broadly defined mixed ponderosa pine (Pinus ponderosa) forest (Schelz et al. 2017). Pinyon pine (P. edulis), Utah juniper (Juniperus osteosperma), alligator juniper (J. deppeana), one-seed juniper (J. scopulorum), and ponderosa pine dominate along the rims and upper canyon walls (Menzel and Covington 1997). Along the canyon bottom, the common trees are Arizona walnut (Juglans major), box elder (Acer negundo), narrow-leaf cottonwood (Populus angustifolia), quaking aspen (P. tremuloides), willows (Salix lasiolepis and S. laevigata), Gambel oak (Quercus gambelii), Douglas fir (Pseudotsuga menziesii), and ponderosa pine (Joyce 1976). Mexican Spotted Owls nest and roost within the cooler and shaded areas of the canyon, primarily in Douglas fir trees and vertical rock slots. Great Horned
Owls also inhabit the canyon, nesting close to the canyon rims. The closest road is ~400 m from the recording area but is typically closed in winter.

Sound-Monitoring Equipment

I used Electrohome EAMP100 players with a voice recorder (Electrohome, Cheektowaga, NY). Two RadioShack D-cell battery holders (https://www.radioshack.com, catalog no. 2700403) were soldered in parallel to the AAA battery connectors of each recorder. To extend recording time, the MP3 players were powered by two Duracell MN1300 alkaline manganese D-cell batteries. The recording unit comprising one recorder and two batteries was approximately 88 mm long × 70 mm wide × 55 mm high, weighing ~330 g. These MP3 players are no longer manufactured, but the AudioMoth (https://www.openacousticdevices.info/audiomoth) and Wildlife Acoustics (www.wildlifeacoustics.com) recorders are suitable current alternatives.

Data Collection

Sound monitoring started on 6 October 2014 and finished on 21 March 2015. During this time, daily mean ambient temperatures varied from −10.8 to 13.6 °C, with an average of 4.0 °C (Flagstaff Pulliam Airport, https://www.weather.gov/wrh/Climate?wfo=fgz). One recorder each was deployed ~200–300 m from two known Spotted Owl nests, in rock niches protected from precipitation and animal investigation by a natural overhanging cliff, as depicted in Figure 1. The recorders monitored sound continuously for

Figure 1. Sound-monitoring equipment deployed in Walnut Canyon, Arizona, to record the calls of Mexican Spotted Owls.
~2 weeks (until the memory card filled up), after which I replaced them with a new set with a cleared memory cache and new batteries. Each audio recording began by stating the recording location, date, and time. With no prior knowledge of the performance of the recorders in winter, I visited the locations every 8–30 days, for a total of 10 visits over the 6 months of sound monitoring (Table 1).

Sound-File Analysis

After downloading compressed WAV files from the recorders I decompressed the files with the Poweramp Music Converter (https://www.dbpoweramp.com). I then divided these files into 1-hour fragments with

Table 1 Results of Acoustic Survey for the Mexican Spotted Owl at Two Nest Sites in Walnut Canyon, Arizona, October 2014–March 2015

<table>
<thead>
<tr>
<th>Audio detection of Mexican Spotted Owls calls<sup>a</sup></th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>1<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1<sup>b</sup></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>1<sup>b</sup></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>2<sup>b</sup></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>1<sup>b</sup></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2<sup>b</sup></td>
<td>1</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>1<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>—</td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2<sup>b</sup></td>
<td>0<sup>b</sup></td>
<td>0<sup>b</sup></td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>0<sup>b</sup></td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>0<sup>b</sup></td>
<td>—</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>2<sup>b</sup></td>
<td>na</td>
<td>0<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2<sup>b</sup></td>
<td>2</td>
</tr>
</tbody>
</table>

^aDash signifies days when no recorder was deployed at the sites. 0, no calls; 1 single calls (one owl at a time); 2, double calls (two owls at a time).

^bDay when recorders were deployed, replaced, or retrieved.
DAPP (Digital Audio Post-Processor, Far North Aquatics, Fairbanks, AK) and renamed then in the format “Location_YYYYMMDD_HHMMSS” (e.g., SiteA_20150213_170000). Because DAPP has been discontinued, I suggest Raven Pro (https://ravensoundsoftware.com/software/raven-pro/) or Kaleidoscope Pro (https://www.wildlifeacoustics.com/products/kaleidoscope-pro) as suitable current alternative programs. The 1-hour audio files were scanned for the Mexican Spotted Owl calls with a band-limited energy detector built within Raven Pro (https://www.birds.cornell.edu/ccb/raven-pro), according to the manufacturer’s instructions. Audio technicians verified potential Spotted Owl calls this detector identified automatically by listening to the audio clip of the detected sound and analyzing its spectrogram.

RESULTS

From October 2014 to March 2015, the devices recorded sound for 18–27 days per month (reflecting presence or absence of the equipment in the field), 137 days total (Table 1). Spotted Owl calls were registered in every month for 5–22 days per month. Such variability may be partially explained by coverage being more thorough in some months than in others (e.g., 27 days in January vs 18 days in December). The total number of days with verified Spotted Owl calls was 86 (63% of all days monitored), on 51 of which only one Spotted Owl called at a time. On the remaining 35 days two owls (male and female) called simultaneously. The proportion of days with such double calls the lowest in January (12.5%) then increased to 50% and 70% in February and March, respectively.

The two sites pooled, the total number of 1-hour recordings with verified Spotted Owl calls was 225. Of these calls, 69% were recorded after sunset between 18:00 and 21:00 or between 04:00 and dawn. By hour, the number of recorded calls peaked at 28 between 18:00 and 19:00, decreased to 9–13 between 22:00 and 03:00, then peaked again at 27 between 05:00 and 06:00. No calls were recorded during the daytime from 07:00 to 16:00. Similar hourly patterns of calling behavior were observed when the data were analyzed for each month separately (data not shown).

DISCUSSION

Documenting Mexican Spotted Owls in their winter territories is important for protection of their habitat and for planning the breeding surveys, as many pairs winter near where they later nest (Gutiérrez et al. 2020). The detection of multiple Spotted Owl calls (Table 1) in areas of Walnut Canyon where no such calls were detected by traditional survey methods (Ganey 1990) shows the potential of passive sound-recording technology to document the owls’ presence and vocal behavior in winter. Continuous sound monitoring over weeks greatly increases the chance of detection, while the few-hour visits by a human surveyor may coincide with the owls’ absence from the breeding territory. A comparison of the probability of detection of a Mexican Spotted Owl by the passive acoustic monitoring and by traditional survey methods is still needed. Reassuringly, the hourly distribution of calls obtained by acoustic survey (Figure 2) is consistent with the pattern
reported by Ganey (1990), with call frequency highest after sunset. Another important advantage of the sound-monitoring equipment was its capacity to record data even during the coldest or windiest of nights, when the sites were not easily accessible.

The communication between pairs of the Mexican Spotted Owl during the nonbreeding season has not been well documented. The acoustic survey yielded dual calls (likely to represent interaction between the female and male) during all 6 months of sound monitoring (Table 1). The increasing proportion of the double calls from January (12.5%) to March (70%) was consistent with the beginning of the breeding season, during which the vocal communication between the female and male is greatest (Ganey 1990, USFWS 2012).

Even during the breeding season acoustic surveys for the Mexican Spotted Owl may have important advantages over the traditional broadcast surveys. Passive recording methods do not elicit unnecessary calling or movements that could expose the owls to increased predation, disrupt their hunting or mating, or reduce their internal energy stores. Recorders require on average two daytime visits (to be deployed and retrieved) for ~2 weeks of continuous sound monitoring rather than four nighttime visits (to broadcast calls) per nest site. The frequency of my visits reflected the exploratory nature of my study rather than necessity. Also, passive sound monitoring is not limited by poor weather or the presence of predators such as the Great Horned Owl. Finally, the daytime visits to deploy and retrieve recorders allow the surveyor to search the habitat for pellets, fecal deposits, and roosting owls.

Passive acoustic monitoring is rapidly gaining use in wildlife research and surveys, following global trends toward automated data collection and analy-
sis of large data sets (Sugai et al. 2019). This technique is now shown to be a reliable tool for continuous, high-resolution, long-term, and cost-effective monitoring of the Mexican Spotted Owl, in both winter and summer.

ACKNOWLEDGMENTS

I thank Sonya Daw for getting me involved with my first surveys of the Mexican Spotted Owl in 1991 and for help with preparing the manuscript, followed by comments from Jon Hardes. I am grateful to Mark Szydlo for help with sound monitoring. I also thank Daniel D. Gibson, David Willey, Mark Szydlo, and Philip Unitt for their constructive comments and helpful suggestions on an earlier draft of the article.

LITERATURE CITED

Willey, D. W. 1998. Movements and habitat characteristics of Mexican Spotted
THANKS TO WESTERN BIRDS’ REVIEWERS, ASSOCIATE EDITORS, AND EDITORIAL TEAM

I’m deeply grateful to our associate editors Kenneth P. Able, Matthew J. Baumann, Daniel S. Cooper, Douglas W. Faulkner, Kimball L. Garrett, Daniel D. Gibson, Robert E. Gill Jr., Daniel R. Ruthrauff, Christopher W. Swarth, and Ryan S. Terrill for offering their expertise, functioning as additional reviewers of the manuscripts whose reviews they coordinate, as well as frequently serving as peer reviewers of additional manuscripts. The journal could not function without them. Thank you to Deborah J. House for joining us as a new associate editor. Thank you as well to book review editor Catherine P. Waters, photo editor Peter LaTourrette, assistant editor Daniel D. Gibson, and webmaster/designer/typographer Timothy W. Brittain for fulfilling their key roles in producing Western Birds. This year, we should all acknowledge the phenomenal contribution of Ginger Johnson, who had to step down this year as graphics manager after serving Western Birds through its entire 53-year history. Ginger’s decades of service to WFO were recognized through her being given the Alan M. Craig Award in 2010. Please take a moment to appreciate Ginger’s work by visiting https://westernfieldornithologists.org/awards/alan-m-craig-award/.

Philip Unitt
Under California’s Natural Communities Conservation Planning (NCCP) Act of 1991, local governments have developed and implemented ecosystem-based conservation plans (NCCPs) that build upon aspects of the federal government’s Habitat Conservation Plan (HCP) model. An HCP sets aside and manages natural lands for certain plant and/or wildlife species listed under the federal Endangered Species Act (ESA) and allows for “incidental take” of the species by the landowner. An NCCP expands upon this concept, setting aside large, well-connected tracts of land and managing them for multiple species of listed and otherwise declining species. In *Bird Versus Bulldozer*, Audrey Mayer evaluates the effectiveness of the NCCP approach to conserving the California Gnatcatcher and other taxa reliant on coastal sage scrub in southern California.

The publisher promises a synthesis of “insights from ecology, environmental history, public policy analysis, and urban planning” in Mayer’s review of “much-neglected regional conservation planning strategies.” The book jacket comes emblazoned with enthusiastic blurbs from the likes of Kieran Suckling (“dives deep below simple headlines”), John Marzluff (“a deep dive into the science and policy of endangered species conservation”), and Robert Askins (“deeply relevant to anyone who is interested in preserving natural ecosystems threatened by development”). As a biological land-use consultant who helped to prepare the NCCP/HCP for central and coastal Orange County and who has contributed to implementing this plan, and others, through more than 30 years of field studies of the gnatcatcher and Cactus Wren, I welcomed the opportunity to compare notes with those of a credentialed researcher publishing under an Ivy League imprint. As the margins of my copy of the book filled with question marks, I grew concerned that a truly thorough review would fill out a volume of *Western Birds*, but ultimately *Bird Versus Bulldozer* is not serious enough to warrant so much attention.

Ten pages in, Mayer cites Joseph Grinnell’s 1898 *Birds of the Pacific Coast of Los Angeles County* and Grinnell and Alden Miller’s 1944 *The Distribution of the Birds of California* in support of her claim that the California Gnatcatcher plummeted from “common” in the late 1800s to “rare by the 1940s.” The author refutes herself on page 42, quoting from both references: “Common resident in a few limited localities on brushy mesas and washes, principally along the base of the foot-hills” and “Common locally; areas of suitable habitat somewhat reduced in last twenty years.” Thanks largely to the NCCP, this remains the gnatcatcher’s status in the region today.

On page 49, Mayer complains that gnatcatchers on the Palos Verdes Peninsula “are collectively separated from other coastal sage scrub by the vast urban sprawl of Los Angeles—precisely the situation that the NCCP policy was intended to prevent.” No policy could ever “prevent” or reverse pre-existing development on a large scale. A thorough evaluation of the NCCP’s relationship to the landscape as it exists could have contributed to our collective understanding of how NCCP land managers prioritize, implement, monitor, and fund different management prescriptions.

On page 51, Mayer lumps together the Coyote Hills—fewer than 1000 acres of functionally isolated knolls in north-central Orange County—with the Santa Ana Mountains, which cover more than 500,000 acres. Orange County’s NCCP reserves incorporate tens of thousands of acres of the Santa Ana Mountain foothills, the range itself lies largely within the Cleveland National Forest, and the Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) includes additional lands on the mountains’ eastern flank. Mayer could have spent a chapter describing the importance of the Santa Ana Mountains to regional conservation planning,
BOOK REVIEWS

including Paul Beier’s pioneering work to track mountain lion movements, the successful campaign to establish a wildlife connection through Coal Canyon to the Chino Hills, and current plans for a wildlife crossing over Interstate 15, identified as being necessary to restore the “Santa Ana–Palomar Mountains Linkage” for big cats and other terrestrial species (Mayer does, in fact, mention the need for this overpass much later, on page 179). After a single dismissive paragraph, however, Mayer moves on, tossing out a bizarre claim that “Researchers and surveyors have consistently overlooked this area.”

On page 58, Mayer states, “To reconnect the isolated gnatcatcher populations on the Palos Verdes Peninsula, in Ventura County, and in the Coyote Hills—the spine of foothills running between Orange and Riverside Counties—we need to preserve and restore gnatcatcher habitat across the region.” Again, Mayer conflates the tiny, isolated Coyote Hills with the massive Santa Ana Mountains. Reconnecting the Coyote Hills to the nearest gnatcatcher population would require clearing homes and businesses from a corridor three miles long and planting it with scrub. Similarly incomprehensible feats would be required to connect populations on the Palos Verdes Peninsula to populations elsewhere.

Chapter 4, California Gnatcatcher Taxonomy, confuses more than clarifies. On page 88, Mayer warns that, “if a 10-meter-high border wall appears,” gnatcatcher “populations on northern side of the border will likely genetically diverge from those on the southern side over time anyway, owing to the loss of reproductive connectivity of California gnatcatchers across the border.” Amy Vandergast and colleagues did recently identify a distinct genetic break at the international border (2022. Subspecies differentiation and range-wide genetic structure are driven by climate in the California Gnatcatcher, a flagship species for coastal sage scrub conservation. Evolutionary Applications 15:1201–1217; doi.org/10.1111/eva.13429), but gnatcatchers can fly higher than 10 meters and the border wall has slats, so Mayer should not be attributing genetic divergence to a wall. After reaching no conclusions about the validity of different taxonomic approaches, Mayer ends the chapter by observing that the gnatcatcher’s listing may have “prevented other coastal sage scrub species from ending up on the ESA list.” True enough, but readers wondering about the taxonomic sturdiness of the gnatcatcher’s umbrella of protection will need to look elsewhere.

Chapter 6 describes the NCCP’s inception but somehow ignores the socio-political context. During the 1980s, with few flat areas left to develop, builders moved into the scrub-covered hills. Following a recession in 1981/82, cash-starved local governments unleashed a fast-rising tide of hillside development that threatened to catastrophically diminish, fragment, and degrade the region’s complex and biodiverse landscape. With no scrub-dependent wildlife species listed as threatened or endangered, and with most local governments dominated by real-estate interests, few forces of moderation existed to counterbalance the aggressive and powerful building industry. In the face of rampant land speculation, a sense of doom mixed with righteous anger infused the environmental community during the 1980s and early 1990s. Concerns over vanishing natural beauty, livability, and ecological integrity were not limited to environmental activists. Most importantly, the Irvine Company in Orange County (under the guidance of consultant Rob Schonholtz, a visionary biologist all but forgotten after his death in 2003) pushed hard not only for development but also adoption of an ecologically sensitive, landscape-level approach to conservation. Mayer does acknowledge this corporate leadership, but devotes more space to pointlessly grumbling about how the 1982 listing of Stephens’ Kangaroo Rat (Dipodomys stephensi) supposedly “hobbled the development industry in Riverside and San Bernardino Counties.”

Thus it was into a combustible atmosphere of rapacious greed, political opportunism, legal brinksmanship, frustration, and desperation—tempered at the margin by rational and politically connected demands for reform—that in 1988 Jonathan
Atwood made the case for re-recognizing the California and Black-tailed Gnatcatchers as different species. At that point, biologists, activists, attorneys, landowners, local governments, and regulators rushed to become familiar with the little gray birds mewing away in the aromatic bushes that were so quickly disappearing. Although the NCCP Planning Act was adopted in 1991, landowners’ participation lagged in the absence of species listed under the ESA to serve as the regulatory specter to drive negotiations. Finally, in 1993, the gnatcatcher’s federal listing as threatened provided the necessary irritant around which the pearl of NCCP planning would form.

On page 129 Mayer, quoting from a 2001 report prepared by the California Research Bureau, laments that “Policy makers and politicians . . . chose to move the planning process forward, sacrificing scientific certainty for political support.” But did such a choice ever exist? During the first half of the 1990s, under immense financial and political pressures, a broad and unlikely coalition—politicians, large landowners, agency biologists, government planners, environmental activists, and consultants, working in concert with a scientific review panel of highly regarded conservation biologists retained by the state—identified important natural landscapes that could be feasibly purchased and linked together. During intense planning sessions, subregional plans were worked out on maps, aligned with the ESA and other regulations, subjected to formal public review and comment, set down in complicated implementation agreements, and funded. If we accept for the sake of argument that “scientific certainty” exists as an attainable concept in land-use planning, the review panel’s recommendations could not have been followed to the letter without convincing all of the private and public stakeholders who put up the land and most of the funding to give up all control over the process. Furthermore, many stakeholders would not have waited patiently for a lengthy scientific review process to play out, and nobody ever advocated placing all planning and decision-making power in the review panel’s hands in the first place. For these reasons, a “scientific certainty option” never existed.

This is not to say that science has occupied its proper place of prominence, either in the original NCCP planning processes or in the continuing adaptive management of subregional reserves. For example, any legitimate effort at “adaptive management” should incorporate predictive modeling, yet the NCCP’s long-term endowments have been inadequate for the development of useful predictive models to be incorporated into ongoing monitoring and management plans (Hamilton, R. A. 2008. Cactus Wrens in central & coastal Orange County: How will a worst-case scenario play out under the NCCP? Western Tanager 75:2–7). Especially in something as long as a book, the point of describing the legitimate shortcomings of a policy should be to frame the challenges facing policy administrators accurately, and, if possible, to help them improve. Doing so requires a nuanced understanding of the policy and its history combined with the scientific expertise and vision needed to develop well-reasoned and feasible prescriptions that decision-makers would be wise to follow, in spite of inevitable political and financial hurdles.

Finally, on page 168 we stumble across the book’s buried lede: “That the NCCP has managed to protect over 400,000 hectares of natural habitat statewide . . . should perhaps be considered heroic.” As one who, during the 1980s, could not hope to imagine ecosystem-based planning becoming the norm across southern California, I view protection of nearly a million acres of natural lands under the NCCP banner (so far) as emphatically heroic, despite the program’s inevitable flaws. Had Mayer undertaken original research into the NCCP and its origins, and perhaps interviewed people intimately familiar with the program—such as Dan Silver of the Endangered Habitats League, Trish Smith of The Nature Conservancy, and others too numerous to name—she could have provided useful insights into the negotiating sessions, described the challenges of designing and implementing the new plans, and analyzed the legal and regulatory battles that were fought and usually won. In short, Mayer
could have given readers a new, multifaceted lens with which to view the NCCP experiment in its proper historical context.

In the book as written, however, Mayer’s final chapter abruptly shifts from half-heartedly describing the NCCP to enthusiastically promoting “green infrastructure” as “a life support system that makes cities habitable and sustainable.” Readers are urged to recognize “the importance of nature to the well-being of urban residents” while challenging planners to “use smaller, more numerous parks to add green space without driving up housing costs.” Children on their screens may contract “nature-deficit disorder,” and the ghost of Frederick Law Olmstead preaches about improving “the health and vigor of men” through “occasional contemplation of natural scenes.” We all love city parks, but they fulfill much different ecological and social functions than do reserves established under an NCCP. The latter comprise expansive blocks of natural lands managed specifically to conserve threatened populations of plants and wildlife, many of which would not persist for long in small, urban nature parks.

Ultimately, Bird Versus Bulldozer represents a missed opportunity to satisfyingly explain the complicated significance of the NCCP program, which in less than a decade, and despite shortcomings, transformed major aspects of land-use policy in southern California from back-room political deals among self-interested parties to an ecologically coherent approach of landscape-level preservation and management of the region’s coastal sage scrub and associated natural communities.

Robert A. Hamilton

When evolutionary biologist Richard Dawkins (The Selfish Gene, The Blind Watchmaker, The Extended Phenotype, Climbing Mount Improbable), widely regarded as one of the world’s great thinkers, writes a new book, it is probably worth reading. Flights of Fancy is a book about flight in the broadest sense, movement through the air, escaping gravity to the extent possible. It is not a technical book and lacks aerodynamic equations; all of the principles necessary to understand unpowed-ered and powered flight are presented in an intuitive way that is easy to understand. Birds, the premier living flyers, feature prominently, but Dawkins’ treatment is eclectic, and we meet everything from dandelion seeds to Pegasus, the Roc, Icarus, Leonardo da Vinci’s “ornithopter,” and the Gossamer Albatross. The illustrations by Jana Lenzová are attractive, often whimsical (though generally accurate), and add much to the book.

Flight in living organisms is, of course, an evolved trait that has developed independently and many times over millions of years through the slow, inexorable process by which natural selection favors tiny heritable improvements. Much of Dawkins’ writing over the years has been devoted to elucidating this process and explaining how it produces the most improbable and complex adaptations: what good is half a wing? Human flight is a product of deliberate design and technology, not evolution, but the problems that have to be overcome and the physics involved are exactly the same. Nature had solved them all a very long time before we showed up and wanted to take to the air. Engineering has enabled us to vastly push the boundaries in many areas (speed, distance, duration, altitude), but with the possible exception of lighter-than-air ballooning, which no animal seems to have achieved, we have discovered nothing fundamentally new in the realm of flight.

Because flight has evolved repeatedly across a diverse array or organisms, it seems obvious that it must confer many familiar benefits: locating food, catching food, escaping predators, finding a mate, seasonal migration, and many others. If flying confers so many advantages, why don’t all animals, or at least more of them,
fly? Presumably because the anatomy and physiology required to fly are energetically costly. Dawkins uses the many examples of loss of flight in once volant creatures as instructive case studies of the costs and benefits of flying. This leads us on a tour of the many instances of secondary loss and near loss of flight in birds, including the ratites, various species that found themselves accidentally on isolated islands, even long extinct examples such as the “Terror Birds” (Phorusrhacidae) of South America, three-meter tall carnivores with enormous heads. Some insects lose their wings (some even chew them off at the appropriate stage in the life cycle) during life. No birds do this and only the moas lost all trace of wings, even internal vestiges of skeleton.

The enemies of flight are size and, most importantly, weight. Small and light are the ideals if you need to fly. If you must be large and fly it is necessary to evolve a disproportionately large surface area because that is what catches air. The simplest kind of flight is unpowered—gliding, as exemplified by many raptors, seabirds, and flying fish, and what we might call paragliding as in the flying squirrels, the convergent sugar gliders of Australia, and the colugo or “flying lemur” of southeast Asia. No matter how efficient, any glider ultimately succumbs to gravity and returns to earth, though skillful use of thermals and other sources of lift can greatly prolong the flight. To be able to fly more or less indefinitely requires power to provide forward motion that creates airflow past the wing and generates lift. In planes this power is provided by propellers or jet engines; in animals it results from muscles moving wings in just the right way. Dawkins provides a lucid, but nontechnical, explanation of how airfoils generate lift and then takes us on a tour of powered animal flight from birds and bats through a variety of insects and even pterosaurs.

While birds figure prominently in the book, which is why it is being reviewed here, there are scores of other fascinating examples of organisms taking to the air: aerial plankton, ballooning spiders, many kinds of plant seeds, the pterosaur Quetzalcoatlus (the size of a small airplane and the largest flying animal), the four-winged dinosaur Microraptor, flying squid, frogs, lizards, snakes, and the numerous attempts (most failed, some spectacularly) at human-powered flight.

All of this is presented in Dawkins’ entertaining prose and I recommend it. I enjoyed the book thoroughly until I reached the last chapter in which he embarks on a flight of fancy of his own that left me stupefied. He is apparently enthralled with Elon Musk, to whom he dedicated the book, and espouses the notion of creating a human colony on Mars as a hedge against the destruction of the earth by various possible disasters from a meteor strike to the long-term effects of climate change. This colony, tiny though it would necessarily be, might provide the possibility of recolonizing the earth when and if it recovers (after a million years, two million, more?). But here’s the thing. The biggest threat to life on earth is climate change and it is already here. We don’t have a century or two to mitigate this disaster with a pie in the sky colony on a planet that, except for terra firma, provides virtually none of the requisites for life. Promoting this fantasy seems to me a dangerous distraction from what humanity needs desperately to be doing, but is not: using all of our energy and resources to save the only known place in the universe that can sustain life.

Kenneth P. Able
Acanthis flammea, 292
hornemannii, 103–104, 114, 292
Accipiter gentilis, 295
adastus, Empidonax traillii, 160–161, 216–231
Aethia cristatella, 277–278
psittacula, 277
pusilla, 277
pygmea, 93, 295
Agelaius tricolor, 186–198
aikeni, Junco hyemalis, 106
Aimophila ruficeps, 151
alascensis, Calcarius lapponicus, 292–293
Alauda arvensis, 103, 114, 132
Albatross, Black-footed, 284
Short-tailed, 99–100, 113, 125
aleuticus, Ptychoramphus aleuticus, 276
alexandrae, Lagopus lagopus, 268
aliciae, Catharus minimus, 151
americana, Bucephala clangula, 267
americanus, Mergus merganser, 267–268
Ammospiza leconteii, 106, 135
nelsoni, 95
Amphispiza bilineata, 147, 151
Anas acuta, 265–266
cerca, 266
diazi, 120
platyrynchos, 265
querquedula, 121–122, 138
Anser canagicus, 95, 121, 264
Anthus cervinus, 95
rubescens, 291
Antigone canadensis, 122, 269
Antrostomus carolinensis, 122
Aquila chrysaetos, 285
Archilochus colubris, 92–93, 122
Ardea grisea, 285
teniurostris, 284–285
arenacea, Spizella pusilla, 135
Arenaria interpres, 270
melanoccephala, 270
arra, Uria lomvia, 272–273
arvensis, Alauda arvensis, 103
Asio flammeus, 289
Auklet, Cassin's, 276
Crested, 277–278
Least, 277
Parakeet, 277
Rhinoceros, 278
Whiskered, 93, 295
Aythya marila, 266
Baer, Larry, see Klein, S.
Bailey, Edgar P., see Day, R. H.
Bartels, Matt, see Tweet, B.
Basilinna xantusi, 112
bewickii, Cygnus columbianus, 112
Blackbird, Rusty, 138
Tricolored, 186–198
Black Hawk, Common, 138
Bobwhite, Northern, 122
Bombycilla cedrorum, 30–42
Booby, Brown, 100–101, 113
Masked, 125–128
Masked/Nazca, 128
Nazca, 75–78, 99, 128
Red-footed, 138
borealis, Lanius borealis, 289
Brachyramphus brevirostris, 276
marmoratus, 274–275
perdix, 113
Brant, 264
Branta bernicla, 264
hutchinsii, 265
Bubo scandiacus, 288
virginianus, 288
Bucephala albeola, 267
clangula, 267
Bufflehead, 267
Bunting, Indigo, 111, 115
Lark, 114
McKay’s, 114
Painted, 111, 115
Rustic, 104
Snow, 135, 138, 293
Buteo albonotatus, 101
lagopus, 288
swainsoni, 19–29
Buteogallus anthracinus, 138
Byrd, G. Vernon, see Day, R. H.
caruela, Polioptila caerulea, 103
Calamospiza melanocorys, 114
Calcarius lapponicus, 292–293
Calidris alpina, 296
ferruginea, 97, 112–113, 124
fuscicollis, 97
mauri, 271
INDEX

minuta, 124
minutilla, 271
ptilocnemis, 270
ruficollis, 97, 113
tenuirostris, 93
Calonectris diomedea, 138
leucomelas, 125
Calypte costae, 112
canadensis, Antigone canadensis, 269
Aquila chrysaetos, 285–287
caniceps, Junco hyemalis, 106
canorus, Cuculus canorus, 269
Cardellina pusilla, 294
Cardinal, Northern, 79–80
Cardinalis cardinalis, 79–80
Carmona, Roberto, see Marrón, G.
Carnes, Blaine H., see Pyle, P.
carolinensis, Anas crecca, 266
Pandion haliaetus, 285
Casey, Daniel, and Hendricks, Paul, Apparent Predation by Rock Wren of Common Sagebrush Lizard, 244–246
Catharus bicknellii, 151
fuscescens, 133
guttatus, 114, 133, 291
minimum, 94, 151
caurina, Strix occidentalis, 171
Cepphus columba, 273–274
Cerorhinca monocerata, 278
Charadrius hiaticula, 94, 124
mongolus, 270
semipalmatus, 269–270
vociferus, 143
Chickadee, Black-capped, 290
Chloroceryle amazona, 130
Christman, Beth, see Loffland, H. L.
Chroicocephalus philadelphia, 124, 280
ridibundus, 99, 124–125, 280–281
Chuck-will's-widow, 122
cincinatum, Namnoperum auritum, 285
Circus hudsonius, 288
Clangula hyemalis, 267
Coccothraustes abeillei, 70–74
Coccyzus americanus, 97, 112
Colinus virginianus, 122
columba, Cepphus columba, 273–274
columbianus, Cygnus columbianus, 265
Columbina talpacoti, 122
Condor, California, 94
Contopus pertinax, 95, 130
virens, 132
Coragyps atratus, 128–129
Cormorant, Double-crested, 285
Pelagic, 285
Red-faced, 93, 285
cornutus, Podiceps auritus, 268
Corvus corax, 290
Cowbird, Brown-headed, 43–51
Crane, Common, 122–124
Sandhill, 122, 269
Whooping, 112
Creagrus furcatus, 97–99
creca, Anas creca, 266
Cuckoo, Common, 269
Yellow-billed, 97, 112
Cuculus canorus, 269
Curlew, Bristle-thighed, 124
Little, 93
Cygnus columbianus, 112, 265
cygnus, 116
Cyananthus latirostris, 122
Day, Robert H., Byrd, G. Vernon, and Bailey, Edgar P., Birds of the Shumagin Islands, Alaska, 258–308
Dickcissel, 111–112
Dietrich, Scott E., Diet of Nestling Willow Flycatchers in Meadows of the Sierra Nevada, 153–162; Willow Flycatcher Nesting within Narrowleaf Cottonwood in the Sierra Nevada, 241–243
Dorn, Jane L., see Dorn, R. D.
Dorn, Robert D., Dorn, Jane L., and Dyer, Calvin E., Northern Cardinal Nesting in Wyoming, 79–80
Dove, Oriental Turtle-, 269
Ruddy Ground, 122
White-winged, 96, 112
Dowitcher, Long-billed, 296
Duck, Falcated, 95–96
Harlequin, 267
Long-tailed, 267
Mexican, 120
Dunlin, 296
Dyer, Calvin E., see Dorn, R. D.
Eagle, Bald, 288
Golden, 285–287
Steller's Sea-, 113, 288
Egret, Snowy, 101
Egretta thula, 101
tricolor, 128
Eider, Common, 96, 112, 266
INDEX

King, 266
Steller's, 266
Elanus leucurus, 250–252
Emberiza rustica, 104
Empidonax alnorum, 103, 114, 132
difficilis/occidentalis, 173
flaviventris, 132, 173–176
Erickson, Richard A., and Valdés, René, Notes on the Breeding Biology of the Hooded Grosbeak (*Coccothraustes abeillei*), 70–74
erythrogaster, Hirundo rustica, 290
Eugenes fulgens, 112
Euphagus carolinus, 138
Evans, William R., Presumed Nocturnal Flight Call of the Green-tailed Towhee, 143–152
exilipes, Acanthis hornemanni, 292
extimus, Empidonax traillii, 153, 160–161, 216–231
Falco columbarius, 2–18
peregrinus, 250–252, 289
rusticolus, 289
Falcon, Peregrine, 250–252, 289
faxonii, Catharus guttatus, 114
Finch, Gray-crowned Rosy-, 292
Fischer, Silas E., see Di Liberto, J. F.
flammea, Acanthis flammea, 292
flammula, Pinicola enucleator, 291–292
Flycatcher, Alder, 103, 114, 132
Cordilleran/Pacific-slope, 173
Dusky-capped, 101, 130
Fork-tailed, 130
Great Crested, 130
Scissor-tailed, 101
Sulphur-bellied, 130
Western, 173–175
Yellow-bellied, 132, 173–176
Fratercula cirrhata, 278–279
corniculata, 278
Fulmar, Northern, 284
Fulmarus glacialis, 284
furcatus, Hydrobates furcatus, 284

Gadwall, 265
Gallinago delicata, 271
Gallinule, Purple, 97
gambeli, Zonotrichia leucophrys, 293
Gannet, Northern, 138
Garganey, 121–122, 138
Gavia adamsii, 125, 283
arctica, 99
immer, 125, 283
pacific, 283

Gloriagranata formosa, 95, 137
philadelphia, 95, 137
tolmiei, 137
Glaucidium gnoma, 171
Gnatcatcher, Blue-gray, 103
Godwit, Bar-tailed, 124, 296
Hudsonian, 124
Goldeneye, Common, 267
Golden-Plover, Pacific, 269
Goldfinch, Lesser, 232–236
Goose, Cackling, 265, 296
Emperor, 95, 121, 264
Goshawk, Northern, 295
Grackle, Common, 106–108, 135
Great-tailed, 108
Granillo, Kathy A., see Di Liberto, J. F.
Grebe, Horned, 268
Red-necked, 268–269
griseonucha, Leucosticte tephroctos, 292
Grosbeak, Blue, 111
Hooded, 70–74
Pine, 291–292
Ground Dove, Ruddy, 122
Grus americana, 112
grus, 122–124
Guillemot, Pigeon, 273–274
Gula, Jonah, Habitat-Patch Occupancy of Western Screech-Owls in Suburban Southern California, 199–207
Gull, Black-headed, 99, 124–125, 280–281
Black-tailed, 113, 125
Bonaparte's, 124, 280
Common, 281
Glaucous, 282
Glaucous-winged, 282
Herring, 282
Ivory, 113
Laughing, 99
Little, 99
Sabine's, 280
Short-billed, 281–282
Slaty-backed, 99, 113, 125, 138, 282
Swallow-tailed, 97–99
guttatus, Catharus guttatus, 291
Gymnogyps californianus, 94
Gyrfalcon, 289
Haematopous bachmani, 269
Halaeetus leucocephalus, 288
pelagicus, 113, 288
Hamilton, Robert A., Book Review: Sacramento County Breeding Birds, 83–85;
Book Review: *All About Birds*, California, 177–179
Hardes, Jonathan G., An Introduction to Prey of the Mexican Spotted Owl in Walnut Canyon National Monument,
INDEX

Arizona, 169–172
Harrier, Northern, 288
Hathcock, Charles D., see Tattoni, D. J.
Hawk, Common Black, 138
Rough-legged, 288
Swainson’s, 19–29
Zone-tailed, 101
Hayes, Floyd E., see Walker-Roseman, L. D.
Himantopus mexicanus, 294
Hirundo rustica, 290, 309–326
Histrionicus histrionicus, 267
Hudsonicus leucophaeus, Branta hutchinsii, 265
Icteria cucullatus, 106, 115
pustulatus, 135
spurius, 106
Ictinia mississippiensis, 129
ilia, Passerella iliaca, 106, 114
inornata, Uria aalge, 272–273
interpres, Arenaria interpres, 270
Jaeger, Long-tailed, 272
Parasitic, 272
Pomarine, 272
Johnson, Oscar, First Record of the Yellow-bellied Flycatcher for the El Paso Region of Texas, 173–176
Junco, Dark-eyed, 106, 115
junco hyemalis, 106, 115
kamtschaticus, Corvus corax, 290
kamtschatschensis, Larus canus, 281
Kildeer, 143
Kingbird, Thick-billed, 130, 138
Tropical, 101
Kingfisher, Amazon, 130
Belted, 289
Kiskadee, Great, 130
Kite, Mississippi, 129
White-tailed, 250–252
Kittiwake, Black-legged, 279–280
Red-legged, 113, 297
Klein, Stephanie, Baer, Larry, and Phillips, Ryan A., Breeding Swainson’s Hawks in the Central Coast Range of California, 19–29
Knot, Great, 93
Kozij, Kelly, see Oliphant, L. W.
LaBarbera, Katie, see Tattoni, D. J.
lagopus, Bubo virginianus, 288
Lagopus lagopus, muta, 268
Lampornis clemenciae, 112
Lanius borealis, 289
Larosterna inca, 208–215
Larus argentatus, 282
brachyrhynchus, 281–282
canus, 281
crassirostris, 113, 125
glaucens, 282
hyperboreus, 282
schistisagus, 99, 113, 125, 138, 282
Leiothlypis celata, 294
peregrina, 108, 115
ruficapilla, 115
Leucolia violiceps, 122, 139
leucopareia, Branta hutchinsii, 265
Leucophaeus atricilla, 99
leucorhous, Hydrobates leucorhous, 284
Leucosticte tephrocotis, 292
Leung, Maria, and Reid, Donald, Nesting Ecology of the Barn Swallow on Agricultural Lands in Yukon, 309–326
Limnodromus scolopaceus, 296
Limosa haemastica, 124
lapponica, 124, 296
Lofland, Helen L., Schofield, Lynn N., Siegel, Rodney B., and Christman, Beth, Sierra Nevada Willow Flycatcher Decline Continues but Losses Abate at Two Restored Meadows, 52–69
Longspur, Lapland, 292–293
Thick-billed, 95
Loo, Arctic, 99
Common, 125, 23
Pacific, 283
INDEX
INDEX

Red-throated, 283
Yellow-billed, 125, 283
lucida, Strix occidentalis, 169–172, 327–334
lugens, Motacilla alba, 133
Lymnocryptes minimus, 94

Mappie, Black-billed, 289–290, 309
Mallard, 265
Manriquez-Castro, César Iván, see Vargas, J.
Mareca americana, 265

C. junco hyemalis, 115
C. alcyon, 289
C. penelope, 95–96
C. strepera, 265
Marrón, Gerardo, Marrón, Luisa, and Carmona, Roberto, First Record of the White-faced Ibis Nesting in Baja California Sur, 237–240
Marrón, Luisa, see Marrón, G.
McCaskie, Guy, see Benson, T. A.
mearnsi, Junco hyemalis, 115
Megaceryle alcyon, 289
Megarhyncha, Passerella iliaca, 104, 114–115
Megascops kennicottii, 199–207
Melanerpes erithrocephalus, 113–114
Melanitta americana, 267
deglandi, 267
perspicillata, 267
melodia, Melospiza melodia, 106
Melospiza melodia, 106, 294
Melzone crissalis, 163–168
fusca, 151, 163–168
Merganser, Common, 267–268
Red-breasted, 268
Mergus merganser, 267–268
serrator, 268
Merlin, 2–18
Micrathene whitneyi, 130
migratorius, Turdus migratorius, 291
minima, Branta hutchinsii, 296
Mitchell, Adam, see Hendricks, P.
Mniotilta varia, 108, 115
Molothrus ater, 43–51
Morus bassanus, 138
Motacilla alba, 103, 133
tschutschensis, 133
Mountain-gem, Blue-throated, 112
Murre, Common, 272–273
Thick-billed, 272–273
Murrelet, Ancient, 276
Guadalupe, 97
Kittlitz's, 276
Long-billed, 113
Marbled, 274–275
Scripps's, 97

Mycteria americana, 125
Myiarchus crinitus, 130
tuberculifer, 101, 130
Myioborus pictus, 111
Myiodynastes luteiventris, 130

Nannopterus auritum, 285
nearctica, Aythya marila, 266
nelseni, Lagopus muta, 268
nigricans, Branta bernicla, 264
Numenius minutus, 93
phaeopus, 270
tahitienis, 124

obscura, Polioptila caerulea, 103
Oceanites oceanicus, 94, 113
ocularis, Motacilla alba, 103, 133
Oenanthae oenantith, 103, 133
Oliphant, Lynn W., Warkentin, Ian G., Kozij, Kelly, and Schmidt, Adam P., Merlin Parental Behavior and Chick Development as Revealed by Webcam, 2–18
Onychoprion aleuticus, 282–283
Oporornis agilis, 137
Oriole, Hooded, 106, 115
Orchard, 106
Streak-backed, 135
Ortiz-Serrato, Liliana, see Vargas, J.
Osprey, 285
Ovenbird, 108
Owl, Elf, 130
Great Horned, 288
Northern Pygmy-, 171
Short-eared, 289
Snowy, 288
Spotted, 169–172, 327–334
Western Screech-, 199–207
Oystercatcher, Black, 269

Pacificus, Anthus rubescens, 291
Papagoelburnea, 113
Pallescens, Stercorarius longicaudus, 272
Pandion haliaetus, 285
Pandolfino, Edward R., see Phenicie, K. Jr.
Parula, Northern, 108
Paspereculus sandwichensis, 293–294
Passerella iliaca, 104, 106, 114–115, 144, 293
Passerina caerulea, 111
ciris, 111, 115
cyanea, 111, 115
pealei, Falco peregrinus, 289
pekinesis, Alauda arvensis, 132
pelagicus, Utrile pelagicus, 285
Petrel, Fork-tailed Storm-, 284
Leach's Storm-, 284
Mottled, 100
Murphy's, 100, 113
Wilson's Storm-, 94, 113
INDEX

Petrochelidon fulva, 132
Pyrrophona, 317
Peucaea botterii, 147, 151
Cassinii, 135, 147, 151
Pewee, Eastern Wood-, 132
Greater, 95, 130
Phainopepla, 95, 114
Phainopepla nitens, 95, 114
Phalarope, Red, 271–272
Red-necked, 271
Phalaropus fulicarius, 271–272
lobatus, 271
Phenicie, Ken Jr., Zamek, Steve, and Pandolfino, Edward R., Peregrine Falcon Steals Prey from White-tailed Kites, 250–252
Phillips, Ryan A., see Klein, S.
Phoebastria albatrus, 99–100, 113, 125
nigripes, 284
Phoebe, Eastern, 103
Phylloscopus borealis/examinandus, 132
Pica hudsonia, 289–290, 309
pileolata, Cardellina pusilla, 294
Pinicola enucleator, 291–292
Pintail, Northern, 265–266
pinus, Spinus pinus, 292
Pipilo chlorurus, 143–152
erythrophthalmus, 120
maculatus, 145, 151
Pipit, American, 291
Red-throated, 95
Pinicola enucleator, 291–292
Pitangus sulphuratus, 130
Platalea ajaja, 128
platyrhynchos, Anas platyrhynchos, 265
Plectrophenax hyperboreus, 114
nivalis, 135, 138, 293
Plegadis chihi, 128, 237–240
falcinellus, 128
Plover, Common Ringed, 94, 124
Lesser Sand-, 270
Pacific Golden-, 269
Semipalmated, 269–270
Pluvialis fulva, 269
Podiceps auritus, 268
grisegena, 268–269
Poeule atricapillus, 290
Polioptila caerulea, 103
pollicaris, Rissa tridactyla, 279–280
Polydicta stelleri, 266
Porphyrio martinicus, 97
Protonotaria citrea, 108
Ptarmigan, Rock, 268
Willow, 268
Pterodroma inexpectata, 100
ultima, 100, 113
Ptychoramphus aleuticus, 276
Puffin, Horned, 278
Tufted, 278–279
Puffinus puffinus, 100
Pygmy-Owl, Northern, 171
Pyle, Peter, and Carnes, Blaine H., Molt Strategies by Age and Subspecies in the Willow Flycatcher, 216–231; see Hudon, J.
Quiscalus mexicanus, 108
quiscula, 108–135
Raven, Common, 290
Redpoll, Common, 292
Hoary, 103–104, 114, 292
Redshank, Spotted, 95
Redstart, Painted, 111
Reid, Donald, see Leung, M.
Rynchophanes mccownii, 95
richardsonii, Falco columbarius, 2–18
Rinkert, Alex M., see Benson, T. A.
riparia, Riparia riparia, 290
Riparia riparia, 290
Rissa brevirostris, 113, 297
tridactyla, 279–280
Robin, American, 291
rodgersii, Fulmarus glacialis, 284
Rosy-Finch, Gray-crowned, 292
rubiginosa, Setophaga petechia, 294
ruscicapilla, Leiothlypis ruficapilla, 115
Ruiz-Campos, Gorgonio, see Vargas, J.
Salpinctes obsoletus, 244–246
sanaka, Melospiza melodia, 294
sanctijohannis, Buteo lagopus, 288
Sandpiper, Curlew, 97, 112–113, 124
Least, 271
Marsh, 124
Rock, 270
Western, 271
White-rumped, 97
Sand-Plover, Lesser, 270
sandwichensis, Passerculus sandwichensis, 293–294
Sapsucker, Red-breasted, 30–42
Yellow-bellied, 101, 114
Sayornis phoebe, 103
Scap, Greater, 266
Schmidt, Adam P., see Oliphant, L. W.
Schofield, Lynn N., see Loffland, H. L.
Scooter, Black, 267
Surf, 267
White-winged, 267
Screech-Owl, Western, 199–207
Sea-Eagle, Steller’s, 113, 288
Seiurus aurocapilla, 108
Selasphorus sasin, 112
Setophaga americana, 108
cæruleascens, 111, 115
INDEX

Toxostoma curvirostre, 133, 138
rufum, 103
trailii, Empidonax trailii, 216–231
Tringa erythropus, 95
flavipes, 271
incana, 271
melanoleuca, 271
stagnatilis, 124
Troglodytes hiemalis, 132–133
pacificus, 291
Turdus eunomus, 95
migratorius, 291
turneri, Poecile atricapillus, 290
Turnstone, Black, 270
Ruddy, 270
Turtle-Dove, Oriental, 269
Tweit, Bill, Shaw, Ryan, and Bartels, Matt,
Twelfth Report of the Washington
Bird Records Committee (2016–2018),
90–119; and see Wahl, R. G.
Tyrrannus crassirostris, 130, 138
forficatus, 101
melancholicus, 101
savanna, 130
unalaschcensis, Passerella iliaca, 293
Uria aalge, 272–273
lomvia, 272–273
Urile pelagicus, 285
urile, 93, 285

Valdés, René, see Erickson, R. A.
VanderWerf, Eric A., An Inca Tern in the
Hawaiian Islands: First Record for Ha-
waii and the United States, 208–215
Vargas, Jonathan, Ortiz-Serrato, Liliana,
Manriquez-Castro, César Iván, and
Ruiz-Campos, Gorgonio, First Specimen
of the Nazca Booby (Sula granti) for the
State of Baja California, Mexico, 75–78
Veery, 133
Vermivora chrysoptera, 137
chrysoptera × cyanoptera, 138–139
cyanoptera, 137
versicolor, Quiscalus quiscula, 106–108, 135
Vireo, Blue-headed, 114, 132
Gray, 43–51
Philadelphia, 93, 94, 103
White-eyed, 94, 132
Vireo griseus, 94, 132
philadelphicus, 93, 94, 103
solitarius, 114, 132
vicinior, 43–51
virginianus, Colinus virginianus, 122
v-nigrum, Somateria mollissima, 266
Vulture, Black, 128–129
Wagtail, Eastern Yellow, 133
White, 103, 133
Wahl, Megan, see Wahl, R. G.
Wahl, Robin Geske, Wahl, Megan, and Tweit,
Bill, In Memoriam: Terence R. Wahl,
1930–2022, 181–182
Walker-Roseman, Lisa D., and Hayes, Floyd
E., Object Play in the Royal Tern, 247–249
Warbler, Arctic/Kamchatka Leaf, 132
Bay-breasted, 109
Black-and-white, 108, 115
Blackburnian, 109
Blackpoll, 109–111, 115
Black-throated Blue, 111, 115
Blue-winged, 137
Blue-winged × Golden-winged, 138–139
Cape May, 137
Chestnut-sided, 109
Connecticut, 137
Golden-winged, 137
Golden-winged × Blue-winged, 138–139
Grace’s, 137–138
Hooded, 108
Kentucky, 95, 137
MacGillivray’s, 137
Magnolia, 108
Mourning, 95, 137
Nashville, 115
Orange-crowned, 294
Prothonotary, 108
Tennessee, 108, 115
Wilson’s, 294
Worm-eating, 135–137
Yellow, 294
Yellow-throated, 115
Warkentin, Ian G., see Oliphant, L.W.
Waxwing, Cedar, 30–42
Wheatear, Northern, 103, 133
Whimbrel, 270
Wigeon, American, 265
Eurasian, 95–96
Woodpecker, Red-headed, 113–114
Wood-Pewee, Eastern, 132
Wren, Pacific, 291
Rock, 244–246
Winter, 132–133
Xema sabini, 280
Yellowlegs, Greater, 271
Lesser, 271
Zamek, Steve, see Phenicie, K. Jr.
Zenaida asiatica, 96, 112
Zonotrichia albicollis, 144
atricapilla, 293
leucophrys, 293

347
In both morning and evening these birds congregate and display on the rocks of talus slopes where they nest. Around the turn of the 20th century the colony on southern Big Koniuji was one of the largest alcid colonies anywhere. In 1977 about 42,000 Crested Auklets were nesting in five colonies on four of the outer Shumagin Islands. But by 2011 the numbers had fallen to perhaps no more than 500.

Part of the large colony of Cassin’s Auklet (*Ptychoramphus aleuticus*) on Castle Rock, Shumagin Islands, Alaska, July 2006, showing the high density of nesting burrows. Cassin’s Auklet nests on at least seven of the Shumagin Islands; in 1977 the population was estimated at ≥46,000 birds. Subsequent data are insufficient to suggest any trend, although the Shumagins are important to the Alaska population.